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NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS

WITH MULTIPLE POLES

YUNTONG LI

Abstract. Let F be a family of meromorphic functions defined in a domain D, and a, b

be two constants such that a 6= 0, ∞ and b 6= ∞. If for each f ∈ F , all poles of f (z) are

of multiplicity at least 3 in D, and f ′(z)+ a f 2(z)− b has at most 1 zero in D, ignoring

multiplicity, then F is normal in D.

1. Introduction and main results

Let D be a domain in C, and F be a family of meromorphic functions defined in the

domain D. F is said to be normal in D, in the sense of Montel, if for every sequence { fn} ⊆

F contains a subsequence { fn j
} such that fn j

converges spherically uniformly on compact

subsets of D (See [1, Definition 3.1.1]).

F is said to be normal at a point z0 ∈D if there exists a neighborhood of z0 in which F is

normal. It is well known that F is normal in a domain D if and only if it is normal at each of

its points (see [1, Theorem 3.3.2]).

Let f (z) and g (z) be two meromorphic functions in a domain D ⊆C, and let a be a finite

complex number. If f (z)− a and g (z)− a assume the same zeros, then we say that f and g

share the value a in D IM (ignoring multiplicity)(see [2, pp.115-116]).

In 1959, W. K. Hayman [3] proved the following well-known result.

Theorem A. Let f be a non-constant meromorphic function in the complex plane C, n be a

positive integer and a, b be two constants such that n Ê 5, a 6= 0,∞ and b 6=∞. If f ′−a f n 6= b,

then f is a constant.

Corresponding to Theorem A there are the following theorems which confirmed a Hay-

man’s well-known conjecture about normal families in [4, Problem 5.14].
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Theorem B. Let F be a family of meromorphic functions in a complex domain D, n be a posi-

tive integer and a, b be two constants such that n Ê 3, a 6= 0,∞ and b 6=∞. If f ′−a f n 6= b, then

F is normal in D.

Theorem C. Let F be a family of holomorphic functions in a complex domain D, n be a positive

integer and a, b be two constants such that n Ê 2, a 6= 0,∞ and b 6=∞. If f ′−a f n 6= b, then F

is normal in D.

Theorem B is due to S. Li [5, n Ê 5], X. Li [6, n Ê 5], J. Langley [7, n Ê 5], X. Pang [8, n = 4],

H. Chen and M. Fang [9, n = 3] and L. Zalcman [10, n = 3] independently. Theorem C is due

to D. Drasin [11, n Ê 3] and Y. Ye [12, n = 2].

Generally speaking, for n = 2, the result of Theorem B is not valid. For examples we refer

the reader to [13]. However, in [13], M. Fang and W. Yuan had

Theorem D. Let F be a family of meromorphic functions in a complex domain D, and a 6= 0,∞,

b 6=∞. If, for every f ∈F , f ′−a f 2 6= b and the poles of f are of multiplicity at least 3, then F

is normal in D.

It is natural to ask whether the condition in Theorem D that f ′−a f 2 6= b can be relaxed.

In this paper we investigate this problem and prove the following result.

Theorem 1. Let F be a family of meromorphic functions defined in a domain D, and a, b

be two constants such that a 6= 0, ∞ and b 6= ∞. If for each f ∈ F , all poles of f (z) are of

multiplicity at least 3 in D, and f ′(z)+a f 2(z)−b has at most 1 zero in D, ignoring multiplicity,

then F is normal in D.

By the idea of shared values, Q. Zhang [14, Theorem 2] proved.

Theorem E. Let F be a family of holomorphic functions defined in a domain D and a, b be

two constants such that a 6= 0, ∞ and b 6= ∞. If for every pair of functions f , g ∈ F , f ′+ a f 2

and g ′+ag 2 share the value b in D, then F is normal in D.

It is natural to ask whether Theorems D can be improved by the idea of shared values. In

this paper, we study the problem and obtain the following theorem.

