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APPROXIMATION METHODS IN THE THEORY OF

HYBRID DIFFERENTIAL EQUATIONS WITH LINEAR

PERTURBATIONS OF SECOND TYPE

BAPURAO C. DHAGE

Abstract. In this paper, some existence theorems for the extremal solutions are proved

for an initial value problem of nonlinear hybrid differential equations via constructive

methods. The monotone iterative techniques for initial value problems of first order hy-

brid differential equations are developed and it is shown that the sequences of successive

iterations defined in a certain way converge to the minimal and maximal solutions of the

hybrid differential equations.

1. Introduction

It is well known that the Banach contraction mapping principle is the only fixed point

theorem in nonlinear analysis which provides a useful method for approximating a unique

solution for the initial and boundary value problems of ordinary differential equations via

successive iterations. However, to the best of our knowledge, there is no such fixed point

theorem or method developed so far for the hybrid differential equations without further as-

sumptions on the nonlinearities involved in the equations. Recently, Dhage and Jadhav [6]

and Dhage and Lakshmikantham [5] have proved some basic results for the hybrid differen-

tials equations of first order with the linear and quadratic perturbations of second type. In

this paper, using the ideas from Lakshmikantham and Leela [8], Dhage [4] and Ladde et al.

[7], we establish some theoretical approximation results for the extremal solutions of hybrid

differential equations between the given lower and upper solutions.

Given a closed and bounded interval J = [t0, t0 + a] in R, R the real line, for some t0 ∈ R,

a ∈ R with a > 0, consider an initial value problem of first order ordinary hybrid differential

equations (in short HDE),










d

d t
[x(t )− f (t , x(t ))]= g (t , x(t )), t ∈ J ,

x(t0) = x0 ∈R,

(1.1)
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where, f , g : J ×R→R are continuous.

By a solution of the HDE (1.1) we mean a function x ∈C (J ,R) such that

(i) the function t 7→ x − f (t , x) is continuous for each x ∈R, and

(ii) x satisfies the equations in (1.1).

where C (J ,R) is the space of continuous real-valued functions defined on J .

The HDE (1.1) is a linear perturbation of second type of an initial value problem of first

order nonlinear differential equations and has been discussed in Dhage and Jadhav [6] for ex-

istence theory for different aspects of the solutions. The details of different types of nonlinear

perturbations of a differential equation appears in Dhage [3]. The specialty of the results of

present paper lies in our constructive approach for the solutions to the HDE (1.1) on J .

The following hypotheses concerning the function f is sometime crucial in the study of

HDE (1.1).

(A0) The function x 7→ x − f (t0, x) is injective in R, and

(B0) The function g is bounded real-valued function on J ×R.

Note that hypothesis (A0) holds in particular if the function x 7→ x − f (t0, x) is increasing

in R. Again, hypothesis (B0) is much common and widely used in the literature in the study of

nonlinear differential equations.

We shall also make use of the following result in what follows.

Lemma 1.1. Assume that hypothesis (A0)-(B0) hold. Then a function x is a solution of the HDE

(1.1) if and only if it is a solution of the hybrid integral equation (HIE),

x(t )= [x0 − f (t0, x0)]+ f (t , x(t ))+

∫t

t0

g (s, x(s))d s, t ∈ J . (1.2)

Proof. Assume first that x is a solution of the HDE (1.1) defined on J . Then, by defini-

tion of the mapping, t 7→ x(t ) − f (t , x(t )) is continuous, and so, is differentiable, whence
d

d t

[

x(t )− f (t , x(t ))
]

is Reimann integrable on J . Applying integration to (1.1) from t0 to t ,

we obtain the HIE (1.2) on J .

Conversely, assume that the function x satisfies the HIE (1.2) on J . Since g (t , x) is bounded,

it can be proved that the function t 7→ x(t )− f (t , x(t )) is continuous for each x ∈C (J ,R+) and

hence almost everywhere differential on J . By a direct differentiation of the HIE (1.2), we

obtain the HDE (1.1). Again, substituting t = t0 in the HIE (1.1) yields

x(t0)− f (t0, x(t0)) = x0 − f (t0, x0).
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Since the mapping x 7→ x − f (t , x) is injective in R, we obtain x(t0) = x0. Hence the proof of

the lemma is complete. ���

In the following section, we prove an existence result for the HDE (1.1) in a closed set

formed by the lower and upper solutions under some suitable conditions via a hybrid fixed

point theorem due to Dhage [1, 2].

2. Method of lower and upper solutions

In this section we prove an existence result for the HDE (1.1) in a closed and bounded

subset given by lower and upper solutions. A construction result is also obtained at the end

of the section.

Definition 2.1. A function u ∈ C (J ,R) is said to be a lower solution for the HDE (1.1) defined

on J if

(i) t 7→ u(t )− f (t ,u(t )) is continuous, and

(ii)
d

d t

[

u(t )− f (t ,u(t ))
]

≤ g (t ,u(t )), t ∈ J , u(t0) ≤ x0.

Similarly, a function v ∈C (J ,R) is said to be a upper solution for the HDE (1.1) defined on

J if

(i) t 7→ v(t )− f (t , v(t )) is continuous , and

(ii)
d

d t

[

v(t )− f (t , v(t ))
]

≥ g (t , v(t )), t ∈ J , v(t0) ≥ x0.

A solution of the HDE (1.1) is a lower as well an upper solution and vice versa.

If we know the existence of lower and upper solutions of the HDE (1.1) such that u(t ) ≤

v(t ), t ∈ J , then we can prove the existence of a solution of the HDE (1.1) in the closed set

Ω= {x ∈ E : u(t )≤ x ≤ v(t ), t ∈ J }.

We place the problem under study in the space C (J ,R) of continuous real-valued func-

tions defined on J . Clearly, C (J ,R) is a Banach space with respect to the usual supremum

norm ‖ · ‖ defined by

‖x‖= sup
t∈J

|x(t )|.

We consider the following hypotheses in what follows.

(A1) The function x 7→ x − f (t , x) is increasing in R for all t ∈ J .
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(A2) There exists a constant L > 0 such that

| f (t , x)− f (t , y)| ≤
L|x − y |

M +|x − y |

for all t ∈ J and x, y ∈R. Moreover, L ≤ M .

(B1) There exists a constant K > 0 such that

|g (t , x)| ≤ K

for all t ∈ J and for all x ∈R.

