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THE CONSTRUCTION OF A 4EC-AUED CODE

HOW GUAN AUN AND KEAN KIM LEONG

Abstract. In this paper, we construct a constant weight code based on the idea of Bose and Rao

[2] and M. C. Lin [6]. This code can be used for correcting 4 symmetric errrors and simultaneously

detecting all unidirectional errors. The code has size 70 and the information rate is 0.27.

1. Introduction

Error correcting/detecting codes are essential in most devices that store digital infor-

mation and they have been extensively discussed for improving the reliability in devices

such as computer systems and communication networks [1]-[3], [5]-[8]. Different systems

may be vulnerable to different types of error and a lot has been written to deal with them.
We classified them as symmetric, asymmetric and unidirectional errors. A transition of

0 → 1 will be referred as 0-error and a transition of 1 → 0 as 1-error.

Through research, it was found that many types of VLSI circuits exhibit a high

incidence of unidirectional errors, while the number of random faults or symmetric errors
caused by internal failure is usually limited. For that reason, it is useful to have codes

that are capable of correcting a relatively small number of random errors and detecting

any number of unidirectional errors. Considerable attention was paid to this problem

[1]-[2], [5]-[8]. In this paper, we will construct a 4EC-AUED code.

2. The Construction of a 4EC-AUED Code

In this section, we will discuss the method of encoding a message word into a code-
word. Messages are digitized into message words which are sequences of ‘0’s and ‘1’s.

We consider the set A of all message words of length 8 and weight 4. A has minimum

distance 2.

Each of the message word ā is encoded into a codeword c̄ of the form c̄ = [ā | w̄ | v̄ | ā]
where w̄ and v̄ are the parity check part added to it. First, let us explain how to obtain

w̄ and v̄.
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2.1. Method of obtaining w̄

Let W ∗ be the extended Hamming codes generated by

G=









1 0 0 0 1 1 0 0

0 1 0 0 1 1 1 1
0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1









with parity check matrix H =


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1 1 1 1

1 1 0 1

1 0 1 1

0 1 1 1
1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1
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.

Then from W ∗, whose minimum distance is 4, we choose any 8 words to form W .

Let W =


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1 1 1 0 1 0 0 0

0 1 1 1 0 0 0 1

1 0 1 1 0 0 1 0
1 1 0 0 0 0 1 1

1 1 0 1 0 1 0 0

1 0 1 0 0 1 0 1

0 1 1 0 0 1 1 0
0 0 0 1 0 1 1 1
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








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
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

. Next, we defined a one-to-one function g

which maps j = {0, 1, 2, 3, 4, 5, 6, 7} to W .

The 1-1 mapping chosen is:-

g(0) = 11101000 g(4) = 11010100

g(1) = 01110001 g(5) = 10100101

g(2) = 10110010 g(6) = 01100110

g(3) = 11000011 g(7) = 00010111

Then, ∀ā = (a0a1a2a3a4a5a6a7) ∈ A and w̄ is defined as w̄ = g[
7

∑

i=0

ai · i(mod 8)].

Example 1. Let’s obtain w̄ from the message word ā = 10010110.

7
∑

i=0

ai · i = 0 + 3 + 5 + 6 ≡ 6 mod8, so w̄ = g(6) = 01100110.
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2.2. Method of obtaining v̄

Let V =


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0 0 0 1 1 1
0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 1 1
0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 1

0 1 1 0 1 0

0 1 1 1 0 0
1 0 0 0 1 1

1 0 0 1 0 1

1 0 0 1 1 0

1 0 1 0 0 1
1 0 1 0 1 0

1 0 1 1 0 0

1 1 0 0 0 1
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. Note that V contains words of length 6 and weight

3 and we define h as a one-to-one function from K = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16} to V .

The 1-1 mapping chosen is:-

h(0) = 000111 h(6) = 010110 h(12) = 100110

h(1) = 001011 h(7) = 011001 h(13) = 101001

h(2) = 001101 h(8) = 011010 h(14) = 101010

h(3) = 001110 h(9) = 011100 h(15) = 101100

h(4) = 010011 h(10) = 100011 h(16) = 110001

h(5) = 010101 h(11) = 100101

Then, ∀ā = (a0a1a2a3a4a5a6a7) ∈ A and v̄ is defined as v̄ = h[

7
∑

i=0

ai · 2
i(mod 17)]

Example 2. Let’s obtain v̄ from the message word ā = 10010110.

7
∑

i=0

ai · 2
i = 20 + 23 + 25 + 26 ≡ 3mod 17, so v̄ = h(3) = 001110.