Theorem 2. Let F be a family of meromorphic functions defined in a domain D. Let a 6= 0, b

be two finite complex number. If for each f ∈F , all poles of f (z) are of multiplicity at least 3 in

D, and if f ′+a f 2 and g ′+ag 2 share the value b in D for every pair of functions f , g ∈F , then

F is normal in D.

Example 1. Let D = {z : |z| < 1}. Let F = { fm} where fm := 1
mzk , then f ′

m + f 2 =
1−kmzk−1

m2z2k , so

f ′
m + f 2 has exactly one zero for k = 2 and f ′

m + f 2 has two distinct zeros for k = 3. However, it

is easily obtained that F is not normal at the point z = 0.
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This shows that the condition that all poles of f (z) are of multiplicity at least 3 and f ′(z)+

a f 2(z) has at most 1 zero in Theorems 1 is sharp.

2. Some lemmas

To prove our results, we need some preliminary results.

Lemma 1 ([15], [16] Lemma 1 (Zalcman’s Lemma)). Let F be a family of functions meromor-

phic on a domain D, all of whose poles have multiplicity at least j ; Then if F is not normal at

z0 ∈D, there exist, for each j <α< 1,

(a) points zn , zn → z0;

(b) functions fn ∈F ; and

(c) positive numbers ρn → 0+

such that ρα
n fn(zn +ρnξ) = gn(ξ) → g (ξ) locally uniformly with respect to the spherical metric,

where g (ξ) is a nonconstant meromorphic function on C. Moreover, the order of g (ξ) is less than

2 and the poles of g (ξ) are of multiplicity at least j .

Here, as usual, g #(ξ) =
|g ′(ξ)|

1+|g (ξ)|
2 is the spherical derivative.

Lemma 2 ([17], Theorem 2). Let f (z) be a transcendental meromorphic function in C. If all

zeros of f (z) have multiplicity at least 3, for any positive integer k, then f (k)(z) assumes every

non-zero finite value infinitely often.

Lemma 3 ([17]). Let f (z) = an zn +an−1zn−1+·· ·+a0+q(z)/p(z), where a0, a1, · · · , an are con-

stants with an 6= 0, and q and p are two co-prime polynomials, neither of which vanishes iden-

tically, with deg q < deg p; and let k be a positive integer and b a nonzero complex number. If

f (k) 6= b, and the zeros of f all have multiplicity at least k +1, then

f (z) =
b(z −d )k+1

k !(z −c)
,

where c and d are distinct complex numbers.

Lemma 4 ([19], Lemma 4). Let f be a nonconstant rational function and k, m be positive

integers. If f has no zeros in C while all poles of f have multiplicity at least m, then f (k)−1 has

at least k +m distinct zeros in C.

Lemma 5. Let f be a non-constant meromorphic function, and a 6= 0 be a finite complex num-

ber. Let all poles of f (z) have multiplicity at least 3, then f ′ + a f 2 has at least two distinct

zeros.
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Proof. Set f =
1

aϕ , then all zeros of ϕ have multiplicity at least 3 and f ′+a f 2 =−
ϕ′−1

aϕ2 .

Case 1. If
ϕ′−1

aϕ2 has only one zero z0, then z0 is a multiple pole of ϕ, or else a zero of ϕ′−1. If z0

is a multiple pole of ϕ, since
ϕ′−1

aϕ2 has only one zero, then ϕ′−1 6= 0. By Lemma 2 and Lemma

3, this is a contradiction.

So ϕ has no multiple pole and ϕ′−1 has just one unique zero z0. By the Lemma 2, ϕ is

not any transcendental function.

Case 1.1. ϕ is a non-constant polynomial.

Since ϕ′−1 has only unique one zero z0, set

ϕ′
−1 = A(z − z0)l

where A is non-zero constant, l is a positive integer. Then

ϕ′′
= Al (z − z0)l−1

Note that ϕ is a a non-constant polynomial and all zeros of ϕ have multiplicity at least

3, so l Ê 3−1 = 2. But ϕ′′ has only one zero z0, so ϕ′ has only the same zero z0 too. Hence

ϕ′(z0) = 0, which contradicts ϕ′(z0) = 1 6= 0. Therefore ϕ is a rational function which is not a

polynomial.

