TAMKANG JOURNAL OF MATHEMATICS Volume 39, Number 3, 213-218, Autumn 2008

NONCONVEX MINIMIZATION IN GENERATING SPACE

VANITA BEN DHAGAT AND VIJENDRA SINGH THAKUR

Abstract. A nonconvex minimization theorem has been established for generating of space of quasi 2-metric family with non commuting condition, which is defined as α -compatible.

1. Introduction and preliminary

The generating space of quasi 2-metric family is important because of its involvement with fuzzy and probabilistic 2-metric space and a minimization theorem [1], [2] is to obtain fixed point theorem. In this paper, we prove a non convex minimization theorem for generating space of quasi 2-metric family. Further, we prove fixed point theorem as an application of minimization theorem with non commuting condition Known as α -compatible. Generating space of quasi 2-metric family is defined as follows:-

Let *X* be a non empty set and $\{D_{\alpha} : \alpha \in (0, 1]\}$ be family of mapping D_{α} from *XxXxX* into R^+ . $\{X, D_{\alpha}\}$ is called generating space of quasi 2-metric family if it satisfy following axioms:

- (GM1) For any two distinct points x and y there exists z in X such that $D_{\alpha}(x, y, z) \neq 0$, $\forall \alpha \in (0, 1]$.
- (GM2) $D_{\alpha}(x, y, z) = 0$ if at least two x, y, z are equal and $\alpha \in (0, 1]$.
- (GM3) $D_{\alpha}(x, y, z) = D_{\alpha}(x, z, y) = D_{\alpha}(z, y, x)$ for all x, y, z in X and $\alpha \in (0, 1]$.
- (GM4) For any $\alpha \in (0,1]$ there exists $\alpha_1, \alpha_2, \alpha_3 \in (0,\alpha]$ such that $\alpha_1 + \alpha_2 + \alpha_3 \le \alpha$ and so $D_{\alpha}(x, y, z) \le D_{\alpha 1}(x, y, u) + D_{\alpha 2}(x, u, z) + D_{\alpha 3}(u, y, z)$.
- (GM5) $D_{\alpha}(x, y, z)$ is non increasing and left continuous in α and $\forall x, y, z$ in *X*.

Throughout this paper, we assume that $K : (0,1] \rightarrow (0,\infty)$ is a non decreasing function satisfying the condition

$$K = \sup K(\alpha).$$

Let *E* and *F* be mappings from generating space of quasi 2-metric family $\{X, D_{\alpha}\}$ into itself. The mapping *E* and *F* are said to be α -compatible if

$$\lim_{n \to \infty} D_{\alpha}(EFx_n, FEx_n, EEx_n) = 0 \text{ and } \lim_{n \to \infty} D_{\alpha}(EFx_n, FEx_n, FFx_n) = 0$$

Received February 5, 2007.

2000 Mathematics Subject Classification. 54H25, 47H10.

Key words and phrases. Generating space of quasi 2-metric family, α -compatible mapping, Minimization theorem, common fixed point.

for all $\alpha \in (0, 1]$ and x_n is a sequence in X such that $\lim_{n \to \infty} Ex_n = \lim_{n \to \infty} Fx_n = t$ for some t in X.

Lemma 1. Let E and F be α -compatible mappings from generating space of quasi 2-metric family $\{X, D_{\alpha}\}$ into itself. Suppose that $\lim_{n \to \infty} Ex_n = \lim_{n \to \infty} Fx_n = t$ for some t in X. Then (i) $\lim_{n \to \infty} EFx_n = Ft$ if F is continuous.

(ii) EFt = FEt and Et = Ft if E and F are continuous.

Proof. (i) Suppose that $\lim_{n \to \infty} Ex_n = \lim_{n \to \infty} Fx_n = t$ for some t in X. Since F is continuous, we have $\lim_{n \to \infty} FEx_n = Ft$. Now by (GM4), we have

 $D_{\alpha}(EFx_n, Ft, Ft) \leq D_{\alpha 1}(EFx_n, Ft, FEx_n) + D_{\alpha 2}(EFx_n, FEx_n, Ft) + D_{\alpha 3}(FEx_n, Ft, Ft)$

For $\alpha_1, \alpha_2, \alpha_3 \in (0, \alpha]$ such that $\alpha_1 + \alpha_2 + \alpha_3 \le \alpha$. On taking limit $n \to \infty$ we get $\lim_{n \to \infty} EFx_n = Ft$. Since E is continuous, $\lim_{n \to \infty} EFx_n = Et$ and also F is continuous so by (i) $\lim_{n \to \infty} EFx_n = Ft$. Hence by uniqueness Et = Ft. Now again $D_{\alpha}(EFt, FEt, EFt) \leq \lim_{n \to \infty} D_{\alpha}(EFx_n, FEx_n, EFx_n)$ for all $\alpha \in (0, 1]$. Since *E* and *F* and by (GM2) we get EFt = FEt.