The following existence result is proved in Dhage and Jadhav [6] via a fixed point tech-

nique formulated in Dhage [2].

Theorem 2.1. Assume that hypotheses (A1)-(A2) and (B1) hold. Then the HDE (1.1) has a solu-

tion on J.

Theorem 2.2. Let u, v ∈C (J ,R) be lower and upper solutions of HDE (1.1) satisfying u(t )≤ v(t ),

t ∈ J and let the hypotheses (A1)-(A2) and (B1) hold. Then, there exists a solution x(t ) of (1.1) in

the closed setΩ, that is, u(t )≤ x(t )≤ v(t ), t ∈ J .

Proof. Define a function p : J ×R→R by

p(t , x)= max
{

u(t ),min{x(t ), v(t )}
}

. (2.1)

Then g̃ (t , x)= g (t , p(t , x)) defines a continuous extension of g on J ×R satisfying

|g̃ (t , x)| = |g (t , p(t , x))| ≤K , t ∈ J

for all x ∈R. Hence by Theorem 2.1, the HDE















d

d t
[x(t )− f (t , x(t ))]= g̃ (t , x(t )), t ∈ J ,

x(t0) = x0 ∈R

(2.2)

has a solution x defined on J .

For any ǫ> 0, define

uǫ(t )− f (t ,uǫ(t ))= (u(t )− f (t ,u(t )))−ǫ(1+ t ) (2.3)

and

vǫ(t )− f (t , vǫ(t )) = (v(t )− f (t , v(t )))+ǫ(1+ t ) (2.4)
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for t ∈ J . Then in view of hypotheses (A1), we obtain

uǫ(t )< u(t ) and v(t )< vǫ(t ) (2.5)

for t ∈ J .

Since

u(t0) ≤ x0 ≤ v(t0),

one has

uǫ(t0)< x0 < vǫ(t0). (2.6)

Next, we shall show that

uǫ(t ) < x(t )< vǫ(t ), t ∈ J . (2.7)

Define X (t )= x(t )− f (t , x(t )), t ∈ J . Similarly, define

Uǫ(t ) =uǫ(t )− f (t ,uǫ(t )), U (t ) = u(t )− f (t ,u(t )),

and

Vǫ(t )= vǫ(t )− f (t , vǫ(t )), V (t )= v(t )− f (t , v(t ))

for all t ∈ J .

If (2.7) is not true, then there exists a t1 ∈ (t0, t0 +a] such that

x(t1) = vǫ(t1)

and

uǫ(t ) < x(t ) < vǫ(t ), t0 ≤ t < t1.

If x(t1) > v(t1), then p(t1, x(t1)) = v(t1). Moreover,

u(t1) ≤ p(t1, x(t1)) ≤ v(t1).

Now,

V ′(t1) ≥ g (t1, v(t1)) = g̃ (t1, x(t1)) = X ′(t )

for all t ∈ J . Since

Vǫ(t )>V ′(t )

for all t ∈ J , we have that

V ′
ǫ (t1)> X ′(t1). (2.8)

However,

X (t1) =Vǫ(t1)
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and

X (t )=Vǫ(t ), t0 ≤ t < t1

together imply that
X (t1 +h)−X (t1)

h
>

Vǫ(t1 +h)−Vǫ(t1)

h

if h < 0 small. Taking the limit as h → 0 in the above inequality yields

X ′(t1) ≥V ′
ǫ (t1)

which is a contradiction to (2.8). Hence,

x(t )< vǫ(t )

for all t ∈ J . Consequently,

uǫ(t )< x(t )< vǫ(t ), t ∈ J .

Letting ǫ→ 0 in the above inequality, we obtain

u(t )≤ x(t )≤ v(t ), t ∈ J .

This completes the proof. ���

The existence of lower and upper solutions is an essential ingredient in many problems

of nonlinear differential equations and which do exist for every differential equation obvi-

ously. The following simple result gives the sufficient conditions that guarantee the existence

of lower and upper solutions for the HDE (1.1) defined on J .

We consider the following hypothesis:

(B2) The function x 7→ g (t , x) is nonincreasing in R for all t ∈ J .

Theorem 2.3. Suppose that hypotheses (A1)-(A2) and (B1)-(B2) hold. Then there exists a lower

u0 and an upper solutions v0 for the HDE (1.1) such that u0(t )≤ v0(t ) on J.

Proof. Let y(t ) be the unique solution of the HDE















d

d t

[

y(t )− f (t , y(t ))
]

= g̃ (t ,0), t ∈ J ,

y(t0) = x0,∈R.

(2.9)

Define

u0(t )− f (t ,u0(t )) = y(t )− f (t , y(t ))−R0, t ∈ J (2.10)
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and

v0(t )− f (t , v0(t )) = y(t )− f (t , y(t ))+R0, t ∈ J (2.11)

for some real number R0 > 0. Choose R0 so large that

u0(t )− f (t ,u0(t )) ≤ 0 ≤ v0(t )− f (t , v0(t )). (2.12)

Since g (t , x) is nonincreasing in x, one has

u0(t )− f (t ,u0(t )) ≤ y(t )− f (t , y(t ))≤ g (t ,u0(t )), t ∈ J

and

v0(t )− f (t , v0(t )) ≥ y(t )− f (t , y(t ))≥ g (t ,u0(t )), t ∈ J .

Also from (2.10) and (2.11), it follows that

u0(t0)≤ x0 ≤ v0(t0).

Thus, the functions u0(t ) and v0(t ) are respectively the desired lower and upper solutions

for the HDE (1.1) on J . Finally, from the hypothesis (A1) and the inequality (2.12) it follows that

u0(t )≤ v0(t ) and the proof of the theorem is complete. ���

Remark 2.1. Assume that all the hypotheses of Theorem 2.2 hold withΩ is replaced with

Ω= {x ∈R | u0(t )≤ x ≤ v0(t ), t ∈ J }.

Then, by Theorem 2.1, there exists a solution for the HDE (1.1) in the vector segment [u0, v0]

in the Banach space C (J ,R). The uniqueness of x(t ) is a consequence of nonincreasing nature

of g (t , x) in x for each t ∈ J .