Case 1.2. If ϕ is rational but not a polynomial and has at least one zero.

Under the conditions of Lemma 5 on the rational function ϕ,

ϕ(z) = A
(z +α1)m1 (z +α2)m2 · · ·(z +αs )ms

(z +β1)(z +β2) · · · (z +βt )
(2.1)

where A is a non-zero constant, mi Ê 3 (i = 1, 2, · · · , s), αi (i = 1, 2, · · · , s), and β j ( j =

1, 2, · · · , t ) are distinct complex numbers.

For simplicity, we denote

m1 +m2 +·· ·+ms = M Ê 3s. (2.2)

Let

g (z) = z −ϕ(z)

We use deg(g ) to denote the degree of a polynomial. Next we use some results from com-

plex dynamics, cf. [18, Chapter 3, 19 Lemma 5]. Since ϕ′−1 has only unique one zero, so that

g has only unique one critical point. Since mi Ê 3, we also see that every zero point αi =−zi

of −ϕ is a fixed point of g of multiplicity mi . Moreover, since near zi

g (z) = z +ci (z − zi )mi [1+o(1)]
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there are mi −1 parabolic basins associated with the fixed point zi .

Case 1.2.1. If ∞ is not a fixed point of g , each of these parabolic basins, with at most one

exception, contains a critical point of g which is not a pole of g , so the function g (z) = z−ϕ(z)

has 1 Ê M − s −1 parabolic basins associated with the zero points of ϕ, we deduce that s = 1

and m1 = 3. We note that ∞ is not a fixed point of g , so

ϕ(z) =
(z +α1)3

(z +β1)(z +β2)
(2.3)

In order to simplify the calculation, set Z = z +β1. From (2.3), we have

ϕ(Z )=
(Z +α)3

Z (Z +β)

where α=α1 −β1 6= 0 and β=β2 −β1 6= 0.

We have

ϕ′
=

(Z +α)2(Z 2 +2(β−α)Z −αβ)

Z 2(Z +β)2
(2.4)

Since ϕ′(z)−1 has exactly one zero z0, from (2.3) we obtain

ϕ′(Z )= 1+
B (Z −Z0)l

Z 2(Z +β)2
=

Z 2(Z +β)2 +B (Z −Z0)l

Z 2(Z +β)2
(2.5)

where B is a non-zero constant and Z0 = z0 −β1 and l is a positive integer. From (2.4) and

(2.5), we have l ≤ 3.

From (2.4) we have

ϕ′′
= 2

(Z +α)[(β2 +3α2 −3αβ)Z 2 + (3α2β−αβ2)Z +α2β2]

Z 3(Z +β)3
(2.6)

From (2.5), we have

ϕ′′
= B

(Z −Z0)l−1[(l −4)Z 2 + (lβ+4Z0 −2β)Z +2βZ0]

Z 3(Z +β)3
(2.7)

If l = 1, from (2.4) and (2.5), we have

(Z +α)2(Z 2
+2(β−α)Z −αβ) = Z 2(Z +β)2

+B (Z −Z0)

By comparing coefficients of both sides, we have















3α(β−α) =β2

−2α3 =B

−α3β= B Z0
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i.e.














3αβ−3α2 −β2 = 0

B =−2α3

Z0 =
β
/

2

By (2.6), we have ϕ′′(−α) = 0. From (2.7), we get

(1−4)(−α)2
+ (β+4

β

2
−2β)(−α)+2β

β

2
= 0

i.e.

αβ+3α2
−β2

= 0

Combining this with 3αβ−3α2 −β2 = 0 yields

α=β= 0

which is a contradiction.

If l = 2, from (2.4) and (2.5), we have

(Z +α)2(Z 2
+2(β−α)Z −αβ) = Z 2(Z +β)2

+B (Z −Z0)2

By comparing coefficients of both sides, we have















3α(β−α) =β2 +B

−2α3 =−2B Z0

−α3β= B Z 2
0

i.e.














