Available online at http://journals.math.tku.edu.tw

ON GRADED SECOND MODULES

H. ANSARI-TOROGHY AND F. FARSHADIFAR

Abstract. This paper deals with some results concerning graded second modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity.

A proper submodule *N* of an *R*-module *M* is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in N$, we have $m \in N$ or $r \in (N :_R M)$ [6].

In [7], I.G. Macdonald introduced the notion of secondary modules. A non-zero *R*-module *M* is said to be *secondary* if for each $a \in R$ the endomorphism of *M* given by multiplication by *a* is either surjective or nilpotent [7].

In [11], S. Yassemi introduced the dual notion of prime submodules (i.e., second submodules) and investigated some properties of this class of modules. A non-zero submodule N of an R-module M is said to be *second* if for each $a \in R$ the homomorphism $N \xrightarrow{a} N$ is either surjective or zero. This implies that $Ann_R(N) = P$ is a prime ideal of R and S is said to be P-second [11]. More information about of this class of modules can be found in [2] and [3].

Let *G* be a group with identity *e*. The ring *R* graded by the group *G* will be denoted by $R = \bigoplus_{g \in G} R_g$, where R_g is an additive subgroup of *R* and $R_g.R_h \subseteq R_{gh}$ for every *g*, *h* in *G*. If an element of *R* belongs to $\bigcup_{g \in G} R_g = h(R)$, then it is called *homogeneous* and any $x_g \in R_g$ is said to *have degree g*. In the rest of this paper let *R* be a *G*-graded ring. An *R*-module *M* is said to be a *graded module* if $M = \bigoplus_{g \in G} M_g$ for a family of subgroups $\{M_g\}_{g \in G}$ of *M* such that $R_g.M_h \subseteq M_{gh}$ for every *g*, *h* in *G*. A *graded submodule N* of *M* is a submodule verifying $N = \bigoplus_{g \in G} (N \cap M_g)$. Moreover, *M*/*N* becomes a graded *R*-module with $(M/N)_g = (M_g + N)/N$. In this case, *M*/*N* is called a *gr-quotient* of *M*. Also if an element of *M* belongs to $\bigcup_{g \in G} M_g = h(M)$, then it is called *homogeneous*. Let $M = \bigoplus_{g \in G} M_g$ and $N = \bigoplus_{g \in G} N_g$ be graded *R*-modules. An *R*-homomorphism $f : M \to N$ is said to be a gr-homomorphism of degree *h*,

Corresponding author: H. Ansari-Toroghy.

2010 Mathematics Subject Classification. 13A02, 16W50.

Key words and phrases. Graded module, graded second submodule.

 $h \in G$, if $f(M_g) \subseteq N_{gh}$ for all $g \in G$. Graded homomorphisms of degree h build an additive subgroup $HOM_R(M, N)_h$ of $Hom_R(M, N)$. It is clear that $HOM_R(M, N) = \bigoplus_{h \in G} HOM_R(M, N)_h$ is a graded abelian group of type G. The category of graded R-modules has graded R-modules as objects. A morphism in this category is an R-module homomorphism of degree e. Given a multiplicatively closed subset $S \subseteq h(R)$, the ring of fraction $S^{-1}R$ turns into a ring graded by Gmeans of

$$(S^{-1}R)_g = \{r/s : s \in S, r \in h(R) \text{ and } g = degr - degs\}$$

for every $g \in G$. Recall that $S^{-1}M$ can be defined as $S^{-1}R \otimes_R M$, when *M* is an *R*-module.

A graded ideal *P* of *R* is said to be *graded prime*, more briefly, *gr-prime* if $P \neq R$ and whenever $ab \in P$, we have $a \in P$ or $b \in P$, where $a, b \in h(R)$. The *graded radical* of a graded ideal *I* of *R*, denoted by Gr(I), is the set of all $x \in R$ such that for each $g \in G$ there exists $n_g > 0$ with $x_g^{n_g} \in I$. A graded submodule *N* of a graded *R*-module *M* is said to be *gr-prime* (resp. *gr-primary*) if $N \neq M$ and whenever $a \in h(R)$ and $m \in h(M)$ with $am \in N$, then either $m \in N$ or $a \in (N :_R M)$ (resp. $a \in Gr((N :_R M)))$ [4]. This implies that $Ann_R(M/N) = P$ (resp. $Gr(Ann_R(M/N)) = P$) is a gr-prime ideal of *R* and *N* is said to be *P-gr-prime* (resp. *P-gr-primary*). Also, a graded *R*-module *M* is said to be *gr-prime* if the zero submodule of *M* is a *gr-prime* submodule of *M*.

