IMPROVEMENTS OF SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

J. PEČARIĆ AND B. TEPEŠ

S. S. Dragomir ([1]) has proved the following results:

Theorem A. Let $f, g : [a,b] \to \mathbf{R}$ be two differentiable mappings on (a,b). If $f' \in L_{\alpha}(a,b)$ and $g' \in L_{\beta}(a,b)$ with $\alpha > 1$ and $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, then we have the inequality

$$|T(f,g)| \leq \frac{1}{2} \left(\frac{1}{(b-a)^2} \int_a^b \int_a^b |x-y| \left| \int_x^y |f'(t)|^{\alpha} dt \right| dx dy \right)^{\frac{1}{\alpha}}$$

$$\times \left(\frac{1}{(b-a)^2} \int_a^b \int_a^b |x-y| \left| \int_x^y |g'(t)|^{\beta} dt \right| dx dy \right)^{\frac{1}{\beta}}$$

$$\leq \frac{1}{6} ||f'||_{\alpha} ||g'||_{\beta} (b-a).$$
(1)

where

$$T(f,g) = \frac{1}{b-a} \int_a^b f(x)g(x)dx - \frac{1}{b-a} \int_a^b f(x)dx \cdot \frac{1}{b-a} \int_a^b g(x)dx.$$

The first inequality in (1) is sharp.

Theorem B. Let $f, g: [a,b] \to \mathbf{R}$ be two differentiable mappings on (a,b). If $f' \in L_{\infty}(a,b)$ and $g' \in L_1(a,b)$ then we have the inequality

$$|T(f,g)| \le \frac{1}{2(b-a)^2} \int_a^b \int_a^b |x-y| \sup_{t \in [x,y]} |f'(t)| \left| \int_x^y |g'(z)| dz \right| dx dy$$

$$\le \frac{1}{6} ||f'||_{\infty} ||g'||_1 (b-a). \tag{2}$$

The first inequality in (2) is sharp.

In this paper we shall improve the second inequalities in (1) and (2), i.e. the following theorem is valid:

Received August 11, 2003.

Theorem. (i) Let the assumptions of Theorem A be fulfiled. Then

$$|T(f,g)| \leq \frac{1}{2} \left(\frac{1}{(b-a)^2} \int_a^b \int_a^b |x-y| \left| \int_x^y |f'(t)|^{\alpha} dt \right| dx dy \right)^{\frac{1}{\alpha}}$$

$$\times \left(\frac{1}{(b-a)^2} \int_a^b \int_a^b |x-y| \left| \int_x^y |g'(t)|^{\beta} dt \right| dx dy \right)^{\frac{1}{\beta}}$$

$$\leq \frac{1}{8} ||f'||_{\alpha} ||g'||_{\beta} (b-a).$$
(1')

(ii) Let the assumptions os Theorem B be fulfilled. Then

$$|T(f,g)| \le \frac{1}{2(b-a)^2} \int_a^b \int_a^b |x-y| \sup_{t \in [x,y]} |f'(t)| \left| \int_x^y |g'(t)| dt \right| dx dy$$

$$\le \frac{1}{8} ||f'||_{\infty} ||g'||_{1} (b-a).$$

Proof. (i) Let us consider the integral

$$\int_{a}^{b} \int_{a}^{b} |x-y| \left| \int_{x}^{y} |f'(t)|^{\alpha} dt \right| dxdy$$

$$= 2 \int_{a}^{b} \int_{a}^{x} (x-y) \int_{x}^{y} |f'(t)|^{\alpha} dtdydx$$

$$= 2 \int_{a}^{b} \int_{a}^{x} \int_{a}^{t} (x-y)|f'(t)|^{\alpha} dydtdx$$

$$= \int_{a}^{b} \int_{a}^{x} [(x-a)^{2} - (x-t)^{2}] |f'(t)|^{\alpha} dtdx$$

$$= \int_{a}^{b} |f'(t)|^{\alpha} \int_{t}^{b} [(x-a)^{2} - (x-t)^{2}] dxdt$$

$$= \frac{1}{3} \int_{a}^{b} [(b-a)^{3} - (t-a)^{3} - (b-t)^{3}] |f'(t)|^{\alpha} dt$$