Since the codeword takes the form of c̄ = [ā | w̄ | v̄ | ā], therefore from exam-
ple 1 and 2, the message word ā = 10010110, will be the encoded into codeword
c̄ = [10010110 01100110 001110 10010110].
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3. Minimal Distance of the Code

Before we calculate the minimal distance of the code obtained, let us take a look at

the following theorems.

Theorem 3.1. If c̄ = [ā | w̄ | v̄ | ā] and c̄′ = [ā′ | w̄′ | v̄′ | ā′] are two different

codewords and w̄ = w̄′, then d(ā, ā′) ≥ 4.

Proof. We claimed that d(ā, ā′) ≥ 4. If d(ā, ā′ < 4, then d(ā, ā′) = 2. Assume that ā

and ā′ disagree at coordinate i and j. w̄ = w̄′ implies
∑7

i=0(ai ·i) ≡
∑7

i=0(a
′

i ·i) ≡ mod 8.

This means i ≡ j mod 8 which leads to a contradiction since i− j lies between −7 and 7.

(8 is the minimum positive integer that makes it works.) We conclude that d(ā, ā′) ≥ 4

Theorem 3.2. If c̄ = [ā | w̄ | v̄ | ā] and c̄′ = [ā′ | w̄′ | v̄′ | ā′] are two different

codewords and v̄ = v̄′, then d(ā, ā′) ≥ 4.

Proof. We claimed that d(ā, ā′) ≥ 4. If d(ā, ā′) < 4, then d(ā, ā′) = 2. Assume that

ā and ā′ disagree at coordinate i and j. v̄ = v̄′ implies
∑7

i=0(ai · 2
i) ≡

∑7
i=0(a

′

i · 2
i) ≡

mod 17. This means 2i ≡ 2jmod 17 which leads to a contradiction since 2i − 2j =
{

2i(1 − 2j−i), for j > i,

2j(2i−j − 1), for i > j,
and 0 ≤ i, j ≤ 7. We conclude that d(ā, ā′) ≥ 4.

Theorem 3.3. If c̄ = [ā | w̄ | v̄ | ā] and c̄′ = [ā′ | w̄′ | v̄′ | ā′] are two different

codewords and if v̄ = v̄′ and w̄ = w̄′, then d(ā, ā′) ≥ 6.

Proof. w̄ = w̄′ implies d(ā, ā′) ≥ 4 (from Theorem 3.2). Assume d(ā, ā′) = 4 and

that ā and ā′ disagree at coordinate i, j, l and m. Then w̄ = w̄′ implies
∑7

i=0(ai · i) ≡
∑7

i=0(a
′

i · i)mod 8 and thus i + j ≡ (l + m)mod 8 (1)

and v̄ = v̄′ implies
∑7

i=0(ai · 2
i) ≡

∑7
i=0(a

′

i · 2
i)mod 17 and thus we have

2i + 2j ≡ (2l + 2m)mod 17 (2)

The choice of mod 8 and mod 17 ensures that the congruence equation (1) and (2)

has no solution. Therefore, we conclude that d(ā, ā′) ≥ 6.

Now, we will use the thereoms mentioned above to calculate the minimal distance of

the code obtained. Note that d(c̄, c̄′) = d(ā, ā′) + d(w̄, w̄′) + d(v̄, v̄′) + d(ā, ā′).

Case 1. w̄ 6= w̄′ and v̄ 6= v̄′.

w̄ 6= w̄′ implies d(w̄, w̄′) ≥ 4 and v̄ 6= v̄′ implies d(v̄, v̄′) ≥ 2. Thus d(c̄, c̄′) ≥ 10.

Case 2. w̄ 6= w̄′ and v̄ 6= v̄′.

From Theorem 3.1, w̄ = w̄′ implies d(ā, ā′) ≥ 4. v̄ 6= v̄′ implies d(v̄, v̄′) ≥ 2 and

thus d(c̄, c̄′) ≥ 10.

Case 3. w̄ 6= w̄′ and v̄ 6= v̄′.
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From Theorem 3.2, v̄ = v̄′ implies d(ā, ā′) ≥ 4. w̄ 6= w̄′ implies d(w̄, w̄′) ≥ 4 and
thus d(c̄, c̄′) ≥ 12.

Case 4. w̄ = w̄′ and v̄ 6= v̄′.
From Theorem 3.3, w̄ = w̄′ and v̄ = v̄′ implies d(ā, ā′) ≥ 6. Thus d(c̄, c̄′) ≥ 12.

Exhausting all possible cases, we see that C is of minimal distance 10. Bose and Rao
[2] have shown that constant weight code with minimum distance 2t + 2 is tEC-AUED
code. Thus C is a 4EC-AUED code.