3. Monotone iterative technique

In this section, we describe a constructive method that yields monotone sequences which

converge to the extremal solutions of the HDE (1.1) on J . This method is known as monotone

iterative technique in the theory of nonlinear analysis and has been employed by several au-

thors for a number of nonlinear differential equations in the literature. This method generates

the sequences of successive iterations where the first iteration is a solution of a certain linear

differential equation which can be computed explicitly. The advantage of monotone itera-

tive technique lies in the fact that it gives some qualitative information about the solutions of

nonlinear differential equation in question and the disadvantage is that unlike Picard’s iter-

ations, it does not give any information about the degree of approximation of the solutions,
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that is, how far away the successive iterations are from the actual solution of the prolem in

question. The details of monotone iterative technique and applications appears in a mono-

graph by Ladde et al. [7]. Below we apply the monotone iterative technique to HDE (1.1)

under some suitable conditions for proving the existence of extremal solutions.

We need the following hypotheses in what follows.

(B3) There exists a real number M > 0 such that

g (t , x)− g (t , y)≥−M
[

(x − f (t , x))− (y − f (t , y))
]

for each t ∈ J and x, y ∈R with x ≥ y .

(B4) There exists a constant K > 0 such that

|g̃ (t , x)| =
∣

∣g (t , x)+M (x − f (t , x))
∣

∣≤ K

for all t ∈ J and x ∈R.

Theorem 3.1. Let u0 and v0 be respectively the lower and upper solutions for the HDE (1.1)

satisfying u0(t ) ≤ v0(t ) on J and let hypotheses (A1)-(A2) and (B3)-(B4) hold. Then there exist

monotone sequences {un} and {vn} such that un → u and vn → v uniformly on J, where u and

v are respectively the minimal and maximal solutions of the HDE (1.1) on J and

u0 ≤u1 ≤ ·· · ≤ un ≤ vn ≤ ·· · ≤ v2 ≤ v1 ≤ v0. (3.1)

Proof. For any η ∈ C (J ,R) with u0(t ) ≤ η(t ) ≤ v0(t ) on J , consider a hybrid differential equa-

tion,











d

d t

[

x(t )− f (t , x(t ))
]

= g (t ,η(t ))−M
[

(x(t )− f (t , x(t )))− (η(t )− f (t ,η(t )))
]

x(t0) = x0, u0(t ) ≤ x0 ≤ v0(t ).

(3.2)

for all t ∈ J . Now the HDE (3.2) is equivalent to the problem

d

d t

[

x(t )− f (t , x(t ))
]

+M
[

x(t )− f (t , x(t ))
]

= g̃ (t ,η(t )), t ∈ J ,

x(t0) = x0.

Using the integration factor, the above equation can be put in the form

d

d t

[

eMt (x(t )− f (t , x(t )))
]

= eMt g̃ (t ,η(t )), t ∈ J ,

x(t0) = x0.
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By lemma 1.1, the above hybrid differential equation is equivalent to he HIE

x(t )= f (t , x(t ))+e−M(t−t0)(x0 − f (t0, x0))+

∫t

t0

e−M(t−s) g̃ (s,η(s))d s, t ∈ J .

Since hypothesis (B4) hold, it is clear that for every η, there exists a unique solution x ∈

C (J ,R) of the HDE (1.1) defined on J in view of Banach contraction mapping principle.

Define a mapping A on [u0, v0] by Aη= x. This mapping will be used to define sequences

{un} and {vn}. Let us now prove that

(a) u0 ≤ Au0 and v0 ≥ Av0.

(b) A is monotone operator on the sector

[u0, v0] = {x ∈C (J ,R) |u0(t )≤ x(t )≤ v0(t ), t ∈ J }.

To prove (a), set Au0 =u1, where u1 is a unique solution of the HDE (3.2) on J with η=u0.

Denote

p(t )− f (t , p(t ))= (u1(t )− f (t ,u1(t )))− (u0(t )− f (t ,u0(t ))) (3.3)

for p ∈C (J ,R). Then p(t0)− f (t0, p(t0)) ≥ 0, and

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

(u1(t )− f (t ,u1(t )))]−
d

d t

[

(u0(t )− f (t ,u0(t )))
]

≥ g (t ,u0(t ))−M
[

(u1(t )− f (t ,u1(t )))− (u0(t )− f (t ,u0(t )))
]

− g (t ,u0(t ))

= −M
[

p(t )− f (t , p(t ))
]

. (3.4)

This shows that p(t )− f (t , p(t )) ≥
[

p(t0)− f (t0, p(t0))
]

e−Mt ≥ 0 for all t ∈ J and hence from

(3.4), we obtain

u1(t )− f (t ,u1(t )) ≥ u0(t )− f (t ,u0(t ))

for all t ∈ J . Since hypothesis (A1) holds, u0(t ) ≤ u1(t ) for all t ∈ J , or, equivalently, u0 ≤ Au0.

In a similar way, we can prove that v0 ≥ Av0.

To prove (b), let η1,η2 ∈ [u0, v0] be such that η1 ≤ η2 on J . Then one has

g (t ,η1(t ))− g (t ,η2(t )) ≥−M [(η1(t )− f (t ,η1(t )))− (η2(t )− f (t ,η2(t )))] (3.5)

for all t ∈ J .

Suppose that x1 = Aη1 and x2 = Aη2 and set

p(t )− f (t , p(t ))= (x2(t )− f (t , x2(t )))− (x1(t )− f (t , x1(t )))

for some p ∈C (J ,R). Then, p(t0)− f (t0, p(t0)) ≥ 0, and

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

x2(t )− f (t , x2(t ))
]

−
d

d t

[

x1(t )− f (t , x1(t ))
]
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= g (t ,η2(t ))−M
[

(x2(t )− f (t , x2(t )))− (η2(t )− f (t ,η2(t )))
]

− g (t ,η1(t ))+M [(x1(t )− f (t , x1(t )))− (η1(t )− f (t ,η1(t )))]

≥−M
[

(η2(t )− f (t ,η2(t )))− (η1(t )− f (t ,η1(t )))
]

−M
[

(η2(t )− f (t ,η2(t )))− (η1(t )− f (t ,η1(t )))
]

+M
[

(x1(t )− f (t , x1(t )))− (η1(t )− f (t ,η1(t )))
]

=−M
[

p(t )− f (t , p(t ))
]

. (3.6)

As before, the foregoing inequality implies that x2 ≥ x1 on J which in turn implies that

Aη2 ≥ Aη1, proving (b).

