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NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS
WITH MULTIPLE POLES

YUNTONG LI

Abstract. Let & be a family of meromorphic functions defined in a domain &, and a, b
be two constants such that a # 0, co and b # oco. If for each f € &, all poles of f(z) are
of multiplicity at least 3 in 2, and f'(z) + af?(z) — b has at most 1 zero in 9, ignoring
multiplicity, then & is normal in 2.

1. Introduction and main results

Let 9 be a domain in C, and & be a family of meromorphic functions defined in the
domain 2. & is said to be normal in 9, in the sense of Montel, if for every sequence {f,,} <
& contains a subsequence {fy,;} such that f,; converges spherically uniformly on compact
subsets of 7 (See [1, Definition 3.1.1]).

& is said to be normal at a point zj € 9 if there exists a neighborhood of zy in which & is
normal. It is well known that & is normal in a domain 2 if and only if it is normal at each of
its points (see [1, Theorem 3.3.2]).

Let f(z) and g(z) be two meromorphic functions in a domain 2 < C, and let a be a finite
complex number. If f(z) — a and g(z) — a assume the same zeros, then we say that f and g

share the value a in 2 IM (ignoring multiplicity)(see [2, pp.115-116]).
In 1959, W. K. Hayman [3] proved the following well-known result.
Theorem A. Let f be a non-constant meromorphic function in the complex plane C, n be a

positive integer and a, b be two constants such thatn =5, a # 0,00 and b #oo. If f' —af" # b,

then f is a constant.

Corresponding to Theorem A there are the following theorems which confirmed a Hay-

man’s well-known conjecture about normal families in [4, Problem 5.14].
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Theorem B. Let & be a family of meromorphic functions in a complex domain 9, n be a posi-
tive integer and a, b be two constants such thatn =3, a # 0,00 and b # co. If f'—af" # b, then
& isnormalin.

Theorem C. Let & be a family of holomorphic functions in a complex domain 9, n be a positive
integer and a, b be two constants such thatn =2, a# 0,00 and b #oco. If f'—af" # b, then &
isnormalin.

Theorem B is due to S. Li [5, n = 5], X. Li [6, n = 5], ]. Langley [7, n = 5], X. Pang [8, n = 4],
H. Chen and M. Fang [9, n = 3] and L. Zalcman [10, n = 3] independently. Theorem C is due
toD. Drasin [11, n=3] and Y. Ye [12, n = 2].

Generally speaking, for n = 2, the result of Theorem B is not valid. For examples we refer
the reader to [13]. However, in [13], M. Fang and W. Yuan had

Theorem D. Let & be a family of meromorphic functions in a complex domain 9, and a # 0,00,
b # co. If, for every f € F, f' — af? # b and the poles of f are of multiplicity at least 3, then F
isnormalin9.

It is natural to ask whether the condition in Theorem D that f’ — af? # b can be relaxed.

In this paper we investigate this problem and prove the following result.

Theorem 1. Let & be a family of meromorphic functions defined in a domain 9, and a, b
be two constants such that a # 0, co and b # oco. If for each f € &, all poles of f(z) are of
multiplicity at least3 in @, and f'(z) + af?(z) — b has at most 1 zero in D, ignoring multiplicity,
then & isnormalin 9.

By the idea of shared values, Q. Zhang [14, Theorem 2] proved.

Theorem E. Let & be a family of holomorphic functions defined in a domain 9 and a, b be
two constants such that a # 0, co and b # co. If for every pair of functions f, g € F, f' + af?
and g' + ag?® share the value b in9, then & is normal in 2.

It is natural to ask whether Theorems D can be improved by the idea of shared values. In

this paper, we study the problem and obtain the following theorem.

Theorem 2. Let & be a family of meromorphic functions defined in a domain 9. Let a # 0, b
be two finite complex number. If for each f € &, all poles of f (z) are of multiplicity at least3 in
2, and if f' + af? and g' + ag?® share the value b in 9 for every pair of functions f, g € &, then
& isnormalin9.

k-1

Example 1. Let 2 = {z: |z| < 1}. Let & = {f,;,} where f, := ﬁ, then f;, +f2 = 1kmz™ o4

m?2 ZZk
f. + f? has exactly one zero for k =2 and f, + f2 has two distinct zeros for k = 3. However, it

is easily obtained that % is not normal at the point z = 0.
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This shows that the condition that all poles of f(z) are of multiplicity at least 3 and f’(z) +
af?(z) has at most 1 zero in Theorems 1 is sharp.