4. Decoding Algorithm

A received word may be error-corrupted due to interference or noises. The decoding
procedure for error correction can be implemented as described in the following. Let
c̄∗ = bā∗ | w̄∗ | v̄∗ | b̄

∗

c be a received word. We first compute Sā∗w =
∑7

i=0 a∗

i · i,

Sā∗v =
∑7

i=0 a∗

i · 2i, Sb̄∗w =
∑7

i=0 b∗i · i, Sb̄∗v =
∑7

i=0 b∗i · 2
i

Decoding Algorithm: We will split the received word into 2 parts. The first part is
bā∗ | w̄∗ | v̄∗c and the second part is bb̄

∗

| w̄∗ | v̄∗c.

1. Compute w̄∗H .
a) w̄H = 0, let w̄# = w̄∗ and proceed to Step 2.
b) w̄∗H = ith row of H , then correct the ith coordinate of w̄∗ to get w̄β . If

wt(w̄β) = 4, then let w̄# = w̄β and proceed to Step 2.
If wt(w̄β) 6= 4, then w̄# is not obtained and proceed to Step 3.

c) w̄∗H 6= ith row of H, w̄# is not obtained and proceed to Step 3.
2. (a) wt(ā∗) = 4

If wt(g(Sā∗wmod 8) + w̄#) ≤ 1, then we let ā∗

w = ā∗.
Proceed to Step 3.

(b) wt(ā∗) = 3
Let m ≡ (g−1(w̄#)−Sā∗w)mod 8. If the mth coordinate of ā∗ is 0, then correct
the mth coordinate to get ā∗

w.
Proceed to Step 3.

(c) wt(ā∗) = 5
Let m ≡ (Sā∗w − g−1(w̄#))mod 8. If the mth coordinate of ā∗ is 1, then correct
the mth coordinate to get ā∗

w.
Proceed to Step 3.

(d) Proceed to Step 3.
3. (a) If wt(ā∗) = 4

If wt(g(Sā∗vmod 17) + v̄∗) ≤ 1, then we let ā∗

v = ā∗.
Proceed to Step 4.

(b) If wt(ā∗) ∈ {3, 5} and v̄∗ ∈ V .
(i) wt(ā∗) = 3

Let 2m ≡ (h−1(v̄∗) − Sā∗v)mod 17. If the mth coordinate of ā∗ is 0, then
correct the mth coordinate to get ā∗

v .
Proceed to Step 4.
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(ii) wt(ā∗) = 5
Let 2m ≡ (Sā∗v − h−1(v̄∗))mod 17. If the mth coordinate of ā∗ is 1, then
correct the mth coordinate to get ā∗

v .
Proceed to Step 4.

(c) Proceed to Step 4.
4. (a) If ā∗

w is obtained but not ā∗

v: Let ā∗∗ = ā∗

w and proceed to Step 5.
(b) If ā∗

v is obtained but not ā∗

w: Let ā∗∗ = ā∗

v and proceed to Step 5.
(c) If ā∗

w = ā∗

v: Let ā∗∗ = ā∗

w and proceed to Step 5.
(d) If w̄# is obtained, wt(ā∗) ∈ {2, 4, 6} and v̄∗ ∈ V .

(i) wt(ā∗) = 2
Let m + n ≡ (g−1(w̄#) − Sā∗w)mod 8 (1)
and 2m + 2n ≡ (h−1(v̄∗) − Sā∗v)mod 17 (2)
By solving (1) and (2) simultaneously, a value of m and n can be obtained.
If the mth and nth coordinate of ā∗ are 0, then correct the mth and nth

coordinate to get ā∗∗ and then proceed to Step 5. Otherwise, proceed to
Step 6.

(ii) wt(ā∗) = 4
Let m − n ≡ (g−1(w̄#) − Sā∗w)mod 8 (1)
and 2m − 2n ≡ (h−1(v̄∗) − Sā∗v)mod 17 (2)
By solving (1) and (2) simultaneously, a value of m and n can be obtained.
If the mth coordinate of ā∗ is 0 and the nth coordinate is 1, then correct the
mth and nth coordinate to get ā∗∗ and then proceed to Step 5. Otherwise,
proceed to Step 6.

(iii) wt(ā∗) = 6
Let m + n ≡ (Sā∗w − g−1(w̄#))mod 8 (1)
and 2m + 2n ≡ (Sā∗v − h−1(v̄∗))mod 17 (2)
By solving (1) and (2) simultaneously, a value of m and n can be obtained.
If the mth and nth coordinate of ā∗ are 1, then correct the mth and nth

coordinate to get ā∗∗ and then proceed to Step 5. Otherwise, proceed to
Step 6.

Note: (1) and (2) give rise to a unique solution m and n due to the choice of
mod8 and mod 17.