By elementary calculus we can obtain

$$(b-a)^3 - (t-a)^3 - (b-t)^3 \le \frac{3}{4}(b-a)^3.$$

Therefore, we have

$$\int_{a}^{b} \int_{a}^{b} |x - y| \left| \int_{x}^{y} |f'(t)|^{\alpha} dt \right| dx dy \le \frac{1}{4} (b - a)^{3} \int_{a}^{b} |f'(t)|^{\alpha} dt = \frac{1}{4} (b - a)^{3} ||f'||_{\alpha}^{\alpha}.$$

It is clear that we also have

$$\int_{a}^{b} \int_{a}^{b} |x - y| \left| \int_{x}^{y} |g'(t)|^{\beta} dt \right| dx dy \le \frac{1}{4} (b - a)^{3} \int_{a}^{b} |g'(t)|^{\beta} dt = \frac{1}{4} (b - a)^{3} ||g'||_{\beta}^{\beta}.$$

Therefore, we have

$$\frac{1}{2} \left(\frac{1}{(b-a)^2} \int_a^b \int_a^b |x-y| \left| \int_x^y |f'(t)|^{\alpha} dt \right| dx dy \right)^{\frac{1}{\alpha}} \\
\times \left(\frac{1}{(b-a)^2} \int_a^b \int_a^b |x-y| \left| \int_x^y |g'(t)|^{\beta} dt \right| dx dy \right)^{\frac{1}{\beta}} \\
\le \frac{1}{2} \left(\frac{1}{4} (b-a) \|f'\|_{\alpha}^{\alpha} \right)^{\frac{1}{\alpha}} \left(\frac{1}{4} (b-a) \|g'\|_{\beta}^{\beta} \right)^{\frac{1}{\beta}} \\
= \frac{1}{8} \|f'\|_{\alpha} \|g'\|_{\beta} (b-a).$$

(ii) Similarly, we can obtain

$$\int_{a}^{b} \int_{a}^{b} |x - y| \sup_{t \in [x, y]} |f'(t)| \left| \int_{x}^{y} |g'(t)| dt \right| dx dy$$

$$\leq \|f'\|_{\infty} \int_{a}^{b} \int_{a}^{b} |x - y| \left| \int_{x}^{y} |g'(t)| dt \right| dx dy$$

$$\leq \frac{1}{4} \|f'\|_{\infty} \|g'\|_{1} (b - a)^{3},$$

i.e. we have improvement of the second inequality in (2), that is

$$\frac{1}{2(b-a)^2} \int_a^b \int_a^b |x-y| \sup_{t \in [x,y]} |f'(t)| \left| \int_x^y |g'(t)| dt \right| dx dy \le \frac{1}{8} ||f'||_{\infty} ||g'||_1 (b-a).$$

Remark. It was prove in [2] (see also [3, p.202]):

$$|T(f,g)| \le \frac{b-a}{4} \left[\frac{2^{\alpha}-1}{\alpha(\alpha+1)} \right]^{\frac{1}{\alpha}} \left[\frac{2^{\beta}-1}{\beta(\beta+1)} \right]^{\frac{1}{\beta}} ||f'||_{\alpha} ||g'||_{\beta}$$

if $f' \in L_{\alpha}$, $g' \in L_{\beta}$, $\alpha \ge 1$, $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. For $\alpha = \beta = 2$ we have

$$|T(f,g)| \le \frac{b-a}{8} ||f'||_2 ||g'||_2,$$
 (3)

while for $\alpha = 1$, $\beta = \infty$ we get

$$|T(f,g)| \le \frac{b-a}{4} ||f'||_1 ||g'||_{\infty}.$$

Results obtained in this paper show that constant $\frac{1}{8}$ is valid for all α , $1 \le \alpha \le \infty$. On the other hand side it is well known that inequality (3) can be improved. Namely, A. Lupaş [4] has proved that

$$|T(f,g)| \le \frac{b-a}{\pi^2} ||f'||_2 ||f'||_2.$$

References

- [1] S. S. Dragomir, Some inequalities of Grüss type, Indian J. Pure Appl. Math. **31**(2000), 397-415.
- [2] P. R. Beesack, D. S. Mitrinović and P. M. Vasić, Integral inequalities (the manuscript not achivied and not publiched).
- [3] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- [4] A. Lupas, The best constant in an integral inequality, Mathematica 15(1973), 219-222.

Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia.

E-mail: pecaric@hazu.hr

Faculty of Philosophy, Dept. of Information. Sci., University of Zagreb, I. Lučića 3, 10 000

Zagreb, Croatia.

E-mail: btepes@ffzg.hr