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PRESERVING PROPERTIES OF SUBORDINATION AND
SUPERORDINATION OF ANALYTIC FUNCTIONS ASSOCIATED
WITH A FRACTIONAL DIFFERINTEGRAL OPERATOR

JAMAL M. SHENAN

Abstract. In this paper, we obtain some subordination and superordination-preserving
results of analytic functions associated with the fractional differintegral operator U: ’Zﬁ v
Sandwich-type result involving this operator is also derived.

1. Introduction

Let H(U) be the class of functions analytic in U = {z: z € Cand |z| < 1} and H]a, k] be
the subclass of H(U) consisting of functions of the form f(z) = a+ akzk + ak+1zk+1 +---, with
Hy= H[0,1] and H = H[1,1].

Let A, denote the class of functions of the form

f@=2"+) anpz™P(p,eN=1{1,2,3,..};z€U), (1.1)

n=1
which are analytic in the open unit disk U.
Let f and F be members of H(U), the function f (z) is said to be subordinate to F (z), or F (z)
is said to be superordinate to f (z), if there exists a function w (z) analytic in U with w (0) =0
and |w (2)] < 1(z€ U), such that f(z) = F(w (z)). In such a case we write f(z) < F(z). In
particular, if F is univalent, then f (z) < F (z) if and only if f (0) = F (0) and f (U) c F (U) (see
[5, 6]).
Let ¥ : C? x U — C and let h be univalent in U. If p is analytic in U and satisfies the first order
differential subordination

VY (p(2),zp'(2);2) < h(2) (z€ U), (1.2)

then p is called a solution of the differential subordination (1.2).
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The univalent function q is called a dominant solutions of the differential subordination (1.2)
if p < g for all p satisfying (1.2). A dominant g that satisfies § < g for all dominants g of (1.2)
is said to be the best dominant of (1.2).

Similarly, let ® : C?> x U — C and let h be univalent in U. If p is analytic in U and satisfies the
first order differential superordination

h(z)<®(p(2),zp'(2);2) (z€ V), (1.3)

then p is called a solution of the differential superordination (1.3).

The univalent function g is called a subordinant solutions of the differential superordination
(1.3) if g < p for all p satisfying (1.3). A subordinant g that satisfies g < g for all subordinant g
of (1.3) is said to be the best subordinant. ( see the monograph by Miller and Mocanu [7], and
[81).

We recall the definitions of the fractional derivative and integral operators introduced
and studied by Saigo (cf. [14], [15]).

Definition 1. Let a >0and S,y € R, then the generalized fractional integral operator Ig, Zﬁ 7 of

order a of a function f(z) is defined by

_a ﬁ .
(z— 15 'F

T (@) f 2

where the function f(z) is analytic in a simply-connected region of the z- plane containing

“mf(Z) a+B,-v«a 1—— f(ndt, (1.4)

the origin and the multiplicity of (z—£)*~! is removed by requiring log (z — t) to be real when
(z— 1) > 0 provided further that

f(2)=0(z[*),z— 0 fore>max(0,f—y)-1. (1.5)

Definition 2. Let 0 < a<1 and 8,y € R, then the generalized fractional derivative operator
]g ’Zﬂ’y of order « of a function f(z) defined by

a,By — 1 i a—ﬁfz _n-a _ vl — ] — E) ]
jo,z f(2) T de z | (z=10,"F |p-a,1-y;1-a;1 p fdte|,
P Fz) (nsa<n+LneN), (1.6)

where the function f(z) is analytic in a simply-connected region of the z- plane containing
the origin, with the order as given in (1.5) and multiplicity of (z — )® is removed by requiring
log(z — 1) to be real when(z — t) > 0.

Note that

Iy, “7f(2) = D;* f(2)(a>0), (1.7)
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and
]f{'z”’yf(z) =DIf(2)0<a<l), (1.8)

where D% f(z) and DY f(z) are respectively the well known Riemann-Liouvill fractional inte-

gral and derivative operators (cf. [10] and [11], see also [16]).