(e) Proceed to Step 6.
5. Encode ā∗∗ obtained to c̄∗∗[ā∗∗ | w̄∗∗ | v̄∗∗ | ā∗∗]. If d(c̄∗, c̄∗∗) ≤ 4, we decode the

message word to be ā∗∗ and if d(c̄∗, c̄∗∗) > 4, proceed to Step 6.

B. Decode bb̄
∗

| w̄∗ | v̄∗c
6. (a) wt(b̄

∗

) = 4
If wt(g(Sb̄∗wmod 8) + w̄#) ≤ 1, then we let b̄

∗

w = b̄
∗

.
Proceed to Step 7.

(b) If w̄# has not been obtained, proceed to Step 7. Otherwise,
(i) wt(b̄

∗

) = 3
Let m ≡ (g−1(w̄#) − Sb̄∗w)mod 8. If the mth coordinate of b̄

∗

is 0, then
correct the mth coordinate to get b̄

∗

w.
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Proceed to Step 7.
(ii) wt(b̄

∗

) = 5
Let m ≡ (Sb̄∗w − g−1(w̄#))mod 8. If the mth coordinate of b̄∗ is 1, then
correct the mth coordinate to get b̄

∗

w.
Proceed to Step 7.

(iii) Proceed to Step 7.
7. (a) wt(b̄

∗

) = 4
If wt(h(Sb̄∗vmod 17) + w̄∗) ≤ 1, then we let b̄

∗

v = b̄
∗

.
Proceed to Step 8.

(b) If wt(b̄
∗

) ∈ {3, 5} and v̄∗ ∈ V .
(i) wt(b̄

∗

) = 3
Let 2m ≡ (h−1(v̄#) − Sb̄∗v)mod 17. If the mth coordinate of b̄

∗

is 0, then
correct the mth coordinate to get b̄

∗

v.
Proceed to Step 8.

(ii) wt(b̄
∗

) = 5
Let m ≡ (Sb̄∗w − h−1(w̄#))mod 17. If the mth coordinate of b̄

∗

is 1, then
correct the mth coordinate to get b̄

∗

w.
Proceed to Step 8.

(c) Proceed to Step 8.
8. (a) If b̄

∗

w is obtained but not b̄
∗

v: Let b̄
∗∗

= b̄
∗

w and proceed to Step 9.
(b) If b̄

∗

w is obtained but not b̄
∗

w: Let b̄
∗∗

= b̄
∗

v and proceed to Step 9.
(c) If b̄

∗

w = b̄
∗

v : Let b̄
∗∗

= b̄
∗

w and proceed to Step 9.
(d) If w̄# is obtained, wt(b̄) ∈ {2, 4, 6} and v̄∗ ∈ V .

(i) wt(b̄
∗

) = 2
Let m + n ≡ (g−1(w̄#) − Sb̄∗w)mod 8 (1)
and 2m + 2n ≡ (h−1(v̄∗) − Sb̄∗v)mod 17 (2)
By solving (1) and (2) simultaneously, a value of m and n can be obtained.
If the mth and nth coordinate of b̄

∗

are 0, then correct the mth and nth

coordinate to get b̄
∗∗

and then proceed to Step 9. If not, stop here as there
are more than 4 errors in the received word.

(ii) wt(b̄
∗

) = 4
Let m − n ≡ (g−1(w̄#) − Sb̄∗w)mod 8 (1)
and 2m − 2n ≡ (h−1(v̄∗) − Sb̄∗v)mod 17 (2)
By solving (1) and (2) simultaneously, a value of m and n can be obtained.
If the mth coordinate of b̄

∗

is 0 and the nth coordinate is 1, then correct
the mth and nth coordinate to get b̄

∗∗

and then proceed to Step 9. If not,
stop here as there are more than 4 errors in the received word.

(iii) wt(b̄
∗

) = 6
Let m + n ≡ (S b̄∗w − g−1(w̄#))mod 8 (1)
and 2m + 2n ≡ (Sb̄∗v − h−1(v̄∗))mod 17 (2)
By solving (1) and (2) simultaneously, a value of m and n can be obtained.
If the mth and nth coordinate of b̄

∗

are 1, then correct the mth and nth

coordinate to get b̄
∗∗

and then proceed to Step 9. If not, stop here as there
are more than 4 errors in the received word.
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(e) If b̄
∗

w and b̄
∗

v is not obtained but ā∗ = b̄
∗

and wt(b̄
∗

) = 4, let b̄
∗∗

= b̄
∗

and
proceed to Step 9.

(f) If ā∗

w 6= ā∗

v and b̄
∗

w 6= b̄
∗

v, but ā∗

w = b̄
∗

w, let b̄
∗∗

= b̄
∗

w and proceed to Step 9.
(g) Stop here as there are more than 4 errors in the received word.