Now, we define two sequences {un} and {vn} by

un = Aun−1 and vn = Avn−1

for n = 1,2, . . . .

From the monotonicity of the operator A it follows that

u0 ≤ u1 ≤ u2 ≤ ·· · ≤ un ≤ vn ≤ ·· · ≤ v2 ≤ v1 ≤ v0.

It is easy to show that the sequences {un} and {vn} are uniformly bounded and equi-

continuous on J . The sequences being monotone, they converge by Arzela-Ascoli theorem,

uniformly and monotonically on J to u and v respectively. Obviously, u and v are the solu-

tions of






























d

d t

[

un(t )− f (t ,un(t ))
]

= g (t ,un−1(t ))−M [(un(t )− f (t ,un(t )))

− (un−1(t )− f (t ,un−1(t )))]

un(t0)= x0,

(3.7)

and


























d

d t

[

vn(t )− f (t , vn(t ))
]

= g (t , vn−1(t ))−M [(vn(t )− f (t , vn(t )))

−(vn−1(t )− f (t , vn−1(t )))]

vn(t0) = x0.

(3.8)

To prove that u and v are extremal solutions of the HDE (1.1) on J , we have to show that

if x is any other solution of the HDE (1.1) such that u0(t0) ≤ x0 ≤ v0(t0), t ∈ J , then

u0(t ) ≤u(t )≤ x(t )≤ v(t )≤ v0(t ), t ∈ J .

Suppose that for some n ∈N, un ≤ x ≤ vn on J and set

p(t )− f (t , p(t ))= (x(t )− f (t , x(t )))− (un+1(t )− f (t ,un+1(t )))
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for some p ∈C (J ,R). Then, p(t0)− f (t0, p(t0)) = 0, and

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

x(t )− f (t , x(t ))
]

−
d

d t

[

un+1(t )− f (t ,un+1(t ))
]

= g (t , x(t ))− g (t ,un(t ))−M
[

(un+1(t )− f (t ,un+1(t )))

− (un(t )− f (t ,un(t )))
]

≥−M
[

(x(t )− f (t , x(t )))− (un(t )− f (t ,un(t )))
]

+M
[

(un+1(t )− f (t ,un+1(t )))− (un(t )− f (t ,un(t )))
]

=−M
[

p(t )− f (t , p(t ))
]

. (3.9)

This implies as before that un+1(t ) ≤ x(t ) for all t ∈ J . Similarly, it is proved that x(t ) ≤

vn+1(t ) for all t ∈ J . Since u0 ≤ x ≤ v0 on J , we have, by induction principle that un ≤ x ≤ vn

on J for each n,n = 0,1,2, . . . . Taking the limit as n → ∞, we conclude that u ≤ x ≤ v on J .

Hence u and v are respectively the minimal and maximal solutions for the HDE (1.1) on J .

This completes the proof. ���

To state a special case of Theorem 3.1, we need the following hypothesis in what follows.

(B5) The function x 7→ g (t , x) is nondecreasing in R for each t ∈ J .

Corollary 3.2. Let u0 and v0 be respectively the lower and upper solutions for the HDE (1.1)

on J satisfying u0(t ) ≤ v0(t ) on J and let all the conditions of Theorem 3.1 are satisfied with

hypothesis (B4) replaced with (B5). Then the HDE (1.1) has extremal solutions on J.

The proof of Corollary 3.2 follows from Theorem 3.1 by replacing the constant M in hy-

pothesis (B3) with M = 0. Next, we discuss the case when g (t , x) is nonincreasing in x almost

everywhere for t ∈ J . Let u0 and v0 be respectively the lower and upper solutions for the HDE

(1.1) on J . Then, consider the two sequences un and vn of iterations defined as follows:

d

d t

[

un+1(t )− f (t ,un+1(t ))
]

= g (t ,un(t )), t ∈ J , un+1(t0) = u0; (3.10)

and
d

d t

[

vn+1(t )− f (t , vn+1(t ))
]

= g (t , vn(t )), t ∈ J , vn+1(t0) = u0; (3.11)

for n = 0,1,2, . . . .

Below in the following we show that each one of the sequences un and vn has two alter-

nating sequences which converge uniformly and monotonically to the extremal solutions of

the HDE (1.1) on J .

Theorem 3.3. Let hypotheses (A1)− (A2) and (B5) hold. Then either,
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(i) the iterates {un} given by (3.10) and a unique solution x of the HDE (1.1) defined on J

satisfy

u0 ≤ u2 ≤ ·· · ≤ u2n ≤ x(t ) ≤u2n+1 ≤ ·· · ≤ u3 ≤ u1 (3.12)

for all t ∈ J , provided u0(t ) ≤ u2(t ), t ∈ J . Furthermore, the sequences {u2n} and {u2n+1}

converge uniformly and monotonically to u∗ and u∗ respectively satisfying u∗(t )≤ x(t )≤

u∗(t ) for all t ∈ J ; or

(ii) the iterates {vn} given by (3.11) and a unique solution x of the HDE (1.1) defined on J

satisfy

v1 ≤ v3 ≤ ·· · ≤ u2n+1 ≤ x(t ) ≤ v2n ≤ ·· · ≤ v2 ≤ v0 (3.13)

for all t ∈ J , provided v2(t ) ≤ v0(t ), t ∈ J . Furthermore, the sequences {v2n} and {v2n+1}

converge uniformly and monotonically to v∗ and v∗ respectively satisfying v∗(t ) ≤ x(t ) ≤

v∗(t ) for all t ∈ J .

In fact, since the extremal solutions are unique, u∗ = v∗ = u and u∗ = v∗ = v on J satisfying

u(t )≤ x(t )≤ v(t ), t ∈ J .

Proof. By Theorem 2.2, there exist a lower solution u0, an upper solution v0 and a solution x

for the HDE (1.1) such that

u0(t )≤ x(t )≤ v0, t ∈ J .

We shall only prove the case (i), since the proof of case (ii) follows with similar arguments.