Definition 3. For real numbera (—oco < @< 1) and (—oo < p< 1) and a positive real number
7, the fractional operator Ugf ’Zﬁ L Ap — Ap is defined in terms of ]gf ’Zﬁ’y and Ig"zﬁ " by (see [9]
and [4])

aﬂyf(z)_zp OZO: (1+p)n(1+p+y_,6)n

Anep2™P, (1.9)
= +p-Paltpty-a), "

which for f(z) # Omay be written as

rd+p-prd+p+y—-a B

aﬁy ra+pd+p+ )
fa)= F(1+pp,6)r(1-’zpzy'6a) e

rA+pTd+p+y-p

JoPTf2; 0sas1

(1.10)

_“ﬁyf(z); —co<a<0

where ]0 Py f(z)and I, , —aby f(2) are, respectively the fractional derivative of f of order « if

0<a<1andthe fractlonal integral of f of order —a if —co< a <0.

It is easily verified (see Choi [3]) from (1.9) that

(p-B)U; yatLpL Y“f(z) +,BUgf’zﬁ'yf(z) _ z(Ugf’zﬁ'yf(z)) ‘ (1.11)

Note that
USS fl2) = ) f(2) (~oo < a< 1), (1.12)

The fractional differintegral operator an’p ) f (2) for (—oo < a<p +1) is studied by Patel and
Mishra [12], and the fractional differential operator Q(Za’p ) with 0 < a < 1 was investigated by

(a,1)

Srivastava and Aouf [17]. We, further observe that Q' = Q¢ is the operator introduced and

studied by Owa and Srivastava [11].

It is interesting to observe that

Ups" f(2) = f(2) (1.13)
and
Uy M f(z) = f'(z). (1.14)

To prove our results, we need the following definitions and lemmas.
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Definition 4 ([7]). Denote by Q the set of all functions g(z) that are analytic and injective on
U/E(g) where
E(q)=1{(€oU: lirré q(z) = oo},
Z—>

and are such that g'({) # 0 for { € U/ E(q). Further let the subclass of Q for which g (0) = a be
denoted by Q(a), Q(0) = Qp and Q(1) = Q.

Definition 5 ([8]). A function L(z, t) (z € U, t = 0) is said to be a subordination chain if L(0, 1)
is analytic and univalent in z € Ufor all £ = 0, L(z,0) is continuously differentiable on [0; 1] for
allze Uand L(z, 1)) < L(z, 1) forall0 < 11 < 1.

Lemma 1 ([13]). The function L(z,t): U x [0;1] — C of the form
Lz, t)=a;(t)z+ az(t)z2+--- (a1(t) #0;, £ =0),

andlim;_ |a; ()| = oo is a subordination chain if and only if

{ z0L(z,1)/0t
e —

0(zeU, r=0).
0L(z, 1) /0t }> (e :

Lemma 2 ([5]). Suppose that the function H : C*> — C satisfies the condition

Re{H(is; 1)} <0
forallreal s and forall t < —n(1+s?) /2, neN. If the function p(z) = 1+ anz" + ans1 2" +---,
is analytic in U and Re{H(p(2); zp'(2))} >0 (z € U). then Re{p(2)} > 0 for z€ U.

Lemma 3 ([6]). Let k,y € C with k # 0 and let h € H(U) with H(©) = c. If Re{kh(z)+y} >
0 (z € U), then the solution of the following differential equation:
zq'(2)

k@) + 7 = h(z)(z€ U; q(0) =0,

q(z) +

is analytic in U and satisfies Re{kh(z) +y} >0 forz€ U.

Lemma 4 ([7]). Let p € Q(a) and let q(z) = a+ a,z" + ans 12" +---, be analytic in U with
q(2) #0 and n = 1. If q is not subordinate to p, the there exists two points zo = roe'? € U and
o€ GU/E(q) such that q(U;,) < p(U); q(z9) = p(&o) and zop'(z9) = mé&yp (&) m = n.

Lemma55 ([8]). Let g€ Hla,1] and ¢ : c:-C alsogb(q(z),zq’ (z)) =h(z). If L(z, 1) = ¢p(q (2),
tzq' (z)) is a subordination chain and q € H(a, 11N Q(a), then

h(z)<¢(p(2),zp' (2),

implies that q(z) < p(z). Further if ¢ (q (2),2q' (z)) = h(z) has a univalent solution q € Q(a),
then q is the best subordination.
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In the present paper, we aim to prove some subordination-preserving and superordi-
nation -preserving properties associated with the fractional differintegral operator Ug ’Zﬁ v
Sandwich-type result involving this operator is also derived. A simililar problem for analytic

functions was studied by Aouf and Seoudy [1] and [2].