9. Let ā∗∗ = b̄
∗∗

and encode ā∗∗ to c̄∗∗ = [ā∗∗ | w̄∗∗ | v̄∗∗ | ā∗∗]. If d(c̄∗, c̄∗∗) ≤ 4,
we decode the message word to be b̄

∗∗

and if d(c̄∗, c̄∗∗) > 4, we conclude that the
received word has more than 4 errors.

5. Justification of the Decoding Algorithm

The decoding algorithm given above is capable of correcting t errors if t ≤ 4. As-
suming that the codeword c̄ = [ā | w̄ | v̄ | ā] is transmitted and the received word is
c̄∗ = [ā∗ | w̄∗ | v̄∗ | b̄

∗

]. Now, let us study a few facts about the error pattern. Assume
that the number of error occurred is ≤ 4. Let the error distribution be displayed in the
boxes.

F1 ā∗ w̄∗

No. of errors ≤ 1 ≤ 1

We conclude that w̄# = w̄ in Step 1 and ā∗

w = ā in Step 2.

F2 ā∗ v̄∗

No. of errors 0 ≤ 1

We conclude that ā∗

v = ā∗ = ā in Step 3(a).

F3 ā∗ v̄∗

No. of errors 1 0

We conclude that ā∗

v = ā in Step 3(b).

F4 ā∗ v̄∗

No. of errors 1 1

wt(ā)∗=3 or 5 and v̄∗ 6∈V . We conclude that ā∗

v will not be obtained in Step 3(b).

F5 ā∗ v̄∗

No. of errors 0 2

h(Sā∗vmod 17) = v̄. We conclude that wt(v̄ + v̄∗) > 1 and ā∗

v will not be obtained

in Step 3.

F6 ā∗ w̄∗

No. of errors ≤ 2 2

We conclude that w̄# will not be obtained in Step 1 and ā∗

wwill not be obtained in

Step 2.
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F7 ā∗ w̄∗

No. of errors 2 ≤ 1

We conclude that w̄# = w̄ We conclude that wt(w̄ + w̄#) > 2 and ā∗

w will not be

obtained in Step 2.

F8 ā∗ v̄∗

No. of errors 2 0

We conclude that wt(v̄∗ + v̄′) > 2 and ā∗

v will not be obtained in Step 3.

F9 ā∗ w̄∗

No. of errors 0 3

We conclude that w̄# = w̄ in Step 1 and wt(w̄# + w̄) > 1 and ā∗

w will not be

obtained in Step 2.

(i) Considering the case where c̄∗ has no error.

From fact F1 and F2, ā∗

w = ā and ā∗

v = ā will be obtained and hence in Step
4(c), ā∗∗ = ā∗

w is obtained as ā∗

w = ā∗

v . Then in Step 5, c̄∗w will be decoded to ā∗∗

w

and this will give us the correct message word.
(ii) Considering the case where c̄∗ has 1 error. (Distributions of errors are listed

in the box).

Case ā∗ w̄∗ v̄∗ b̄
∗

1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0

For cases 1, 2 and 3, we conclude from F1 and F2 that ā∗

w = ā and ā∗

v = ā are
obtained in Step 2 and in Step 3. ā∗∗ = ā∗

w is obtained in Step 4(c) as ā∗

w = ā∗

v

and subsequently the correct message word will be obtained in Step 5.
For case 4, we conclude from F1 and F3 that ā∗

w = ā will be obtained in Step
2 and ā∗

v = ā in Step 3(c). In Step 4(c), ā∗∗ = ā∗

w will be obtained and in Step 5,
the correct message word will be obtained.

(iii) Considering the case where c̄∗ has 2 errors.

Case ā∗ w̄∗ v̄∗ b̄
∗

1 0 0 0 2
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
5 1 0 0 1
6 1 1 0 0
7 1 0 1 0
8 0 0 2 0
9 0 2 0 0
10 2 0 0 0
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Cases 1−6 are similar to cases discussed earlier where c̄∗ has ≤ 1 error.

For case 7, we conclude from F1 and F4 that ā∗

w = ā is obtained in Step 2 but
ā∗

v is not obtained in Step 3. In Step 4(a), ā∗∗ = ā∗

w is obtained and thus obtained
the correct message word in Step 5.

For case 8, we conclude from F1 and F5 that ā∗

w = ā is obtained in Step 2
but ā∗

v is not obtained in Step 3. In Step 4(a), ā∗∗ = ā∗

w is obtained and thus the
correct message word is obtained in Step 5.

For case 9, we conclude from F2and F6 that ā∗

w is not obtained in Step 2 but

ā∗

v is obtained in Step 3. In Step 4(b), ā∗∗ = ā∗

v is obtained and thus the correct
message word is obtained in Step 5.

