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SOME FIXED POINT THEOREMS RELATING TO THE ORBITAL

CONTINUITY

G. V. R. BABU AND M. V. R. KAMESWARI

Abstract. In this paper, we prove a fixed point theorem for asymptotically regular mappings

on a metric space using orbital continuity of the selfmap. As an application of this result, a

fixed point theorem is established in T -orbitally complete metric spaces. Our results extend

Mukherjee’s theorem [4] to T -orbitally complete metric spaces, and generalize the theorems of

Jotic [5] and Nes̆ić [6].

1. Introduction

Browder and petryshyn [2] introduced the concept of asymptotic regularity of a self-

map at a point in the space.

Definition 1.1. Let (X, d) be a metric space, T be a selfmap of X . T is said to be

asymptotically regular at a point x in X [2] if

lim
n→∞

d(T nx, T n+1x) = 0.

Let x0 ∈ X ;O(x0 ) = {T nx0 : n = 0, 1, 2, . . . .} is called the orbit of x0.

Definition 1.2. A space X is said to be T -orbitally complete [3] iff every Cauchy

sequence which is contained in O(x ) for some x in X converges in X .

We observe that every complete metric space is T -orbitally complete for any T ; but

a T -orbitally complete metric space need not be a complete space.

Definition 1.3. T is said to be orbitally continuous at a point z in X [1] if for any

sequence {xn} ⊂ O(x) for some x ∈ X , xn → z as n → ∞ implies Txn → Tz as n → ∞.

Clearly, any continuous mapping of a metric space is orbitally continuous, but its

converse need not be true.

In 1995, Jotic [5] proved the following fixed point theorem in complete metric spaces.
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Theorem 1.4. Let (X, d) be a complete metric space, T : X → X a selfmap and
ϕ : R+ → R+ (R+ = [0,∞)) such that

ϕ(r) < r for r > 0 (1.4.1)

lim sup
t→r+

ϕ(t) < r for r > 0. (1.4.2)

If T : X → X satisfies the condition

d(Tx, T 2x) ≤ ϕ(d(x, Tx)) for all x ∈ X, (1.4.3)

then {T nx} is a Cauchy sequence. Furthermore, if X is complete and if a mapping
G(x) = d(x, f(x)) is lower semicontinuous at a limit point of {T nx}, say x∗, then x* is
a fixed point of T .

The following example shows that T and ϕ satisfying all the hypotheses of Theorem
1.4, but the sequence {T nx0} for any x0 ∈ X is not Cauchy.

Example 1.5. Let

X = {

n∑

k=1

1

k
: n = 1, 2, 3, . . .}

with the usual metric. We define T on X by

T (

n∑

k=1

1

k
) =

n+1∑

k=1

1

k
.

We define ϕ : R+ → R+ by ϕ(t) = t(1 + t)−1 for t > 0.
Then T and ϕ satisfying all the conditions of Theorem 1.4 and the sequence {xn}

defined by Txn = xn+1 with x0 = 1 is not Cauchy in X . Also, we observe that T is
asymptotically regular at x0.

In fact in 1977, Mukherjee [4] proved the following theorem.

Theorem 1.6. Let T be a selfmap of a complete metric space X. We suppose that
there exists a map ϕ : R+ → R+ continuous from the right for each r ∈ R+ such that

d(Tx, Ty) ≤ ϕ(d(x, y)) for each x, y ∈ X. (1.6.1)

If ϕ(r) < r for r > 0, then the sequence {T n(x)}∞
n=0 converges to the unique fixed point

of T .

In 1999, Nes̆ić [6] proved the following theorem.

Theorem 1.7. Suppose T is a selfmap of a metric space (X, d) satisfying

d(Tx, Ty) ≤ pd(x, y)+q[d(x, Tx)+d(y, Ty)]+r[d(x, Ty)+d(y, Tx)]+F (d(x, Tx).d(y, Ty))
(1.7.1)
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for all x, y in X, where 0 ≤ p, r, p + 2r < 1, q + r < 1. If T is asymptotically regular

at a point x of X and the sequence of iterates {T nx} has a subsequence converging to a

point z in X, then z is the unique fixed point of T and {T nx} also converges to z.