2. Subordination, superordination and sandwich results involving the operator Ug 'Zﬁ v

Theorem 1. Let f, g € Ay and let

1!
m{1+ 29 (Z)}>—5, @.1)
¢’ (2)
where
s [ s @) (Vs @ |
a ﬁ ?’g (2) zP (2.2)

(—o<a< 1;—oo<,6< LyeR;u>02z€eU),

and d is given by
Lt (p— P -1 p(p - |

0= 2.3)
4pu(p—-p)
Then the subordination condition
Iz jz
anjz—l,ﬁ+1,y+1f (2) a ﬁ yf (2) . U(()x-zl—l,ﬁ+1,y+1g(z) UOa’,Zﬁ,yg(Z)
aﬁYf(Z) zP aﬁyg(z) zP '
implies that
U
( aﬂyf(z) ( aﬁY (z))
< )
zP zP
U® i3 Yg( )
and the function (OZT) is the best dominant.
Proof. Let us define the functions F(z) and G(z) in U by
aﬁyf(z aﬁyg(z)
Flz)=| ——— and G(z) = 7}9 (zel), (2.4)
zP z

we assume here, without loss of generality, that G(z) is analytic and univalent on U and

G'@)#0 (ICI=1.
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If not, then we replace F(z) and G(z) by F(pz) and G(pz), respectively, with 0 < p < 1. These
new functions have the desired properties on U, and we can use them in the proof of our
result. Therefore, the results would follow by lettingp — 1.We first show that, if

zG" (2)
G' (2)

qz) =1+ (zel), (2.5)

then
R{q(2)} >0 (z€U).

From (1.11) and the definition of the functions G, ¢, we obtain that

zG'(2)
(2) = G(z) + . (2.6)
¢ up=p)
Differentiating both side of (2.6) with respect to z yields
¢'(2) = (1 + ) 6o+ 222 2.7)
(p—p) up-p)’ '
Combining (2.5) and (2.7), we easily get
z¢" (z) zq'(z)
1+ ——= +————=h U). 2.8
e q(z) 1@+ ap-p (2) (zeU) (2.8)
It follows from (2.1) and (2.8) that
Re{h(z)+u(p—pP)} >0 (ze U). (2.9)

Moreover, by using Lemma 3, we conclude that the differential equation (2.8) has a solution
q(z) € H(U) with h(0) = q(0) =1. Let

H(u,v)=u+ 0,

v
wrpp=p)
where § is given by (2.3). From (2.8) and (2.9), we obtain

Re{H(q(2); zq'(2)} >0 (z€ U).
To verify the condition that
Re{H(is; )} <0 (t<-(1+5/2;seR). (2.10)

we proceed it as follows:

tulp—p)

Re{H“s;“FRe{l“m }:W
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Yp(B, 1, 6, 8)
2[s2+p2(p-p?)

where
Yp(B, 1, 6, 5) = [p(p - B) — 28] s* = 261* (p - B)* + p(p - P). 2.11)

For 6 given by (2.3), we note that the expression ¥, (B, 4, 8, ) in (2.11) is a positive, which
implies that (2.10) holds. Thus, by using Lemma 2, we conclude that

Re{q(2)} >0 (z€ U).

By the definition of g(z), we know that G is convex. To prove F < G, let the function L(z, t) be

defined by

1+ 05zG'(2)
Lz,t)=G(z)+ ————— (0<t<oo;zel). (2.12)
ulp—p)

Since G is convex, then

0L(z, 1)
0z

(1+12)
up—pP)

:G’(O)(1+ );éo (0<t<oo;zelU)

z=0

and
{ z0L(z,1)/0t

0L(z, 1) /0t

Therefore, by using Lemma 1, we deduce that L(z, t) is a subordination chain. It follows from

}:Re{,u(p—,B)+(1+t)q(z)}>O(OSt<oo;z€ U.

the definition of subordination chain that
zG'(2)
up—p)

P(2) =G(2) + =L(z,0),

and
L(z,0) < L(z,t) (0<t<o0),

which implies
L, )¢ L(U,0) (0<t<oo;l€dl), (2.13)

If F is not subordinate to G, by using Lemma 4, we know that there exist two points zy € U and
(o € 0U such that