For case 10, we conclude from F7and F8 that ā∗

w and ā∗

v are not obtained in
Step 2 and in Step 3. In Step 4(d), the errors in ā∗ will be corrected and ā∗∗ is
obtained. Subsequently, in Step 5, the correct message word is obtained.

(iv) Considering the case where has 3 errors.

Case ā∗ w̄∗ v̄∗ b̄
∗

1 0 1 1 1
2 0 0 1 2
3 0 1 0 2
4 0 0 0 3
5 1 0 1 1
6 1 1 1 0
7 1 0 0 2
8 1 1 0 1
9 0 0 2 1
10 0 1 2 0
11 0 2 1 0
12 0 2 0 1
13 2 1 0 0
14 2 0 0 1
15 1 2 0 0
16 2 0 1 0
17 1 0 2 0
18 0 0 3 0
19 0 3 0 0
20 3 0 0 0

Cases 1−14 are similar to cases discussed earlier where c̄∗ has ≤ 2 errors.
For case 15, we conclude from F3 and F6 that ā∗

w is not obtained in Step 2
but ā∗

v = ā is obtained in Step 3. In Step 4(b), ā∗∗ = ā∗

v is obtained and in Step 5
the correct message word is thus obtained.

For case 16, w̄# = w̄∗ is obtained in Step 1 and we conclude from F7 that
ā∗

w is not obtained in Step 2. Since d(ā, ā∗) = 2 and d(v̄, ā∗) = 1, ā∗

v will not be
obtained. b̄

∗

w = ā and b̄
∗

v = ā are obtained in Step 6 and Step 7. In Step 8(c),

b̄
∗∗

= b̄
∗

w is obtained and subsequently the correct message word is obtained in
Step 9.
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For case 17, we conclude from fact F1 that ā∗

w = ā is obtained in Step 2.
Since d(ā, ā∗) = 1 and d(v̄, v̄∗) = 2, ā∗

v may be obtained in Step 3(b). If ā∗

v is not
obtained, ā∗∗ is obtained in Step 4 and thus the correct message word is obtained in
Step 5. If ā∗

v is obtained in Step 3, ā∗∗ will not be obtained in Step 4 as ā∗

w 6= ā∗

v .
In Step 6, b̄

∗

w = ā is obtained and b̄
∗

v = ā is obtained in Step 7. In Step 8(c),
b̄
∗∗

= b̄
∗

w is obtained and thus the correct message word is obtained in Step 9.
For case 18, in Step 1, w̄# = w̄ and we conclude from fact F1 that ā∗

w = ā

will be obtained in Step 2 and in Step 3, ā∗

w will not be obtained as wtv̄ + v̄∗ > 1.
In Step 4(a), ā∗∗ = ā∗

w is obtained and thus in Step 5, the correct message word
will be obtained.

For case 19, w̄# 6= w̄ is obtained in Step 1. ā∗

w will not be obtained in Step 2
as wt(w̄ + w̄#) > 1. But from fact F5, conclude that ā∗

v = ā is obtained in Step
3 and thus in Step 4 and subsequently in Step 5, the correct message word will be
obtained.

For case 20, w̄# obtained in Step 1 is w̄. In Step 2, ā∗

w = ā will not be obtained
and ā∗

v = ā will not be obtained in Step 3. Since both ā∗

w = ā and ā∗

v = ā will not
be obtained the algorithm will proceed to Step 6. In Step 6, b̄

∗

v = ā is obtained
and b̄

∗

v = ā is also obtained in Step 7. In Step 8(c), b̄
∗∗

= b̄
∗

w is obtained and thus
the correct message word will be obtained in Step 9.

(v) Considering the case where c̄∗ has 4 errors.

For cases where 4 errors exist in c̄∗, we have 35 different combinations of errors
and they are shown in the table below.

After doing a detail study of the each case listed above, we found that almost
all the cases are similar to cases with errors in c̄∗3 but except cases 34 and 35 and
we will discuss them now.

For case 34, we conclude that in Step 1, w̄# = w̄ is obtained and from fact F1,
ā∗

w = ā is obtained in Step 2. In Step 3, ā∗

v 6= ā may be obtained or ā∗

v will not
be obtained. If ā∗

v is not obtained, then in Step 4(a), ā∗∗ = ā∗

w will be obtained
and thus in Step 5, the correct message word will be obtained. If ā∗

v is obtained,
in Step 4, ā∗∗ will not be obtained as ā∗

w 6= ā∗

v and proceed to Step 6. The no. of
errors in bā∗ | w̄∗ | v̄∗c and bb̄

∗

| w̄∗ | v̄∗c are symmetrical and b̄
∗

w = ā is obtained
in Step 6 and b̄

∗

v = ā may be obtained in Step 7. If b̄
∗

v is not obtained, in Step
8, b̄

∗∗

= b̄
∗

w = ā is obtained and thus the correct message word will be obtained
in Step 9. If b̄

∗

v is obtained, we will have b̄
∗

w 6= b̄
∗

v and in Step 8(f), b̄
∗∗

= ā∗

w is
obtained as ā∗

w = b̄
∗

w. Subsequently, in Step 9, we will obtained the correct message
word.

