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IMPROVEMENTS OF SOME INTEGRAL
INEQUALITIES OF GRUSS TYPE

J. PECARIC AND B. TEPES

S. S. Dragomir ([1]) has proved the following results:

Theorem A. Let f, g : [a,b] — R be two differentiable mappings on (a,b). If
f" € La(a,b) and g’ € Lg(a,b) with a > 1 and L + % =1, then we have the inequality
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The first inequality in (1) is sharp.
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where

Theorem B. Let f, g : [a,b] — R be two differentiable mappings on (a,b). If
f" € Loo(a,b) and g’ € L1(a,b) then we have the inequality
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The first inequality in (2) is sharp.

In this paper we shall improve the second inequalities in (1) and (2), i.e. the following
theorem is valid:
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Theorem. (i) Let the assumptions of Theorem A be fulfiled. Then

T(f.9)/ < 5 (ﬁ [ [ dzdy)
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(ii) Let the assumptions os Theorem B be fulfilled. Then
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Proof. (i) Let us consider the integral
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By elementary calculus we can obtain
3
(b—a)—(t—a)?®—-(b-1t)?>< Z(b— a)?.

Therefore, we have

/ / o — (8)[dt| dady < < b—a) / (t)[dt = (b—a) 11
It is clear that we also have
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Therefore, we have
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(ii) Similarly, we can obtain
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i.e. we have improvement of the second inequality in (2), that is

//Iw—yl sup |f(¢ /Ig )|dt

Remark. It was prove in [2] (see also [3, p.202]):

v U,M_b;“[QZQiJé[ﬁglz}afﬂﬂdm

if f'€ Ly, g €Lg, a>1, Jr%:l
For a = 8 = 2 we have

dxdy

/ lg'(t)|dt

'(t)|dt| dxdy

drdy < —||f locllg'll (b = a).

b—a
T(f:9)l < —=I1/ll=ll9ll2, 3)
while for « =1, 8 = co we get
b—a
T, 9)l < == 1 I llg |-

Results obtained in this paper show that constant % is valid for all o, 1 < o < o0. On the
other hand side it is well known that inequality (3) can be improved. Namely, A. Lupas
[4] has proved that

T(f.0) < 2
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