2. Some lemmas
To prove our results, we need some preliminary results.

Lemma 1 ([15], [16] Lemma 1 (Zalcman’s Lemma)). Let % be a family of functions meromor-
phic on a domain 2, all of whose poles have multiplicity at least j; Then if & is not normal at

z0 € D, there exist, foreach j < a <1,

(@) points zy, z, — zZo;
(b) functions f, € &; and

(c) positive numbers p,, — 0"

such that p% fn(zn + pné) = gn(&) — g(&) locally uniformly with respect to the spherical metric,
where g(&) is a nonconstant meromorphic function on C. Moreover, the order of g(¢) is less than
2 and the poles of g (&) are of multiplicity at least j.

lg' )]

Here, as usual, g#(f) = RO

is the spherical derivative.

Lemma 2 ([17], Theorem 2). Let f(z) be a transcendental meromorphic function in C. If all
zeros of f (z) have multiplicity at least 3, for any positive integer k, then f® (z) assumes every

non-zero finite value infinitely often.

Lemma3 ([17]). Let f(z) = anz" + an_lz”_l +---+ap+q(2)/ p(z), where ay, ay,--- , a, are con-
stants with a,, # 0, and q and p are two co-prime polynomials, neither of which vanishes iden-
tically, with deg g < deg p; and let k be a positive integer and b a nonzero complex number. If
& +£ b, and the zeros of f all have multiplicity at least k + 1, then

B b(Z— d)k+1

@ k!(z—c)

where c and d are distinct complex numbers.

Lemma 4 ([19], Lemma 4). Let f be a nonconstant rational function and k, m be positive
integers. If f has no zeros in C while all poles of f have multiplicity at least m, then f* —1 has
at least k + m distinct zeros in C.

Lemma5. Let f be a non-constant meromorphic function, and a # 0 be a finite complex num-
ber. Let all poles of f(z) have multiplicity at least 3, then f' + af? has at least two distinct

zeros.
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Proof. Set f = a%p, then all zeros of ¢ have multiplicity at least 3 and '+ af? = —‘Z—;.

/

‘fwzl has only one zero z, then z, is a multiple pole of ¢, or else a zero of ¢’ — 1. If z

is a multiple pole of ¢, since (fw:zl

Case 1. If

has only one zero, then ¢’ — 1 # 0. By Lemma 2 and Lemma
3, this is a contradiction.

So ¢ has no multiple pole and ¢’ — 1 has just one unique zero z;. By the Lemma 2, ¢ is
not any transcendental function.
Case 1.1. ¢ is a non-constant polynomial.

Since ¢’ — 1 has only unique one zero zy, set
li _ !
¢ —1=A(z-zp)
where A is non-zero constant, [ is a positive integer. Then

@' = Al(z—zp)' 7!

Note that ¢ is a a non-constant polynomial and all zeros of ¢ have multiplicity at least
3,50 [ =3—1=2. But ¢" has only one zero zy, so ¢’ has only the same zero z, too. Hence
¢'(zo) = 0, which contradicts ¢'(zg) = 1 # 0. Therefore ¢ is a rational function which is not a

polynomial.

Case 1.2. If ¢ is rational but not a polynomial and has at least one zero.
Under the conditions of Lemma 5 on the rational function ¢,

(z+ap)™(z+ax)™---(z+ag)™s

(2)=A 2.1
4 @+ B (z+PB2) - (z+ B0
where A is a non-zero constant, m; =23 (i=1, 2, ---, s), a;j(i =1, 2, ---, s), and ,Bj(j =
1, 2, .-+, t) are distinct complex numbers.

For simplicity, we denote
my+mo+---+mg=M=3s. (2.2)
Let
g(@)=z-¢(z)

We use deg(g) to denote the degree of a polynomial. Next we use some results from com-
plex dynamics, cf. [18, Chapter 3, 19 Lemma 5]. Since ¢’ — 1 has only unique one zero, so that
g has only unique one critical point. Since m; = 3, we also see that every zero point a; = —z;

of —¢ is a fixed point of g of multiplicity m;. Moreover, since near z;

g(2)=z+ci(z—z)"[1+0()]
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there are m; — 1 parabolic basins associated with the fixed point z;.