For case 35, we conclude that w̄# is not obtained in Step 1 and from fact F6
and F5 , ā∗

w and ā∗

v will not be obtained. In Step 4(e), both ā∗

w and ā∗

v will not
be obtained and proceed to Step 6. Since the no. of errors in bā∗ | w̄∗ | v̄∗c and
bb̄

∗

| w̄∗ | v̄∗c are symmetrical, both b̄
∗

w and b̄
∗

v will not be obtained. In Step 8(e),
b̄
∗∗

= b̄
∗

is obtained as ā∗ = b̄
∗

and wt(b̄
∗

) = 4. Subsequently, from Step 9, the
correct message word will be obtained.

From the above discussion, it is shown that the algorithm is capable of cor-
recting t errors if t ≤ 4.
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Case ā∗ w̄∗ v̄∗ b̄
∗

ā∗

w ā∗

v ā∗∗ b̄
∗

w b̄
∗

v b̄
∗∗

1 0 0 0 4 ∨ ∨ ∨
2 0 0 1 3 ∨ ∨ ∨
3 0 1 0 3 ∨ ∨ ∨
4 0 1 1 2 ∨ ∨ ∨
5 1 0 0 3 ∨ ∨ ∨
6 1 1 0 2 ∨ ∨ ∨
7 0 0 2 2 ∨ ∨
8 0 0 3 1 ∨ ∨
9 0 0 4 0 ∨ ∨
10 0 1 2 1 ∨ ∨
11 0 1 3 0 ∨ ∨
12 1 0 1 2 ∨ ∨
13 1 0 3 0 ∨ ∨
14 1 1 1 1 ∨ ∨
15 0 2 0 2 ∨ ∨
16 0 3 0 1 ∨ ∨
17 0 4 0 0 ∨ ∨
18 0 2 1 1 ∨ ∨
19 0 3 1 0 ∨ ∨
20 1 2 0 1 ∨ ∨
21 2 0 0 2 ∨
22 2 1 0 1 ∨
23 1 2 1 0 ∨ ∨
24 2 2 0 0 ∨ ∨
25 1 1 2 0 ∨ × (∨) ∨ ∨
26 1 3 0 0 × ∨ (∨) ∨ ∨
27 3 0 0 1 × × × ∨ ∨ ∨
28 3 1 0 0 × × × ∨ ∨ ∨
29 4 0 0 0 × × × ∨ ∨ ∨
30 3 0 1 0 × × ∨ ∨ ∨
31 2 0 1 1 × × ∨ ∨ ∨
32 2 1 1 0 × × ∨ ∨ ∨
33 2 0 2 0 × × ∨ ∨
34 1 0 2 1 ∨ × ∨ ×
35 0 2 2 0

∨ Obtained and is the same as the message word.

× May be obtained and if obtained, it is not the same as the message word.

(∨) May be obtained and if obtained, it is the same as the message word.
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Let’s decode some received words.

Example 3. (This example shows an error in c̄∗).

Let us assume that a codeword c̄ = [00110011 10110010 000111 00110011]

is sent and the received word is c̄∗ = [01110011 10110010 000111 00110011]

ā∗ w̄∗ v̄∗ b̄
∗

No. of errors 1 0 0 0

Step 1: w̄∗H = [0000] and we let w̄# = [10110010].

Step 2: (Sā∗,w − g−1(w̄#)) mod 8 ≡ 1. Since ā1 is a ‘1’, we let ā∗

w = [00110011].

Step 3: 2m ≡ [Sā∗,v − h−1(v̄#)] mod 17 ≡ 2 since m = 1 and a1 is a ‘1’ , we let

ā∗

v = [00110011].

Step 4: ā∗

w = ā∗

v , we let ā∗∗ = ā∗

w = [00110011].

Step 5: Encode ā∗∗ to c̄∗∗ = [001100111011001000011100110011] and since d(c̄∗,

c̄∗∗) = 1 ≤ 4, we conclude that the message word is [ 00110011 ].

Example 4. (This example shows 2 errors in c̄∗).

Let us assume that a codeword c̄ = [01010011 01110001 101100 01010011]

is sent and the received word is c̄∗ = [01011001 01110001 101100 01010011]

ā∗ w̄∗ v̄∗ b̄
∗

No. of errors 2 0 0 0

Step 1: w̄∗H = [0000] and we let w̄# = [01110001].