Assume u0 ≤ u2 on J . We shall first show that

u0(t )≤ u2(t ) ≤ x(t )≤ u3(t ) ≤ u1t , t ∈ J . (3.14)

Set

p(t )− f (t , p(t ))= (u1(t )− f (t ,u1(t )))− (u0(t )− f (t ,u0(t ))) (3.15)

for t ∈ J . Then,

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

u1(t )− f (t ,u1(t ))
]

−
d

d t

[

u0(t )− f (t ,u0(t ))
]

≥ g (t0,u0(t ))− g (t0,u0(t ))

= 0

and p(t0) = 0. Hence,

u1(t )− f (t ,u1(t )) ≥u0(t )− f (t ,u0(t ))

for all t ∈ J . This further in view of hypothesis (A1) implies that u1(t ) ≥u0(t ) on J .
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Next, let

p(t )− f (t , p(t ))= (x(t )− f (t , x(t )))− (u1(t )− f (t ,u1(t ))) (3.16)

for t ∈ J . Then,

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

u1(t )− f (t ,u1(t ))
]

−
d

d t

[

u0(t )− f (t ,u0(t ))
]

= g (t , x(t ))− g (t ,u0(t ))

≤ 0

and p(t0) = 0. This implies

x(t )− f (t , x(t ))≤u1(t )− f (t ,u1(t ))

for all t ∈ J . Since hypothesis (A1) holds, one has x(t )≤u1(t ) on J . By using similar arguments,

we can show successively that

u2(t )≤ x(t ), u3(t )≤ u1(t ), and x(t )≤ u3(t ), t ∈ J .

Consequently, we have proved that (3.14) holds for t ∈ J .

To prove (3.12), we use the induction principle, i.e. assume that (3.12) is true for some n

and show that it holds for (n +1). Consider,

p(t )− f (t , p(t ))= (u2n+2(t )− f (t ,u2n+2(t )))− (u2n+1(t )− f (t ,u2n+1(t ))).

Then, by using the monotone character of g , we have

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

(u2n+2(t )− f (t ,u2n+2(t )))
]

−
d

d t

[

u2n+1(t )− f (t ,u2n+1(t ))
]

= g (t ,u2n+2(t ))− g (t ,u2n+1(t ))

≤ 0

and p(0) = 0. This shows p(t ) ≤ 0 and hence u2n+2(t ) ≤ u2n+1(t ). By repeating similar argu-

ments we can get

u0 ≤ u2 ≤ ·· · ≤ u2n ≤ u2n+2 ≤ x ≤u2n+3 ≤ u2n+1 ≤ ·· · ≤ u3 ≤ u1

on J . Since (3.12) is true for n = 1, it follows by induction principle that (3.12) is true for

all n. It is easy to conclude that the sequences {u2n}, {u2n+1} are uniformly bounded and

equicontinuous and hence by Arzela-Ascoli theorem, converge uniformly and monotonically

to u∗(t ),u∗(t ) respectively and that u∗(t )≤ x(t )≤ u∗(t ) on J . This proves the assertion (i) and

the proof of Theorem 3.3 is complete. ���
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Corollary 3.4. In addition to the assumptions of Theorem 3.3, suppose that

g (t ,u1(t ))− g (t ,u2(t )) ≥−M
[

(u1(t )− f (t ,u1(t )))− (u2(t )− f (t ,u2(t )))
]

(3.17)

for all t ∈ J , wherever u1(t )≥ u2(t ) on J. Then u(t )= v(t )= x(t ) on J.

We note that in the proof of Theorem 3.3, u and v are indeed quasi solutions for the HDE

(1.1) since we have that

d

d t

[

u(t )− f (t ,u(t ))
]

= g (t , v(t )), t ∈ J , u(t0) = x0, (3.18)

and
d

d t

[

v(t )− f (t , v(t ))
]

= g (t ,u(t )), t ∈ J , v(t0) = x0. (3.19)

4. Mixed monotone iterative technique

From the discussion of the previous section, it is clear that if the nonlinearity g (t , x) in

the HDE (1.1) is either nondecreasing or nonincreasing in the state variable x, then we can

construct the monotone sequences of successive iterations that converge to the extremal so-

lutions between the given lower and upper solutions of the related hybrid differential equa-

tion on J . Now we treat the case when g is neither nondecreasing nor nonincreasing in the

state variable x. If it is possible to split the function g into two components as

g (t , x) = g1(t , x)+ g2(t , x)

where, one component g1(t , x) is nondecreasing while another component g2(t , x) is nonin-

creasing in the state variable x, then in this situation we can also construct the sequences of

iterations that converge to the extremal solutions of the HDE (1.1) on J .

Now, consider an initial value problem of HDE,















d

d t
(x(t )− f (t , x(t )))= g1(t , x(t ))+ g2(t , x(t )), t ∈ J ,

x(t0) = x0 ∈R

(4.1)

where, f ∈C (J ×R,R) and g1, g2 ∈C (J ×R,R).

In the following we develop a mixed monotone iterative technique and prove an approxi-

mation result for the HDE (4.1) in closed sets formed by the lower and upper solutions. Below

we give different notions of lower and upper solutions for the HDE (4.1) on J .
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Definition 4.1. Let the functions α,β ∈C (J ,R) satisfy the condition that the maps t 7→α(t )−

f (t ,α(t )) and t 7→ β(t )− f (t ,β(t )) are absolutely continuous on J . Then the functions (α,β)

are said to be

(a) mixed lower and upper solutions of type I for the HDE (4.1) on J , if










d

d t

[

α(t )− f (t ,α(t ))
]

≤ g1(t ,α(t ))+ g2(t ,β(t )), t ∈ J ,

α(t0) ≤ x0,

(4.2)

and










d

d t

[

β(t )− f (t ,β(t ))
]

≥ g1(t ,β(t ))+ g2(t ,α(t )), t ∈ J ,

β(t0) ≥ x0;

(4.3)

and

(b) mixed lower and upper solutions of type II for the HDE (4.1) on J if










d

d t

[

α(t )− f (t ,α(t ))
]

≤ g1(t ,β(t ))+ g2(t ,α(t )), t ∈ J ,

α(t0) ≤ x0,

(4.4)

and










d

d t

[

β(t )− f (t ,β(t ))
]

≥ g1(t ,α(t ))+ g2(t ,β(t )), t ∈ J ,

β(t0) ≥ x0.

(4.5)

If the equality sign holds in the relations of (4.2) and (4.3), then the pair of functions (α,β)

together is called a mixed solution of type I for the HDE (4.1) on J . Similarly, if the equality

sign holds in the relations of (4.4) and (4.5), then the pair of functions (α,β) together is called

a mixed solution of type II for the HDE (4.1) on J .