Case 1.2.1. If co is not a fixed point of g, each of these parabolic basins, with at most one
exception, contains a critical point of g which is not a pole of g, so the function g(z) = z—¢(z)
has 1 = M — s — 1 parabolic basins associated with the zero points of ¢, we deduce that s =1
and m; = 3. We note that co is not a fixed point of g, so

R CA VA 2.3
PO G poz+Bo) '
In order to simplify the calculation, set Z = z + ;. From (2.3), we have
2= 2t a)®
=7z
wherea=a; -1 #0and f= B, -1 #0.
We have S
Z+a)(Z+2p—a)l —«a
(p':( )= ( . (B 2) B 2.4)
Z2(Z+ )
Since ¢’ (z) — 1 has exactly one zero zy, from (2.3) we obtain
B(Z-Zy)!  Z2(Z+B)? +B(Z - Zy)!
"Z)=1 = 2.
P = s T Be 72(Z+ B2 2-5)

where B is a non-zero constant and Zy = zp — 8 and [ is a positive integer. From (2.4) and
(2.5), we have [ < 3.

From (2.4) we have

(Z+a)(B%+3a%2-3aB)Z%+Ba’B-aBf? Z+a?B?]
o' =2 B ZQ(Z+,B)3 B—ap B 2.6)

From (2.5), we have

"_p (Z=Zo) M- 2%+ (1B +4Zy - 2B) Z + 2B Z)
¢ = 737+ B

2.7

If I =1, from (2.4) and (2.5), we have
Z+a)?(Z2+2(B-a)Z—aP) = Z2(Z+ P)* + B(Z - Z)
By comparing coefficients of both sides, we have

3a(f-a) = p?
—2a®=B
-a*f=BZ
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i.e.
3af-3a*-p*=0
B=-2a®
Zy=P/,
By (2.6), we have ¢" (—a) = 0. From (2.7), we get
(1-4)(-a)® + (ﬂ+4§ -2p)(-a) +2,6§ =0
i.e.

af+3a>-p*=0
Combining this with 3a8 - 3a? — 82 = 0 yields
a=6=0

which is a contradiction.

If I =2, from (2.4) and (2.5), we have
(Z+a)*(Z%+2(B-a)Z —apP) = Z*(Z + B)* + B(Z — Zy)*
By comparing coefficients of both sides, we have

3a(B-a)=p*+B
-2a°=-2BZ,
-a*f=BZ§

i.e.

3aB?-3a%B-p+ad=0

__a
B==7
Zo=-P

By (2.6), we have ¢" (—a) = 0. From (2.7), we get
@ (B-a)2-4(-a)* + (2 -4B-2p)(-a) —2f°]
B (—a)3(f-a)®

B

which is a contradiction. If I = 3, then deg((Z + a)[(8? + 3a? — 3aB)Z? + 3a?B — af?) Z +
a?B?)) <deg((Z — Zop) "1 (1-4) Z% + (1B + 42y — 2B) Z + 28 Zy]), which is a contradiction.

(p”(—(x) - _

Case 1.2.2. If cois a fixed point of g, each parabolic basin contains a critical point of g which is
not a pole of g. Thus each parabolic basins contains a zero point of g/, and hence2 < M-s<1,
which is a contradiction.
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Case 1.3. If ¢ is rational but not a polynomial and has no zero. By Lemma 4, we have ¢’ — 1
has at least two distinct zeros, which contradicts the fact that ¢’ — 1 has just one unique zero
Z0.

Case 2. If =1
ap

#0.

Case 2.1. Since all zeros of ¢(z) have the multiple at least 3 and ¢ is a non-constant function,
it easily obtained that ¢ is not a polynomial.

Case 2.2. If ¢ is rational but not a polynomial. If there exist a point zy such that ¢’(zp) = 1, we

note that ";I(;zl # 0, so ¢(zp) = 0. Since all zeros of ¢(z) have the multiple at least 3, we have

¢'(zo) =0, we get a contradiction.

If ¢’ #1, by Lemma 3, we have
_(z-a®
(z-0o)’

where ¢ and d are distinct complex numbers. This contradicts the fact that all zeros of ¢(z)

have the multiple at least 3.