F(z0) = G({p)andzoF' (z9) = 1+ ){op o) (0 < r < 00). (2.14)

Hence, by virtue of (1.11) and (2.14), we have

1+ 1zG' (o) zoF' (29)
T Y Fg) + 2
ulp—p) O up-p

~ ( Ug:l'ﬁ+1’}’+1f(z())) ( U(?f;ﬁ’}’f (ZO)

u
epU).
Ul f (z0) 2 )

Lo, t) = G((o) +
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This contradicts to (2.13). Thus, we deduce thatF < G. Considering F = G, we see that the
function G is the best dominant. This completes the proof of Theorem 1.

By taking @ = 8 in Theorem 1 and using the relation (1.12) we get the following Corollary

Corollary 1. Let f, g€ Ay and let

A
%{1+M}>—5, 2.15)
¢’ (2)
where ( | (@p) i
a+l,p a,p
oz = | 8@ g(z)) (—oo<a<l;u>0;zeU), (2.16)
an’p)g(z) zP
and d is given by
T+ 2(m—a)? -1 = 12(p—a)?
5o L Pl -[l-pip-ay] (2.17)
4ulp—a)
Then the subordination condition
Q@) £\ (P £ )" (@@ P g () (@@ g (2))
anrp)f (Z) Zp (a P) g(Z) Zp ’

Q@) (a.p) H (a.p) H
implies that( f ) < (QZ Z,,g(z)) , and the function (W) is the best dominant.

By taking a = 0 in Corollary 1 and using the relation (1.13) and (1.14) we get the following
Corollary

Corollary 2. Let f, g€ Ay and let

ére{l 2P (z)}>—5, 2.18)
¢’ (2)
where '(2) (2"
(28 (2)\(g(z )
¢(Z)_(pg(z))( 2P ) >0z ), 249

and 6 is given by
o=

14+ 2 p? — |1 - 2 p?|

(2.20)
4up

Then the subordination condition
Bl <l
pf)\ zF pg2) )\ zF )’

f@y_(s@)
zP zP ’

. L ,
and the function (%) is the best dominant.

implies that
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We now derive the following superordination result.

Theorem 2. Let f, g€ Ay, and let

A
§R{1+ 29 (2 } > -0, (2.21)
¢’ (2)
where
1,6+1,y+1 B H
o [T | (U528 @)
U© ﬁ Tg(2) zP (2.22)
(oo<a< 1;—oo<,6< LyeR5u>0zeU),
a+1,p+1,y+1 aﬁy
and 6 is given by (2.3). If the function (U‘” T f(z)) pr(z)) is univalent in U and
USPY f(2) .. ..
—E € Q, then the superordination condition
It
Ugc;—l,ﬁ+l,y+1g (2) Ugc’,zﬁ,yg (2) Ugc;—l,ﬁ+l,y+1f( ) a ﬁ yf (2)
< ,
aﬁyg(z) zP aﬁYf(Z) Zp
implies that

aﬁyg(z) aﬁYf(Z)
zP zP ’
“PY g(2)

u
. U, . .
and the function (OZT) is the best subordinan.

Proof. Suppose that the functions F, G and g are defined by (2.4) and (2.5), respectively. By
applying the similar method as in the proof of Theorem 1, we get

Re{q(2)} >0 (z€ U).
Next, to arrive at our desired result, we show that G < F. For this, we suppose that the function

L(z, t) be defined by (2.12).

Since G is convex, by applying a similar method as in Theorem 1, we deduce that L(z, t) is
subordination chain. Therefore, by using Lemma 5, we conclude that G < F. Moreover, since

the differential equation

zG'(2)
(2) = G(z)+
¢ up—p)

has a univalent solution G, it is the best subordinant. This completes the proof.

=¢(G(2), zG'(2))

By taking @ = 8 in Theorem 2 and using the relation (1.12) we get the following Corollary
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Corollary 3. Let f, g€ Ay and let

U
5)%{1 L) } > -6, (2.23)
¢'(2)
where ( | (@) i
Q a+l,p Q a,p
$(2) = ( —— ORI pg(z) (~oo<a<l;u>0;z€U), (2.24)
0;""g(2) ‘

(a+1,p) (a.p) u (a,p) 1%
and 6 is given by (2.3). Ifthe function (Qéga';gfg) ) (QZ :pg(z) ) is univalentin U and (%)
€ Q, then the superordination condition

Q;(zoc+1,p)g(z) Q;(zoc,p)g(z) I Q£a+1,p)f(z) Qgoc,p)f(z) )IJ
anvp) g (2) zP anvp) f (z) zP
implies that
1 H
al"’g@| _(a""f @
zP zP ’
, Q(a'p)g(z) K , ,
and the function (ZT) is the best subordinant.