We need the following hypothesis in what follows.

(B6) The function g1(t , x) is nondecreasing in x and the function g2(t , x) is nonincreasing in

x for each t ∈ J .

(B7) The functions (α0,β0) are mixed lower and upper solutions of type I for the HDE (4.1)

on J with α0 ≤β0.

(B8) The pair (α0,β0) are mixed lower and upper solutions of type II for the HDE (4.1) on J

with α0 ≤β0.

Theorem 4.1. Assume that the hypotheses (A1)-(A2) and (B6)-(B7) hold. Then there exist mono-

tone sequences {αn } and {βn} such that αn → α and βn → β uniformly on J, where (α,β) are

mixed extremal solutions of the type I for the HDE (4.1) on J.
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Proof. Consider the following quadratic HDE,















d

d t

[

αn+1(t )− f (t ,αn+1(t ))
]

= g1(t ,αn(t ))+ g2(t ,βn(t )), t ∈ J ,

αn+1(t0) = x0,

(4.6)

and














d

d t

[

βn+1(t )− f (t ,βn+1(t ))
]

= g1(t ,βn(t ))+ g2(t ,αn(t )), t ∈ J ,

βn+1(t0)= x0

(4.7)

for n ∈N.

Clearly, the HDEs (4.6) and (4.7) have unique solutions αn+1 and βn+1 on J respectively

in view of Banach contraction mapping principle. Now we wish to prove that

α0 ≤α1 ≤ ·· · ≤αn ≤βn · · · ≤β1 ≤β0 (4.8)

on J for n = 0,1,2, . . .. Let n = 0 and set

p(t )− f (t , p(t ))= (α0(t )− f (t ,α0(t )))− (α1(t )− f (t ,α1(t )))

for t ∈ J . Then by monotonicity of g1 and g2, we obtain

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

α0(t )− f (t ,α0(t ))
]

−
d

d t

[

α1(t )− f (t ,α1(t ))
]

≤ g1(t0,α0(t ))+ g2(t ,β0(t ))− g1(t0,β0(t ))+ g2(t ,α0(t ))

= 0

for all t ∈ J and p(t0) = 0. This implies that

α0(t )− f (t ,α0(t )) ≤α1(t )− f (t ,α1(t ))

for all t ∈ J . As hypothesis (A1) holds, one has α0(t ) ≤ α1(t ) for all t ∈ J . Similarly, it is proved

that β1 ≤β0 on J . Again, setting

p(t )− f (t , p(t ))= (α1(t )− f (t ,α1(t )))− (β1(t )− f (t ,β1(t )))

for t ∈ J . Then, by monotonicity of g1 and g2, we obtain

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

α1(t )− f (t ,α1(t ))
]

−
d

d t

[

β1(t )− f (t ,β1(t ))
]

≤ g1(t0,α0(t ))+ g2(t ,β0(t ))− g1(t0,β0(t ))− g2(t ,α0(t ))

≤ 0



APPROXIMATION METHODS IN HYBRID DIFFERENTIAL EQUATIONS 55

for all t ∈ J and p(t0) = 0. This implies that

α1(t )− f (t ,α1(t )) ≤β1(t )− f (t ,β1(t ))

for all t ∈ J . As hypothesis (A1) holds, one has α1(t )≤β1(t ) for all t ∈ J .

Now we assume that for some integer k ∈N,

αk−1 ≤αk ≤βk ≤βk−1

on J . We shall show that

αk ≤αk+1 ≤βk+1 ≤βk .

Set

p(t )− f (t , p(t ))= (αk (t )− f (t ,αk (t )))− (αk+1(t )− f (t ,αk+1(t )))

for t ∈ J . Then by monotonicity of g1 and g2, we obtain

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

αk (t )− f (t ,αk (t ))
]

−
d

d t

[

αk+1(t )− f (t ,αk+1(t ))
]

≤ g1(t ,αk−1(t ))+ g2(t ,βk−1(t ))− g1(t ,αk (t ))− g2(t ,βk (t ))

≤ 0

for all t ∈ J and p(t0) = 0. This implies that

αk (t )− f (t ,αk (t )) ≤αk+1(t )− f (t ,αk+1(t ))

for all t ∈ J . As hypothesis (A1) holds, one has αk (t ) ≤ αk+1(t ) for all t ∈ J . Similarly, it can be

proved that βk+1(t ) ≤βk (t ), t ∈ J .

Similarly, assume that the inequality

αk−1 ≤αk ≤βk ≤βk−1

holds on J . We shall show that

αk ≤αk+1 ≤βk+1 ≤βk

on J . Set

p(t )− f (t , p(t ))= (αk+1(t )− f (t ,αk+1(t )))− (βk+1(t )− f (t ,βk+1(t )))

for t ∈ J . Then by monotonicity of g1 and g2, we obtain

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

αk+1(t )− f (t ,αk+1(t ))
]

−
d

d t

[

βk+1(t )− f (t ,βk+1(t ))
]
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≤ g1(t ,αk (t ))+ g2(t ,βk (t ))− g1(t ,βk (t ))− g2(t ,αk (t ))

≤ 0

for all t ∈ J and p(t0) = 0. This implies that

αk+1(t )− f (t ,αk+1(t ))≤βk+1(t )− f (t ,βk+1(t ))

for all t ∈ J . As hypothesis (A1) holds, one has αk+1(t ) ≤βk+1(t ) for all t ∈ J .