3αβ2 −3α2β−β3 +α3 = 0

B =−
α3

β

Z0 =−β

By (2.6), we have ϕ′′(−α) = 0. From (2.7), we get

ϕ′′(−α) = −
α3

β

(β−α)[(2−4)(−α)2 + (2β−4β−2β)(−α)−2β2 ]

(−α)3(β−α)3

= −
2

β
6= 0

which is a contradiction. If l = 3, then deg((Z +α)[(β2 + 3α2 − 3αβ)Z 2 + (3α2β−αβ2)Z +

α2β2]) <deg((Z −Z0)l−1[(l −4)Z 2 + (lβ+4Z0 −2β)Z +2βZ0]), which is a contradiction.

Case 1.2.2. If ∞ is a fixed point of g , each parabolic basin contains a critical point of g which is

not a pole of g . Thus each parabolic basins contains a zero point of g ′, and hence 2≤ M−s ≤ 1,

which is a contradiction.
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Case 1.3. If φ is rational but not a polynomial and has no zero. By Lemma 4, we have ϕ′−1

has at least two distinct zeros, which contradicts the fact that ϕ′−1 has just one unique zero

z0.

Case 2. If
ϕ′−1

aϕ2 6= 0.

Case 2.1. Since all zeros of ϕ(z) have the multiple at least 3 and ϕ is a non-constant function,

it easily obtained that ϕ is not a polynomial.

Case 2.2. If ϕ is rational but not a polynomial. If there exist a point z0 such that ϕ′(z0) = 1, we

note that
ϕ′−1

aϕ2 6= 0, so ϕ(z0) = 0. Since all zeros of ϕ(z) have the multiple at least 3, we have

ϕ′(z0) = 0, we get a contradiction.

If ϕ′ 6= 1, by Lemma 3, we have

ϕ=
(z −d )2

(z −c)
,

where c and d are distinct complex numbers. This contradicts the fact that all zeros of ϕ(z)

have the multiple at least 3.

The proof is complete. ���

3. Proofs of Theorems

Proof of Theorem 1. Suppose that F is not normal in D. Then there exists at least one point

z0 such that F is not normal at the point z0 ∈ D. Without loss of generality we assume that

z0 = 0. By Zalcman’s lemma, there exist:

(a) points zn , zn → z0;

(b) functions fn ∈F ; and

(c) positive numbers ρn → 0+

such that

g j (ξ) = ρ j f j (z j +ρ jξ)→ g (ξ) (3.1)

spherically uniformly on compact subsets of C, where g (ξ) is a non-constant meromorphic

function in C and the poles of g (ξ) are of multiplicity at least 3.

From (3.1), we get

g ′
j (ξ) =ρ2

j f ′
j (z j +ρ jξ) → g ′(ξ) (3.2)

also locally uniformly with respect to the spherical metric.

Thus

g ′
j (ξ)+agn j

(ξ)−ρ2
j b = ρ2

j ( f ′
j (z j +ρ jξ)+a f 2

j (z j +ρ jξ)−b) → g ′(ξ)+ag 2(ξ) (3.3)
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also locally uniformly with respect to the spherical metric.

We claim that g ′(ξ)+ag 2 has at most 1 zero ignoring multiplicity.

If g ′(ξ)+ ag 2 ≡ 0, then g (ξ) ≡ 1
az+c , this contradicts the fact that the poles of g (ξ) are of

multiplicity at least 3. So g ′(ξ)+ag 2 6≡ 0.

Suppose that g ′(ξ)+ag 2 has two distinct zeros ξ0 and ξ∗0 and choose δ(> 0) small enough

such that D(ξ0,δ)∩D(ξ∗0 ,δ) =; where D(ξ0,δ) = {ξ||ξ−ξ0| < δ} and D(ξ∗0 ,δ) = {ξ||ξ−ξ∗0 | <δ}.