By taking a = 0 in Corollary 3 and using the relation (1.13) and (1.14) we get the following

corollary

Corollary 4. Let f, g€ Ay and let

1!

5)%{1 ) } > -5, (2.25)

¢'(2)

where ') (2\H

zg'(2)\(g(z

(z):( )(—) >0;zeU), (2.26)
¢ e | el MG )

and 6 is given by (2.3). If the function (;%;((2) (%)“ is univalentin U and (%)“ € Q, then the

superordination condition

el <Grall 5]

pg(2))\ zP pf@) )\ zP
implies that
zP zp )’

. K, .
and the function (%) is the best dominant.

Combining Theorems 1 and 2, we obtain the following “sandwich-type result”.
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Theorem 3. Let f, g; € A, (j =1,2) and let

Z(/)'j’ (2)
R<L1+ > -0, (2.27)
</>’j (2)
where
$iz) = U P g2 [Ug g (2 g
Y a B Yg] (z) zP (2.28)

(oo<a< 1;—oo<,6< LyeR5u>0zeU),

gt p) (USP £
U‘ﬁ?’f zP

and 6 is given by (2.3). If the function

) is univalent in U and

wﬁy
( ﬂz)) € Q, then the condition

Ug:l,ﬁu,yﬂgl(z) Ug’zﬁ'yg1(2) H Ua+1ﬂ+1y+1f() a'BYf(Z)
( Up:" 8112 )( “ )<( Ut f (@) )( & )
Ugt;—l,ﬁ+1,y+1g2 (2) Ug,’f”gz (2) B
<( ) )

zP = Zp zP !

Uyt g \* Up?" g2(2) . .
—— | and|—*5— are, respectively, the best subordinant and the

implies that

and the function (

best dominant.

By taking @ = 8 in Theorem 3 and using the relation (1.12) we get the following Corollary

Corollary 5. Let f, gi € A, (j =1,2) and let

z¢'! (2)
R+ —2— > =6, (2.29)

¢ f (2)

where ( ) @) i
QZa+1,p . Qza,p .
¢jz) = 8 %) 8; %) (~o<a<l;u>0,2z€U), (2.30)
(06 p) zP
gj(2)

an,p) f(Z) )ﬂ

quﬁ-l,p)f(z)) (an,p)f(z) I
zP

and 6 is given by (2.3). Ifthe function ( DI = ) is univalentinU and(
z Z

€ Q, then the condition
ngﬁ—l’p)f(z)
anrp) f (Z)

g1 (2)

zP zP

( (a+1,p)

( ol g (2) )“ ( ™ £ () )“

(tw)g (2)
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""" e 2 (2" g (2) )“ (2.31)
anvp) @ (2) zP ' ’
implies that
o g o ngf(z)): o)
zP zP zP '

. Q(“"’)gl(z) H ol n)gz @ . .
and the function | =—3==| and Z—,, are, respectively, the best subordinant and the

best dominant.

By taking a = 0 in Corollary 5 and using the relation (1.13) and (1.14) we get the following
Corollary.

Corollary 6. Let f, gi € A, (j =1,2) and let

z</>” (2)
N1+ > -9, (2.32)
¢’ i@
where ')
B Zg] z g] (Z) )/'t '
<p](z)_(pgj(z))( g (L>0;zeU), (2.33)
and § is given by (2.3). If the function (;f;((;)) (%)“ is univalentin U and (%)” € Q, then the
condition . ,
(Zgl (2) ) (gl (z))“ - (zf’(z)) (f(Z))” - (Zgz (2) ) (82 (Z))”
pgi (@) \ zP pf)\ z° pg @)\ z¢ |’
implies that

(g1(Z)) (f(z)) (glzgjz))“,

and the function (g1 @ ) and ( Z)) are, respectively, the best subordinant and the best dom-

inant.
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