Let *M* be a non-zero graded *R*-module. Then *M* is said to be a *gr-second* (resp. *gr-secondary*) if for each homogeneous element *a* of *R*, the endomorphism of *M* given by multiplication by *a* is either surjective or zero (resp. nilpotent) [1] (resp. [10]). This implies that $Ann_R(M) = P$ (resp. $Gr(Ann_R(M)) = P$) is a gr-prime ideal of *R* and *M* is said to be *P-gr-second* (resp. *P-gr-secondary*). For convenience, a graded submodule of *M* which is gr-second (resp. gr. secondary), is called a *gr-second* (resp. *gr-secondary*) submodule of *M*.

The purpose of this paper is to obtain some results concerning graded second submodules. Most of results are related to reference [11] which have been proved for second submodules.

2. Main results

Remark 2.1. It is clear that every second *R*-module which is a graded module is a gr-second *R*-module but the converse is not true in general. For example, if we take $G = \mathbb{Z}$ and $R = K[x, x^{-1}] (= K[x]_x)$, where *K* is a field and *x* is an indeterminate, graded in the obvious way, *R* as an *R*-module is graded simple [5, 1.5.14(c)]. Hence *R* is a gr-second *R*-module. But *R* is not a secondary *R*-module by [10]. Hence *R* is not a second *R*-module.

Lemma 2.2 (See [9]). (a) If I is a graded ideal of R, then $I \subseteq Gr(I)$. (b) If I and J are graded ideals of R such that $I \subseteq J$, then $Gr(I) \subseteq Gr(J)$. (c) If P is a gr-prime ideal of R, then $Gr(P^n) = P$ for all n > 0.

A graded submodule N of a graded R-module M is said to be *gr-minimal* if it is minimal in the lattice of graded submodules of M [8].

Proposition 2.3. Let M be a graded R-module. Then the following hold.

- (a) If S is a gr-secondary submodule of M, then S is gr-second if and only if $Ann_R(S)$ is a grprime ideal of R.
- (b) Let *S* be a graded submodule of a *P*-gr-second module *M*. Then *S* is a *P*-gr-secondary submodule if and only if *S* is a *P*-gr-second submodule.
- (c) If S is a gr-minimal submodule of M, then S is a gr-second submodule of M.

Proof. (a) This is obvious.

(b) Assume *S* is a *P*-gr-secondary submodule of *M*. Then $P = Ann_R(M) \subseteq Ann_R(S) \subseteq Gr(Ann_R(S)) = P$ by using Lemma 2.2 (a). Thus $P = Ann_R(S)$. Now the assertion follows from part (a). The reverse implication is clear.

(c) Let *S* be a gr-minimal submodule of *M*. Since for each $r \in h(R)$, *rS* is a graded submodule of *M*, by assumption, rS = 0 or rS = S as desired.

Proposition 2.4. Let P be a gr-prime ideal of R. Then the following hold.

- (a) The sum of P-gr-second R-modules is a P-gr-second R-module.
- (b) Every product of P-gr-second R-modules is a P-gr-second R-module.
- (c) Every non-zero gr-quotient of a P-gr-second R-module is a P-gr-second R-module.

Proof. We only prove the part (a). The proofs of parts (b) and (c) are similar.

(a) Let $M_1, M_2, ..., M_n$ be *P*-gr-second *R*-modules. Then for each $1 \le i \le n$ we have $Ann_R(M_i) = P$ and hence $Ann_R(\sum_{i=1}^n M_i) = P$. If $r \in h(R) - P$, then $rM_i = M_i$. Hence $r(\sum_{i=1}^n M_i) = \sum_{i=1}^n M_i$, as desired.

Lemma 2.5. Let *P* be a graded prime ideal of *R* and let *S* be a non-zero graded submodule of a graded *R*-module *M*. Then the following are equivalent.

- (a) S is a P-gr-second submodule of M.
- (b) $W^{gr}(S) \subseteq Ann_R(S) = P$, where

 $W^{gr}(S) = \{a \in h(R): the homothety S \xrightarrow{a} S \text{ is not surjective}\}.$

Proof. It is straightforward.

A graded *R*-module *M* is said to be *gr*-*divisible* if ax = m with $a \in h(R)$ and $m \in h(M)$, has a solution in *M* [8].

Theorem 2.6. Let M be a graded R-module and let S be a non-zero graded submodule of M satisfying that $Ann_R(S) = P$ is a graded prime ideal of R. Then the following are equivalent.

- (a) S is a P-gr-second submodule of M.
- (b) *S* is a gr-divisible *R*/*P*-module.
- (c) rS = S for all $r \in h(R) P$.
- (d) IS = S for all graded ideals I with $I \not\subseteq P$.
- (e) $W^{gr}(S) \subseteq P$.