Now it is easy to prove that the sequences {αn } and {βn} are uniformly bounded and

equicontinuous and so, have uniformly convergent subsequences on J . Since they are mono-

tone sequences, {αn} and {βn} converge uniformly and monotonically to α and β on J respec-

tively. Obviously the pair (α,β) is a mixed solution of the HDE (4.1) on J . Finally, we show that

(α,β) is a mixed minimal and maximal solution of type I for the HDE (4.1) on J . Let x be any

solution of the HDE (4.1) on J such that α0 ≤ x(t ) ≤ β(t ) on J . Suppose that for some k ∈ N,

αk (t ) ≤ x(t ) ≤βk (t ), t ∈ J . We shall show that αk+1(t )≤ x(t )≤βk+1(t ), t ∈ J . Setting

p(t )− f (t , p(t ))= (αk+1(t )− f (t ,αk+1(t )))− (x(t )− f (t , x(t )))

for t ∈ J . Then, by monotonicity of g1 and g2, we obtain

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

αk+1(t )− f (t ,αk+1(t ))
]

−
d

d t

[

x(t )− f (t , x(t ))
]

≤ g1(t ,αk (t ))+ g2(t ,βk (t ))− g1(t , x(t ))− g2(t , x(t ))

≤ 0

for all t ∈ J and p(t0) = 0. This implies that

αk+1(t )− f (t ,αk+1(t )) ≤ x(t )− f (t , x(t ))

for all t ∈ J . As hypothesis (A1) holds, one has αk+1(t ) ≤ x(t ) for all t ∈ J . Similarly, it is shown

that x(t ) ≤ βk+1(t ) for all t ∈ J . By principle of induction method, αn ≤ x ≤ βn on J for all

n ∈N. Taking the limit as n →∞, we obtain α≤ x ≤β on J . Thus (α,β) are the mixed extremal

solutions of type I for the HDE (4.1) on J , that is,

d

d t

[

α(t )− f (t ,α(t ))
]

= g1(t ,α(t ))+ g1(t ,β(t )), t ∈ J , α(t0) = x0

and
d

d t

[

β(t )− f (t ,β(t ))
]

= g1(t ,β(t ))+ g1(t ,α(t )), t ∈ J , β(t0) = x0.

This completes the proof. ���
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Corollary 4.2. If in addition to the assumptions of Theorem 4.1, we suppose that for u1 ≥ u2,

u1,u2 ∈Ω, we have

g1(t ,u1(t ))− g1(t ,u2(t )) ≤ N1

[

(u1(t )− f (t ,u1(t )))− (u2(t )− f (t ,u2(t )))
]

, N1 > 0,

and

g2(t ,u1(t ))− g2(t ,u2(t )) ≤ N2

[

(u1(t )− f (t ,u1(t )))− (u2(t )− f (t ,u2(t )))
]

, N2 > 0,

then α(t ) = x(t )=β(t ) on J.

Proof. Since α≤β on J , it is enough to show that β≤α on J . Define a function p ∈C (J ,R) by

p(t )− f (t , p(t ))= (β(t )− f (t ,β(t )))− (α(t )− f (t ,α(t ))).

Then, p(t0) = 0 and

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

β(t )− f (t ,β(t ))
]

−
d

d t

[

α(t )− f (t ,α(t ))
]

= g1(t ,β(t ))− g1(t ,α(t ))+ g2(t ,α(t ))− g2(t ,β(t ))

≤ N1

[

(β(t )− f (t ,β(t )))− (α(t )− f (t ,α(t )))
]

+N2

[

(α(t )− f (t ,α(t )))− (β(t )− f (t ,β(t )))
]

= (N1 +N2)
[

p(t )− f (t , p(t ))
]

.

This shows that p(t )− f (t , p(t ))≤ 0 on J , proving thereby that β≤α on J . Hence α= x =β

on J , completing the proof. ���

Remark 4.1. As a consequence of Theorem 4.1, we have several important observations. It is

noted that many interesting special cases can be derived from Theorem 4.1, some of which

are already studied in the earlier results. Below we list our remarks concerning these observa-

tions.

(1) In Theorem 4.1, suppose that g2(t , x) = 0. Then α0,β0 are natural lower and upper solu-

tions of (4.1) and with g (t , x) nondecreasing, we get the monotone sequences {αn }, {βn}

converging to minimal and maximal solutions of (4.1) respectively, lying in the sector

[α0,β0].

(2) However, if g1(t , x) is not nondecreasing and g2(t , x) = 0, we can assume that g1(t , x)+

M (x− f (t , x)) is nondecreasing in x for some M > 0 and still come to the same conclusion

as above, since the HDE

d

d t

[

x(t )− f (t , x(t ))
]

= g̃1(t , x)(t ), t ∈ J , x(t0)= x0
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satisfies the conditions of Theorem 3.1.

When g1(t , x) is not nondecreasing in x, we consider the HDE

d

d t

[

x(t )− f (t , x(t ))
]

= g̃1(t , x(t ))−M (x(t )− f (t , x(t ))), t ∈ J , x(t0) = x0, (4.9)

where g̃1(t , x)= g1(t , x)+M (x− f (t , x)), M > 0 is nondecreasing in x. Note that HDE (4.9) is

same as (4.1) with g2(t , x)= 0. We see that it can also be seen as (4.1) with g1(t , x) replaced

by g̃1(t , x) and g2(t , x) replaced by −M (x− f (t , x)). Hence we get the same conclusions as

of Theorem 4.1, since g̃1(t , x) is nondecreasing in x and −M (x − f (t , x)) is nonincreasing

in x.

(3) If g1(t , x) = 0 in Theorem 4.1, we obtain the result for nonincreasing g2(t , x) in x and the

functions α0,β0 are mixed lower and upper solutions of the HDE

d

d t

[

x(t )− f (t , x(t ))
]

= g2(t , x(t )), t ∈ J , α(t0)= x0

with nonincreasing g2(t , x) in x. In this case, the monotone iterates {αn}, {βn } converge to

α,β respectively which satisfy

d

d t

[

α(t )− f (t ,α(t ))
]

= g1(t ,β(t )), t ∈ J , α(t0) = x0

and
d

d t

[

β(t )− f (t ,β(t ))
]

= g2(t ,α(t )), t ∈ J , β(t0)= x0.

(4) If in (3) above, we suppose that g2(t , x) is not nonincreasing in x and there exists a N > 0

such that g̃2(t , x) = g2(t , x)−N (x − f (t , x)) is nonincreasing in x. Then, we can consider

the HDE

d

d t

[

x(t )− f (t , x(t ))
]

= g2(t , x(t )) = g̃2(t , x(t ))+N (x(t )− f (t , x(t ))), x(t0) = x0

which is the same as HDE (4.1) with g1(t , x) replaced by N (x − f (t , x)) which is nonde-

creasing in x and g2(t , x) replaced by g̃2(t , x) which is nonincreasing in x. Hence, the

present case, then reduces to Theorem 4.1 and the conclusion of Theorem 4.1 remains

valid.