From (3.3), by Hurwitz’s theorem, there exist points ξ j ∈ D(ξ0,δ), ξ∗
j
∈ D(ξ∗0 ,δ) such that

for sufficiently large j

f ′
j (z j +ρ jξ j )+a f 2

j (z j +ρ jξ j )−b = 0.

f ′
j (z j +ρ jξ

∗
j )+a f 2

j (z j +ρ jξ
∗
j )−b = 0.

Since z j → 0 and ρ j → 0+, we have z j +ρ jξ j ∈ D(ξ0,δ) and z j +ρ jξ
∗
j
∈ D(ξ∗0 ,δ) for sufficiently

large j , so f ′
j
(z)+a f 2

j
−b has two distinct zeros, which contradicts the fact that f ′

j
(z)+a f 2

j
−b

has at most 1 zero.

However, by Lemma 5, there does not exist non-constant meromorphic functions satis-

fying above properties such that our claim holds. This contradiction shows that F is normal

in D and hence Theorem 1 is proved.

Proof of Theorem 2. Suppose that F is not normal in D. Then there exists at least one point

z0 such that F is not normal at the point z0 ∈ D. Without loss of generality we assume that

z0 = 0. By Zalcman’s lemma, there exist:

(a) points zn , zn → z0;

(b) functions fn ∈F ; and

(c) positive numbers ρn → 0+

such that

g j (ξ) = ρ j f j (z j +ρ jξ) → g (ξ) (3.4)

spherically uniformly on compact subsets of C, where g (ξ) is a non-constant meromorphic

function in C and the poles of g (ξ) are of multiplicity at least 3.

Proceeding as in the proof of Theorem 1, we also have (3.3).

If g ′(ξ)+ ag 2 ≡ 0, then g (ξ) ≡ 1
az+c

, this contradicts the fact that the poles of g (ξ) are of

multiplicity at least 3. So g ′(ξ)+ag 2 6≡ 0.

Since g is a non-constant meromorphic function, by Lemma 5, we deduce that g ′(ξ)+ag 2

has at least two distinct zeros.

We claim that g ′(ξ)+ag 2(ξ) has just a unique zero.
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Suppose that there exist two distinct zeros ξ0 and ξ∗0 and choose δ(> 0) small enough

such that D(ξ0,δ)∩D(ξ∗0 ,δ) =; where D(ξ0,δ) = {ξ||ξ−ξ0| < δ} and D(ξ∗0 ,δ) = {ξ||ξ−ξ∗0 | < δ}.

From (3.4), by Hurwitz’s theorem, there exist points ξ j ∈ D(ξ0,δ), ξ∗
j
∈ D(ξ∗0 ,δ) such that

for sufficiently large j

f ′
j (z j +ρ jξ j )+a f 2

j (z j +ρ jξ j )−b = 0.

f ′
j (z j +ρ jξ

∗
j )+a f 2

j (z j +ρ jξ
∗
j )−b = 0.

By the assumption that f ′+a f 2 and g ′+ag 2 share b in D for each pair f and g in F , we

know that for any integer m

f ′
m(z j +ρ jξ j )+a f 2

m(z j +ρ jξ j )−b = 0.

f ′
m(z j +ρ jξ

∗
j )+a f 2

m(z j +ρ jξ
∗
j )−b = 0.

We fix m and note that z j +ρ jξ j → 0, z j +ρ jξ
∗
j
→ 0 if j →∞. From this we deduce

f ′
m(0)+a f 2

m(0)−b = 0.

Since the zeros of f ′
m(z)+a f 2

m(z)−b have no accumulation point, for sufficiently large j ,

we have

z j +ρ jξ j = 0, z j +ρ jξ
∗
j = 0.

Hence

ξ j =−
z j

ρ j
, ξ∗j =−

z j

ρ j
.

This contradicts the fact that ξ j ∈ D(ξ0,δ), ξ∗
j
∈ D(ξ∗0 ,δ) and D(ξ0,δ)∩D(ξ∗0 ,δ) = ;. So

g ′(ξ)+ag 2(ξ) has just a unique zero. This contradicts the fact that g ′(ξ)+ag 2(ξ) has at least

two distinct zeros.

This proves the theorem.
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