The proof is complete. O

3. Proofs of Theorems

Proof of Theorem 1. Suppose that % is not normal in . Then there exists at least one point
zo such that & is not normal at the point zyp € ¥. Without loss of generality we assume that
zp = 0. By Zalcman’s lemma, there exist:

(a) points z,, z,;, — 2o;
(b) functions f, € &; and

(c) positive numbers p;, — 0t
such that

8i)=p;filzj+p;ic) — g() 3.1
spherically uniformly on compact subsets of C, where g(¢) is a non-constant meromorphic
function in C and the poles of g(¢) are of multiplicity at least 3.
From (3.1), we get

g/ =p3fi(zj+pj6) — g'© (3.2)
also locally uniformly with respect to the spherical metric.

Thus

8;(©) +agn, )= p3b=p3(fi(zj+p;&) +aff(zj+p;O) ~b) — g +ag’®)  (3.3)
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also locally uniformly with respect to the spherical metric.
We claim that g’(¢) + ag? has at most 1 zero ignoring multiplicity.

If g'(&)+ ag2 =0, then g(¢) = —L_ this contradicts the fact that the poles of g(¢) are of

az+c’

multiplicity at least 3. So g'(¢) + ag® # 0.

Suppose that g'(¢) + ag? has two distinct zeros ¢y and ¢ and choose 6 (> 0) small enough
such that D($o,8) N D(&;,6) = @ where D(&o,6) = {S11¢ - Sol < 6} and D(y,6) = {11¢ — ¢l <6}

From (3.3), by Hurwitz’s theorem, there exist points ¢; € D(&y,0), & 7 € D (’)“,5) such that
for sufficiently large j

f;(zj+pj§j)+afj2(zj+pj§j)—b = 0.
f]f(zj +p;$0)+ asz(zj +pj¢) b =0.
Since z; —~0and p; — 0", we have zj+pj¢j€ D(&o,0) and z; +pj§;f € D(¢g,0) for sufficiently

large j, so f]’ (z)+a sz — b has two distinct zeros, which contradicts the fact that f]’ (2)+af jz -b
has at most 1 zero.

However, by Lemma 5, there does not exist non-constant meromorphic functions satis-
fying above properties such that our claim holds. This contradiction shows that & is normal

in 2 and hence Theorem 1 is proved.

Proof of Theorem 2. Suppose that & is not normal in 2. Then there exists at least one point
zo such that & is not normal at the point zyp € 2. Without loss of generality we assume that
zp = 0. By Zalcman’s lemma, there exist:
(a) points z,, z, — 2o;
(b) functions f,, € &; and
(c) positive numbers p, — 0*
such that

gi)=p;fizj+p;j&) — g(&) (3.4)
spherically uniformly on compact subsets of C, where g(¢) is a non-constant meromorphic
function in C and the poles of g(¢) are of multiplicity at least 3.

Proceeding as in the proof of Theorem 1, we also have (3.3).

If g'(§) + ag?® = 0, then g(¢&) = —=—, this contradicts the fact that the poles of g(¢) are of

az+c’

multiplicity at least 3. So g'(¢) + ag? 0.

Since g is a non-constant meromorphic function, by Lemma 5, we deduce that g’(&) + ag?

has at least two distinct zeros.

We claim that g'(¢) + ag2 (¢) has just a unique zero.
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Suppose that there exist two distinct zeros ¢y and ¢; and choose 6(> 0) small enough
such that D(&o,6) N D({;;,6) = @ where D(o,6) = {&[|E —&ol < 6} and D(&j,0) = {E]I¢ - &1 < 6.

From (3.4), by Hurwitz’s theorem, there exist points ¢; € D(¢ 0,0), & ’; € D (’)“,5) such that
for sufficiently large j

fizj+pjép+afi(zj+pjc)—b=0.
fizj+pi&+afi(zj+p;é))—b=0.

By the assumption that f’ + af? and g’ + ag? share b in @ for each pair f and g in &%, we
know that for any integer m

fmzi+pié+afszi+pjE)—b=0.
fmGi+piEN +afpzj+pi€)—b=0.

We fix m and note that zj + p j{; — 0, z; +p]~§’; — 0 if j — co. From this we deduce
@ +afs0) -b=0.

Since the zeros of f},(z) + af2(z) — b have no accumulation point, for sufficiently large j,
we have

zj+pj¢;=0, Zj+pjf;f=0.

Hence

This contradicts the fact that ¢; € D(&o,0), f; € D(&;,6) and D(&o,0) N D(¢y,0) = @. So
g'(&) + ag?(¢) has just a unique zero. This contradicts the fact that g’ (&) + ag?(¢) has at least
two distinct zeros.

This proves the theorem.
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