(5) Suppose g1(t , x) is nondecreasing but g2(t , x) is not nonincreasing in x. Then, consider

the HDE
d

d t

[

x(t )− f (t , x(t ))
]

= g̃1(t , x(t ))+ g̃2(t , x(t )), t ∈ J , x(t0) = x0, (4.10)

where g̃1(t , x) = g1(t , x)+N (x− f (t , x)), N > 0 is nondecreasing in x and g̃2(t , x)= g2(t , x)−

N x − f (t , x), N > 0, is nonincreasing in x. This results is same as Theorem 4.1 with

g1(t , x), g2(t , x) replaced by g̃1(t , x), g̃2(t , x) respectively and the conclusion of Theorem

4.1 holds. Note that g̃1(t , x(t ))+ g̃2(t , x(t ))= g1(t , x(t ))+ g2(t , x(t )) and hence, HDE (4.10)

is the same as the HDE (4.1).
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(6) If g1(t , x) is not nondecreasing in x but g2(t , x) is nonincreasing in x, then consider the

HDE
d

d t

[

x(t )− f (t , x(t ))
]

= g̃1(t , x(t ))+ g̃2(t , x(t )), t ∈ J , x(t0) = x0, (4.11)

where g̃1(t , x) = g1(t , x)+ N (x − f (t , x)), N > 0 is nondecreasing and g̃2(t , x) = g2(t , x)−

N (x − f (t , x)), M > 0 is nonincreasing in x. This results is contained in Theorem 4.1 and

so, the conclusion of Theorem 4.1 is valid. Again note that HDE (4.11) is the same as (4.1)

since g̃1(t , x)+ g̃2(t , x)= g1(t , x)+ g2(t , x).

(7) If g1(t , x) is not nondecreasing and g2(t , x) is not nonincreasing, then for M > 0, N >

0, such that g̃1(t , x) = g1(t , x)+ M (x − f (t , x)) is nondecreasing and g̃2(t , x) = g2(t , x)−

N (x − f (t , x)) is nonincreasing, we get the context of Theorem 4.1 with g1(t , x), g2(t , x) re-

placed by g̃1(t , x), g̃2(t , x) respectively and hence the conclusion of Theorem 4.1 remains

valid.

Next, we consider the case of the mixed lower and upper solutions of type II for the HDE

(4.1) and prove the existence of sequences that converge to the mixed extremal solution. Here,

we need not assume the existence of mixed lower and upper solutions, since it can be estab-

lished with the given assumptions.

Theorem 4.3. Assume that the hypotheses (A1)-(A2) and (B6)-(B8) hold. Then, for any solution

x(t ) of (4.1) with α0 ≤ x ≤β0 on J, we have the iterates αn ,βn satisfying for t ∈ J ,







α0 ≤α2 ≤ ·· · ≤α2n ≤ x ≤α2n+1 ≤ ·· · ≤α3 ≤α1,

β1 ≤β3 ≤ ·· · ≤β2n+1 ≤ x ≤β2n ≤ ·· · ≤β2 ≤β0,
(4.12)

provided α0 ≤α2 and β2 ≤β0 on J, where the iterates are given by















d

d t

[

αn+1(t )− f (t ,αn+1(t ))
]

= g1(t ,βn(t ))+ g2(t ,αn(t )), t ∈ J ,

αn+1(t0)= x0,

(4.13)

and














d

d t

[

βn+1(t )− f (t ,βn+1(t ))
]

= g1(t ,αn(t ))+ g2(t ,βn(t )), t ∈ J ,

βn+1(t0) = x0

(4.14)

for n ∈ N. Moreover, the monotone sequences {α2n}, {α2n+1}, {β2n }, {β2n+1} converge uniformly

to α,β,α∗,β∗ respectively and they satisfy

d

d t

[

α(t )− f (t ,α(t ))
]

= g1(t ,β(t ))+ g2(t ,α(t )),

d

d t

[

β(t )− f (t ,β(t ))
]

= g1(t ,α(t ))+ g2(t ,β(t ))
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d

d t

[

α∗(t )− f (t ,α∗(t ))
]

= g1(t ,β∗(t ))+ g2(t ,α∗(t )),

d

d t

[

β∗(t )− f (t ,β∗(t ))
]

= g1(t ,α∗(t ))+ g2(t ,β∗(t ))

for t ∈ J and α≤ x ≤β, α∗ ≤ x ≤β∗, t ∈ J , α(0) =β(0) =α∗(0) =β∗(0) = x0.

Proof. In view of hypothesis (ii), it is easy to construct the mixed lower and upper solutions

for the HDE (4.1) following the method of Theorem 2.2. Hence, we proceed by assuming that

such mixed lower and upper solutions α0,β0 of type II exist. Assume further that α0 ≤α2 and

β2 ≤β0, on J . We show that






α0 ≤α2 ≤ x ≤α3 ≤α1,

β1 ≤β3 ≤ x ≤β2 ≤β0

(4.15)

on J . Set

p(t )− f (t , p(t ))= (x(t )− f (t , x(t )))− (α1(t )− f (t ,α1(t ))).

Using the fact that α0 ≤ x ≤ β0 on J , x being any solution of (4.1) and the monotonic

nature of the functions g1 and g2, we obtain

d

d t

[

p(t )− f (t , p(t ))
]

=
d

d t

[

x(t )− f (t , x(t ))
]

−
d

d t

[

α1(t )− f (t ,α1(t ))
]

= g1(t , x(t ))+ g2(t , x(t ))− g1(t ,β0(t ))− g2(t ,α0(t ))

≤ 0

for all t ∈ J and p(t0) = 0. Hence, we conclude

x(t )− f (t , x(t ))≤α1(t )− f (t ,α1(t )) or x(t )≤α1(t )

for all t ∈ J .

Similarly, it can be shown that α3 ≤α1, β1 ≤ x and α2 ≤ x, by considering the differences

p(t )− f (t , p(t )) = (α3(t )− f (t ,α3(t )))− (α1(t )− f (t ,α1(t ))),

p(t )− f (t , p(t )) = (β1(t )− f (t ,β1(t )))− (x(t )− f (t , x(t )))

and

p(t )− f (t , p(t )) = (α2(t )− f (t ,α2(t )))− (x(t )− f (t , x(t )))

respectively. In each of these cases, we obtain
d

d t

[

p(t )− f (t , p(t ))
]

≤ 0, for all t ∈ J and the

claim (4.15) is established. The rest of the proof is similar to Theorem 3.3 with appropriate

modifications. Hence we omit the details. ���
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