Proof. (*a*) \Rightarrow (*b*), (*b*) \Rightarrow (*c*), (*c*) \Rightarrow (*d*) and (*d*) \Rightarrow (*e*) are straightforward.

 $(e) \Rightarrow (a)$. By Lemma 2.5.

Definition 2.1. Let *P* be a graded prime ideal of *R*. A graded submodule *N* of a graded *R*-module *M* is called a *minimal P*-*gr*-*secondary* (resp. *P*-*gr*-*second*) submodule of *M* if *N* is a *P*-gr-secondary (resp. *P*-gr-second) submodule which contains no other *P*-gr-secondary (resp. *P*-gr-second) submodules of *M*.

Theorem 2.7. Let *M* be a graded *R*-module. Then a submodule *N* of *M* is minimal *P*-gr-secondary if and only if *N* is a minimal *P*-gr-second submodule of *M*.

Proof. (\Leftarrow). By Proposition 2.3 (b).

(⇒). Assume that *N* is a minimal *P*-gr-secondary submodule of *M*. If $r \in W^{gr}(N)$, then $rN \neq N$. Since rN is a graded quotient of *N*, we have that rN is a *P*-gr-secondary submodule of *N*. As *N* is a minimal *P*-gr-secondary submodule of *M*, rN = 0 so that $r \in Ann_R(N)$. Therefore, $W^{gr}(N) \subseteq Ann_R(N)$. Thus *N* is a *P*-gr-second submodule of *M* by using Lemma 2.5. Now the result follows from Proposition 2.3 (b).

R is said to be a *gr-field* if every nonzero homogeneous element of *R* is invertible.

A graded *R*-module *M* is said to be *gr-injective* if it is an injective object in the category of graded *R*-modules.

A graded *R*-module *M* is said to be *graded torsion-free* if $a \in h(R)$ and $m \in M$ with am = 0 implies that either m = 0 or a = 0 [4].

Theorem 2.8. Let M be a gr-prime module. Then the following are equivalent.

- (a) *M* is a gr-second module.
- (b) *M* is a gr-injective $R/Ann_R(M)$ -module.

Proof. Since *M* is a gr-prime module, we have that $P = Ann_R(M)$ is a gr-prime ideal of *R* by [4, 2.7] and *M* is a gr-torsion-free *R*/*P*-module by [4, 2.11]. Hence the graded *R*/*P*-homomorphism $\phi : M \to S^{-1}M$ given by $\phi(m) = m/1$, where S = h(R/P) - 0, is a monomorphism.

 $(a) \Rightarrow (b)$. Since *M* is a *P*-gr-second module, we have that *M* is a gr-divisible *R*/*P*-module by Theorem 2.6. This implies that ϕ is an isomorphism. Hence *M* is an $S^{-1}(R/P)$ -module. As $S^{-1}(R/P)$ is a gr-field and *M* is a gr-divisible $S^{-1}(R/P)$ -module by [8, B.II.2], it is easy to see by a similar argument as the ungraded case that *M* is a gr-injective *R*/*P*-module.

 $(b) \Rightarrow (a)$. Since *M* is a gr-injective *R*/*P*-module, we have that *M* is a gr-divisible *R*/*P*-module. Thus we have that *M* is gr-second by Theorem 2.6.

Proposition 2.9. *Let M* be a graded *R*-module and let *N* be a graded submodule of *M*. Then we have the following.

- (a) If M is a gr-primary module and N is a gr-second submodule of M, then N is $Ann_R(N)$ -gr-primary.
- (b) If M is a gr-prime module and N is a gr-second submodule of M, then rN = rM ∩ N for each r ∈ h(R).
- (c) If $Ann_R(N)$ is a gr-prime ideal of R and N is a gr-minimal in the set of all graded submodules K of M such that $Ann_R(K) = Ann_R(N)$, then N is a gr-second submodule of M.

Proof. (a) First we note that as *N* is a gr-second submodule of *M*, $Gr(Ann_R(N)) = Ann_R(N)$ by Lemma 2.2 (c). Now let $rm \in N$, where $r \in h(R) - Ann_R(N)$ and $m \in h(M)$. Since *N* is a gr-second submodule of *M*, we have rN = N. Thus rm = rn for some $n \in N$. As $r \notin Gr(Ann_R(N))$, we have $r \notin Gr(Ann_R(M))$ by Lemma 2.2 (b). As *M* is gr-primary, we have that $m \in N$ as required.