2. Main result

Theorem 1. Let $\{X, D'_{\alpha} : \alpha \in (0, 1]\}$ and $\{Y, D'_{\alpha} : \alpha \in (0, 1]\}$ be two complete generating space of quasi 2-metric family. $F: X \to Y$ be a closed and $T: X \to X$ be continuous mapping satisfying

(i) $D_{\alpha}(Tx, Ty, z) \leq \max\{D_{\alpha}(Tx, y, z), D_{\alpha}(x, Ty, z), D_{\alpha}(x, y, Tz)\}$ and

(ii) $D'_{\alpha}(f(Tx), f(Ty), f(z)) \le \max\{D'_{\alpha}(f(Tx), f(y), f(z)), D'_{\alpha}(f(x), f(Ty), f(z)), d(x), f(x), f(x)$

- $D'_{\alpha}(f(x), f(y), f(Tz))\}, \forall x, y, z \text{ in } X \text{ and } \alpha \in (0, 1]$
- (iii) $\psi: \mathfrak{R} \to \mathfrak{R}$ be a non decreasing continuous and bounded below function,
- (iv) $\phi: f(X) \to \Re$ be a lower semi continuous and bounded below function,
- (v) for any $p \in X$ with $\inf_{x' \in X} \psi(\phi(f(x))) < \psi(\phi(f(p)))$ there exists q with $p \neq Tq$ and $\max\{\max\{D_{\alpha}(Tq, p, z), D_{\alpha}(q, Tp, z), D_{\alpha}(q, p, Tz)\}, c. \max\{D'_{\alpha}(f(Tq), f(p), f(z)), c. max\}$ $D'_{\alpha}(f(q), f(Tp), f(z)), D'_{\alpha}(f(q), f(p), f(Tz))\}] \le K(\alpha)[\psi(\phi(f(p))) - \psi(\phi(f(q)))]$ $\forall x, y, z \text{ in } X \text{ and } \alpha \in (0, 1] \text{ and } c \text{ is any constant.}$

Then there exists an x_0 in X such that $\inf_{x \in X} \psi(\phi(f(x))) = \psi(\phi(f(x_0))).$

Proof. Let us suppose $\inf_{x \in X} \psi(\phi(f(x))) < \psi(\phi(f(y)))$ for every *y* in *X* and choose $r \in X$ for which $\psi(\phi(f(r)))$ is defined, then inductively we define a sequence $\{r_n\} \subset X$ with $r_1 = r$. Suppose r_n is known and consider

$$\begin{split} W_n &= \left\{ \left[w \in X : \max\left[\max\{D_{\alpha}(Tw,r_n,z), D_{\alpha}(w,Tr_n,z), D_{\alpha}(w,r_n,Tz) \}, \\ c.\max\{D'_{\alpha}(f(Tw),f(r_n),f(z)), D'_{\alpha}(f(w),f(Tr_n),f(z)), D'_{\alpha}(f(w),f(r_n),f(Tz)) \} \right. \\ &\leq K(\alpha) \left[\psi(\phi(f(r_n))) - \psi(\phi(f(w))) \right] \qquad \forall x,y,z \text{ in } X \text{ and } \alpha \in (0,1]. \end{split} \end{split}$$

214

 W_n is non empty set and there exists $w \in W_n$ such that $r_n \neq Tw$. We can choose $r_{n+1} \in W_n$ such that and $r_n \neq T(r_{n+1})$ and

$$\psi(\phi(f(r_{n+1}))) \leq \inf_{x \in X} \psi(\phi(f(x))) + 1/3 \Big[\psi(\phi(f(r_n))) - \inf_{x \in X} \psi(\phi(f(x))) \Big].$$

Clearly $\psi(\phi(f(r_{n+1})))$ is a non increasing lower bounded sequence, hence it is a convergent sequence.