Step 2: wt(g(Sā∗,v mod 8)+w̄#] = 4 and ā∗

w is not obtained.

Step 3: wt(h(Sā∗,v mod 17)+v̄∗] = 4 and ā∗

v is not obtained.

Step 4: Since ā∗

w and ā∗

v are not obtained and v̄∗ ∈ V , we will proceed to Step

4(d)(ii) and solve the following equation simultaneously to get n = 4 and

m = 6.

m − n ≡ 2 mod 8 (1)

2m − 2n ≡ 14 mod 17 (2)

Since ā6 is a ‘0’ and ā4 is a ‘1’, we let ā∗∗ = [01010011].

Step 5: Encode ā∗∗ to c̄∗∗ = [010100110111000110110001010011] and since d(c̄∗,

c̄∗∗) = 2 ≤ 4, we conclude that the message word is [01010011].

Example 5. ( This example shows 3 errors in c̄∗).

Let us assume that a codeword c̄ = [10010011 11101000 101010 10010011]

is sent and the received word is c̄∗ = [10001011 11101000 101110 10010011]

ā∗ w̄∗ v̄∗ b̄
∗

No. of errors 2 0 1 0
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Step 1: w̄∗H = [0000] and we let w̄# = [11101000].

Step 2: wt(g(Sā∗,v mod 8)+w̄#] = 3 and ā∗

w is not obtained.

Step 3: wt(h(Sā∗,v mod 17)+v̄∗] = 6 and ā∗

v is not obtained.

Step 4: Since ā∗

w and ā∗

v are not obtained and v̄∗ ∈ V , we will proceed to Step 6.

Step 6: wt(g(Sā∗,v mod 8)+w̄#] = 0 and b̄
∗

w = [11101000].

Step 7: wt(h(Sā∗,v mod 17)+v̄∗] = 2 and v̄∗

v is not obtained.

Step 8: Since b̄
∗

w is obtained but b̄
∗

v is not obtained, we let b̄
∗∗

= b̄
∗

w, and proceed

to Step 9.

Step 9: Let ā∗∗ = b̄
∗∗

and encode ā∗∗ to c̄∗∗=[100100111110100010101010010011]

and since d(̄c∗,c̄∗∗)=3≤4, we conclude that the message word is [10010011].

Example 6. (This example shows 4 errors in c̄∗).

Let us assume that a codeword c̄ = [01101010 10100101 001011 01101010]

is sent and the received word is c̄∗ = [01011010 10100101 001001 01101011]

ā∗ w̄∗ v̄∗ b̄
∗

No. of errors 2 0 1 1

Step 1: w̄∗H = [0000] and we let w̄# = w̄∗.

Step 2: wt(g(Sā∗,v mod 8)+w̄#] = 4 and ā∗

w is not obtained.

Step 3: wt(h(Sā∗,v mod 17)+v̄∗] = 3 and ā∗

v is not obtained.

Step 4: Since ā∗

w and ā∗

v are not obtained and wt(v̄∗) 6= 3, we will proceed to Step

6.

Step 6: [Sā∗,w − g−1(w̄#)] mod 8 ≡ 7. Since b7 is a ‘1’, we let b̄
∗

w = [01101010].

Step 7: Since wt(b̄
∗

) = 5 and wt(v̄∗) 6= 3, we proceed to Step 8.

Step 8: Since b̄
∗

w is obtained but not b̄
∗

v, we let b̄
∗∗

= b̄
∗

w = [01101010].

Step 9: Let ā∗∗ = b̄
∗∗

and encode ā∗∗ to c̄∗∗ = [011010101010010100101101101010]

and since d(c̄∗, c̄∗∗=4≤4, we conclude that the message word is [01101010].

4. Conclusion

In this paper, a simple code is constructed by using the idea of Bose and Rao [2]

and M. C. Lin [6] with some alterations in order to correct 4 errors and to detect all

unidirectional errors. Here, the length of the message code is 8 and of constant weight

4 is used. Therefore, from
(

8
4

)

, we have a maximum of 70 message words. If we are to

increase the size of the message set we can use a message word of length greater than 8.

For example, if we are to increase the length of the message word to 12, from
(

12
6

)

, we

are able to have a maximum size of 924. With the increase in message word length, a

suitable length for w̄ and v̄ should be chosen as the modulus will increase in tandem. Of

course, this will reduce the efficiency rate with the increase in the length of the codeword.
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One weakness of this code is when checking whether v̄∗ is in V or not. The only way

we can check is by its weight and then by sorting and if the size of V is large, then the

checking will be quite time consuming.
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