(b) Let $r \in h(R)$ and let $rm \in N$. Since *N* is gr-second, rN = 0 or rN = N. If rN = 0, we have $r \in Ann_R(M)$ because *M* is gr-prime. Hence $rN = rM \cap N = 0$. If rN = N, then rm = rn for some $n \in N$. Since *M* is gr-prime and $r \notin Ann_R(N)$, we have m = n. Thus $rm \in rN$. Therefore $rM \cap N = N \subseteq rN$. Thus $rM \cap N = N = rN$ because the reverse inclusion is clear.

(c) As $Ann_R(N)$ is gr-prime, $N \neq 0$. Let $r \in h(R)$ and $rN \neq N$. Since rN is a graded submodule of M, the claim is obviously true in the case that $Ann_R(rN) = Ann_R(N)$ by assumption. So we assume that $Ann_R(rN) \not\subseteq Ann_R(N)$. Then there exists $s \in h(Ann_R(rN))$ such that $s \notin Ann_R(N)$. Hence srN = 0. Since $Ann_R(N)$ is gr-prime, it follows that rN = 0, as desired. \Box

A graded *R*-module *M* is said to be *graded injective cogenerator* if it is injective cogenerator object in the category of graded *R*-modules. **Theorem 2.10.** Let *E* be a graded injective cogenerator of *R* and let *N* be a graded submodule of a graded *R*-module *M*. Then *N* is a gr-prime submodule of *M* if and only if $HOM_R(M/N, E)$ is a gr-second *R*-module.

Proof. Let *N* be a gr-prime submodule of *M* and let $r \in h(R)$. Then $M/N \neq 0$ if and only if $HOM_R(M/N, E) \neq 0$ by using similar arguments as the ungraded case. Further, $M/N \xrightarrow{r} M/N$ is either injective or zero if and only if

$$HOM_R(M/N, E) \xrightarrow{r} HOM_R(M/N, E)$$

is either surjective or zero by using similar arguments as the ungraded case.

A graded submodule N of a graded R-module M is said to be *gr-maximal* if it is maximal in the lattice of graded submodules of M [8].

Theorem 2.11. Let *R* be an integral domain which is not a gr-field and *K* the gr-field of quotients of *R*. Then the *R*-module *K* has no gr-minimal submodule and *K* is the only gr-second submodule of *K*.

Proof. Since $(0:_K r) = 0$ for every non-zero element $r \in h(R)$, we have $Ann_R(N) = 0$ for every non-zero graded submodule N of M. Consequently, K has no gr-minimal submodule, for if L is a gr-minimal submodule of K, then $Ann_R(L)$ is a gr-maximal ideal of R. But since R is not a gr-field, $Ann_R(L) \neq 0$, which is a contradiction. Clearly K is a 0-gr-second submodule of K. To show that K is the only gr-second submodule of K, we assume the contrary and let S be a proper gr-second submodule of K. Since S is proper, there exists $y/u \in h(K)$ and $y/u \notin S$. This implies that $1/u \notin S$. There exists $0 \neq x/t \in h(S)$ because S is gr-second. Since $Ann_R(S) = 0$, we have uS = S. Thus x/t = u(z/h) for some $z/h \in S$. It follows that $1/u = w \in S$, which is a contradiction.

Acknowledgement

The authors are grateful to the referees for their valuable comments and suggestions.

References

- [1] H. Ansari-Toroghy and F. Farshadifar, Graded comultiplication modules, Chiang Mai J. Sci., to appear.
- [2] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., to appear.
- [3] H. Ansari-Toroghy and F. Farshadifar, *On the dual notion of prime submodules (II)*, Mediterr. J. Math., to appear.
- [4] S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33 (2006), 3–7.

- [5] W. Bruns and J. Herzong, Cohen-Macaulay Rings, 39, Cambridge studies in Advanced Mathematics, 1996.
- [6] J. Dauns, Prime submodules, J. Reine Angew. Math., 298 (1978), 156–181.
- [7] I.G. Macdonald, Secondary representation of modules over a commutative ring, Sympos. Math., XI (1973), 23–43.
- [8] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
- [9] M.A. Refai, M. Hailat, and S. Obiedat, *Graded radicals and graded prime spectra*, Far East J. Math. Sci. (FJMS), Part I (2000), 59-73.
- [10] R. Y. Sharp, A symptotic behavior of certain sets of attached prime ideals, J. London Math. Soc., **34** (1986), 212–218.
- [11] S. Yassemi, *The dual notion of prime submodules*, Arch. Math (Brno) **37** (2001), 273–278.

Department of Mathematics, Faculty of Science, Guilan University, P. O. Box 1914, Rasht, Iran.

E-mail: ansari@guilan.ac.ir

Department of Mathematics, Faculty of Science, Guilan University, P. O. Box 1914, Rasht, Iran.

E-mail: farshadifar@guilan.ac.ir