Now we prove $\{r_n\}$ and $\{f(r_n)\}$ are Cauchy sequences:

$$\begin{aligned} \max\{D_{\alpha}(Tr_{n}, Tr_{n+1}, w), c.D'_{\alpha}(f(Tr_{n}), f(r_{n+1}), f(w))\} \\ &\leq \max\left[\max\{D_{\alpha}(Tr_{n}, r_{n+1}, w), D_{\alpha}(r_{n}, Tr_{n+1}, w), D_{\alpha}(r_{n}, r_{n+1}, Tw)\}, \\ c.\max\{D'_{\alpha}(f(Tr_{n}), f(r_{n+1}), f(w)), D'_{\alpha}(f(r_{n}), f(Tr_{n+1}), f(w)), \\ D'_{\alpha}(f(r_{n}), f(r_{n+1}), f(Tw))\}\right] \\ &\leq K(\alpha) \Big[\psi(\phi(f(r_{n}))) - \psi(\phi(f(r_{n+1})))\Big] \end{aligned}$$

 $\forall n, m \in N, n < m \Rightarrow$ there exists $\alpha_i = \alpha_i(n, m); \sum \alpha_i \leq \alpha$, such that

$$\max \left\{ \max\{D_{\alpha}(Tr_{n}, r_{m}, w), D_{\alpha}(r_{n}, Tr_{m}w), D_{\alpha}(r_{n}, r_{m}, Tw)\} \\ c.\max\{D'_{\alpha}(f(Tr_{n}), f(r_{m}), f(w)), D'_{\alpha}(f(r_{n}), f(Tr_{m}), f(w)), \\ D'_{\alpha}(f(r_{n}), f(r_{m}), f(Tw))\} \right\} \\ \leq \sum_{j=n} \max \left\{ \max\{D_{\alpha j}(Tr_{j}, r_{j+1}, w), D_{\alpha j}(r_{j}, Tr_{j+1}, w), D_{\alpha j}(r_{j}, r_{j+1}, Tw)\} \\ c.\max\{D'_{\alpha j}(f(Tr_{j}), f(r_{j+1}), f(w)), D'_{\alpha j}(f(r_{j}), f(Tr_{j+1}), f(w)), \\ D'_{\alpha j}(f(r_{j}), f(r_{j+1}), f(Tw))\} \right\}$$

Hence, $\forall n, m \in N$, n < m and $\mu < \alpha$:

$$\max \left\{ \max\{D_{\alpha}(Tr_{n}, r_{m}, w), D_{\alpha}(r_{n}, Tr_{m}, w), D_{\alpha}(r_{n}, r_{m}, Tw)\} \right. \\ \left. c. \max\{D'_{\alpha}(f(Tr_{n}), f(r_{m}), f(w)), D'_{\alpha}(f(r_{n}), f(Tr_{m}), f(w)), D'_{\alpha}(f(r_{n}), f(r_{m}), f(Tw))\} \right\} \\ \left. \leq K(\mu) \sum_{j=n}^{m-1} \left[\psi(\phi(f(r_{j}))) - \psi(\phi(f(r_{j+1}))) \right] \\ \left. \leq K(\alpha) \left[\psi(\phi(f(r_{n}))) - \psi(\phi(f(r_{m}))) \right] \right\}$$

for some α_j with $0 < \alpha_{j+1} < \alpha_k \le \alpha$, $j = n, \dots, m - 1$.

$$\begin{split} D_{\alpha}(r_n,r_{n+1},w) &\leq D_{\alpha 1}(r_n,r_{n+1},Tr_{n+1}) + D_{\alpha 2}(r_n,Tr_{n+1},w) + D_{\alpha 3}(Tr_{n+1},r_{n+1},w) \\ &\leq D_{\alpha 1}(r_n,r_{n+1},Tr_{n+1}) + D_{\alpha 2}(r_n,Tr_{n+1},w) + D_{\alpha 3}(Tr_{n+1},r_{n+1},Tr_n) \end{split}$$

$$\begin{split} &+ D_{\alpha 4}(Tr_{n+1},Tr_{n},w) + D_{\alpha 5}(Tr_{n},r_{n+1},w) \\ &\text{for } \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} \leq \alpha \\ &\leq 3 \Big[\max\{D_{\alpha}(Tr_{n},r_{n+1},w),D_{\alpha}(r_{n},Tr_{n+1},w),D_{\alpha}(r_{n},r_{n+1},Tw)\}, \\ &c.\max\{D_{\alpha}'(f(Tr_{n}),f(r_{n+1}),f(w)),D_{\alpha}'(f(r_{n}),f(Tr_{n+1}),f(w)), \\ &D_{\alpha}'(f(r_{n}),f(r_{n+1}),f(Tw))\} \Big] \\ &\leq 3K(\alpha) \Big[\psi(\phi(f(r_{n}))) - \psi(\phi(f(r_{n+1}))) \Big]. \end{split}$$

Then also we get

$$D_{\alpha}(r_n, r_m, w) \le 3K(\alpha) \left[\psi(\phi(f(r_n))) - \psi(\phi(f(r_m))) \right] \quad \text{where} \ n < m.$$

In the manner we obtain

$$D'_{\alpha}(f(r_n), f(r_{n+1}), f(w)) \le 3K(\alpha) \left[\psi(\phi(f(r_n))) - \psi(\phi(f(r_m))) \right] \quad \text{where} \ n < m.$$

Hence $\{r_n\}$ and $\{f(r_n)\}$ are Cauchy sequences.

Assume that $\lim_{n \to \infty} r_n = a$ and $\lim_{n \to \infty} f(r_n) = b$. Since *f* is closed therefore f(a) = b

By the continuity of Ψ and lower semi continuity of ϕ we have

$$\psi(\phi(b)) \le \lim_{n \to \infty} \psi(\phi(f(r_n))) = \lim_{n \to \infty} \psi(\phi(f(r_{n+1}))).$$

Let $\delta = \inf_{x \in X} \psi(\phi(f(x))) \in \Re$

$$\psi(\phi(f(r_{n+1}))) \le \inf_{x \in X} \psi(\phi(f(X))) + 1/3[\psi(\phi(f(r_n))) - \inf_{x \in X} \psi(\phi(f(x)))],$$

we have

$$\begin{split} &\lim_{n \to \infty} \psi(\phi(f(r_{n+1}))) \leq (2/3)\delta + 1/3 \lim_{n \to \infty} \psi(\phi(f(r_n))) = (2/3)\delta + 1/3 \lim_{n \to \infty} \psi(\phi(f(r_{n+1}))) \\ &\psi(\phi(f(a))) < \psi(\phi(b)) \leq \lim_{n \to \infty} \psi(\phi(f(r_{n+1}))) \leq \delta = \inf_{x \in X} \psi(\phi(f(x))) \leq \psi(\phi(f(a))) \end{split}$$

which is contradiction, therefore there exists x_0 in X such that

$$\inf_{x \in X} \psi(\phi(f(x))) = \psi(\phi(f(x_0))).$$

Now we give a fixed point theorem as an application of the above theorem under non commuting condition known as α -compatible.

Theorem 2. Let $\{X, D_{\alpha} : \alpha \in (0, 1]\}$ and $\{Y, D'_{\alpha} : \alpha \in (0, 1]\}$ be two complete generating space of quasi 2-metric family. $F : X \to Y$ be a closed and $T : X \to X$ be continuous mapping satisfying

(i) $D_{\alpha}(Tx, Ty, z) \leq \max\{D_{\alpha}(Tx, y, z), D_{\alpha}(x, Ty, z), D_{\alpha}(x, y, Tz)\}$ and

216

(ii) $D'_{\alpha}(f(Tx), f(Ty), f(z)) \le \max\{D'_{\alpha}(f(Tx), f(y), f(z)), D'_{\alpha}(f(x), f(Ty), f(z)), D'_{\alpha}(f(x), f(y), f(Tz))\},\$

(iii) $\psi : \mathfrak{R} \to \mathfrak{R}$ be a non decreasing continuous and bounded below function,

- (iv) $\phi: f(X) \to \Re$ be a lower semi continuous and bounded below function,
- (v) $S: X \to X$ be a continuous mapping,
- (vi) *S* and *T* are α compatible and

$$\max \left[\max\{D_{\alpha}(Tx, TSx, z), D_{\alpha}(x, TSx, z), D_{\alpha}(x, Sx, Tz)\}, \\ c. \max\{D'_{\alpha}(f(Tx), f(TSx), f(z)), D'_{\alpha}(f(x), f(TSx), f(z)), \\ D'_{\alpha}(f(x), f(Sx), f(Tz))\} \right] \\ \leq K(\alpha) \left[\psi(\phi(f(x))) - \psi(\phi(f(Sx))) \right]$$

 $\forall x, y, z \text{ in } X \text{ and } \alpha \in (0, 1] \text{ and } c \text{ is any constant. Then there exists unique common fixed point } x_0 \text{ in } X.$

Proof. If $x_0 \in X$ such that $\inf_{x \in X} \psi(\phi(f(x))) = \psi(\phi(f(x_0)))$ then $x_0 = TSx_0$, $Sx_0 = Tx_0$ and also $x_0 = Tx_0$. By the hypothesis, if $x_0 \neq Tx_0$ or $Sx_0 \neq Tx_0$. Then for some $\alpha \in (0, 1]$

$$0 < \max \left\{ D_{\alpha}(Tx_{0}, TSx_{0}, z), D_{\alpha}(x_{0}, TSx_{0}, z), D_{\alpha}(x_{0}, Sx_{0}, Tz) \right\}$$

$$\leq K(\alpha) \left[\psi(\phi(f(x_{0}))) - \psi(\phi(f(Sx_{0})))) \right] \leq 0$$

which contradiction. Then $Sx_0 = Tx_0$. Now by α compatibility of *S* and *T* and by the lemma we get $Sx_0 = TSx_0 = STx_0 = Tx_0$. Also for $\alpha_1, \alpha_2, \alpha_3 \in (0, \alpha]$ such that $\alpha_1 + \alpha_2 + \alpha_3 \le \alpha$

$$D_{\alpha}(x_0, Tx_0, z) \le D_{\alpha 1}(x_0, Tx_0, TSx_0) + D_{\alpha 2}(x_0, TSx_0, z) + D_{\alpha 3}(TSx_0, Tx_0, z)$$
$$\le D_{\alpha 3}(TSx_0, Tx_0, z) = 0. \text{ Hence } Tx_0 = Sx_0 = x_0.$$

Uniqueness. Let us assume there exists another fixed point y_0 such that $Sy_0 = Ty_0 = y_0$ and by the Theorem 1 we have $\inf_{x \in X} \psi(\phi(f(x))) = \psi(\phi(f(y_0)))$.

But $\inf_{x \in V} \psi(\phi(f(x))) = \psi(\phi(f(x_0)))$ hence by uniqueness of infima we get $x_0 = y_0$.

Corollary 1. Let $\{X, D_{\alpha} : \alpha \in (0, 1]\}$ and $\{Y, D'_{\alpha} : \alpha \in (0, 1]\}$ be two complete generating space of quasi 2-metric family. $F : X \to Y$ be a closed, $\phi : f(X) \to \Re$ be a lower semi continuous and bounded below function. Let $S : X \to X$ be a mapping such that

$$\max\left\{D_{\alpha}(Sx, x, z), c.D'_{\alpha}(f(Sx), f(x), f(z))\right\} \le K(\alpha) \left[\phi(x) - \phi(Sx)\right]$$

 $\forall x, y, z \text{ in } X \text{ and } \alpha \in (0, 1] \text{ and } c \text{ is any constant. Then there exists } Sx_0 = x_0$.

Proof. Considering T = I and $\psi = I$ we get required result.

V. B. DHAGAT AND V. S. THAKUR

3. Example

Let X = [0,1] and $Y = [0,\infty]$, $D_{\alpha} = D'_{\alpha} = D_1$ defined by $D_1(x, y, z) = \frac{D(x, y, z)}{1 + D(x, y, z)}$ and $D(x, y, z) = \max\{|x - y|, |y - z|, |z - x|\}$. The mappings are defined as follows: $T : X \to X$ as $Tx = x^2$, $f : X \to X$ as fx = x, $\phi : f(X) \to R$ as $\phi(x) = 1/(1 - x)$ and $\psi : R \to R$, $\psi(x) = x^2/2$ and $K(\alpha) = 3$ satisfy the all conditions of Theorem 1. Also $S : X \to X$ is defined $Sx = x^3/2$, then (S, T) is α compatible which satisfying the condition of Theorem 2 and hence 0 is a unique fixed point.

Acknowledgement

Authors thank to Madhya Pradesh Council of Science and Technology (MAPCOST) for financial support through Project M-19/2006.

References

- [1] D. Downing and W. A. Kirk, A generalization of Cariti's theorem with applications in nonlinear mapping theory, Pacific J. Math. **69**(1977), 339–346.
- [2] J. S. Jung, Y. J. Cho and J. K. Kim, *Minimization theorems for fixed point theorems in fuzzy metric space and application*, Fuzzy Sets and System **61**(1994), 199–270.

Department of Mathematics, Jai Narain College of Technology, Bairasia Road, Bhopal M. P., India. E-mail: vanital_dhagat@yahoo.co.in

E-mail: vijendra@yahoo.co.in