Example 1.8. Let X = {0, 2−1, 2−2, 2−3, . . .} with the usual metric. We define T

on X by T (0) = 0, T{2−n} = 2−(n+1) for n = 1, 2, 3, . . .. We define F : R+ → R+ by

F (t) = t2. Then T satisfies (1.7.1) with p = 2−1, q = 0, r = 0; T is asymptotically regular
at 2−1 and T (2−n) = 2−(n+1) → 0 as n → ∞ so that T satisfies all the hypotheses of

Theorem 1.7; and ’0’ is the unique fixed point of T . Here we observe that T is orbitally

continuous at 0.

The main aim of this paper is to avoid the ambiguity(established through Example

1.5) of Theorem 1.4 and generalize Theorem 1.6. Our theorem (Theorem 3.1) extends

Theorem 1.6 to T -orbitally complete metric spaces. Also we prove a theorem (Theorem
3.6) by allowing the orbital continuity of T at z in Theorem 1.7. In this case the condition

on q in the inequality (1.7.1), i.e., q + r < 1 is redundant, and can be relaxed.

Throughout this paper, we denote R+ = [0,∞), the set of all nonnegative reals and
N , the set of all natural numbers and

Φ = {ϕ : (0,∞) → (0,∞)/(i) ϕ(t) < t for t > 0, and (ii) lim sup
t→r+

ϕ(t) < r for r > 0}.

2. Preliminaries

Proposition 2.1. Let T be a selfmap of a metric space (X, d). If

(i) T is asymptotically regular at some point x0 of X,
(ii) O(x0) has a cluster point z in X and,

(iii) T is orbitally continuous at z,

then z is a fixed point of T .

Proof. We define the sequence {xn} by xn = T nx0 for n = 0, 1, 2, . . . , with T 0x0 =

x0. If xn = xn+1 for some n, then xm = xn for all m ≥ n, so that limm→∞ xm = z. Now
by (iii), we have Tz = z.

We now assume xn 6= xn+1 for all n ∈ N . Let {n(k)} be the subsequence of positive in-

tegers such that {xn(k)} converges to z, by (ii). Using (i), we have limk→∞d(xn(k), xn(k)+1)
= 0 and by (iii), it follows that d(z, T z) = 0. Hence Tz = z.

Example 2.2. Let X = {−1, 0, 1} ∪ {2−k : k ∈ N} ∪ {1 + 2−k : k ∈ N} with the

usual metric. We define T : X → X by T (0) = −1; T (−1) = 0; for x0 = 1, the sequence
{xn}

∞

n=1 by xn = {T nx0} where x2n = 2−n for n = 0, 1, 2, . . ., and x2n+1 = 1 + 2−(n+1)

for n = 0, 1, 2, 3, . . ., and

O(x0 ) = {2−n : n = 0, 1, 2, . . .} ∪ {1 + 2−n : n ∈ N}.
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Also x2n = 2−n → 0 as n → ∞ and Tx2n = 1 + 2−(n+1) → 1 6= T (0) as n → ∞ so that
T is not orbitally continuous at 0. Also we observe that T is not orbitally continuous at
1, for x2n+1 → 1 and Tx2n+1 → 0 6= T1 as n → ∞. Also T is not asymptotically regular
at 1; and T has no fixed point in X .

Example 2.3. Let

X = {1} ∪ {

n∑

k=1

2−k : n ∈ N}

with usual metric. For x0 = 1, we define

xn+1 = Txn =

n+1∑

k=1

2−k for n = 0, 1, 2, 3, . . . .

Then O(x0) = X , and has a cluster point z = 1 in X . T is asymptotically regular at
x0 = 1 and T is not orbitally continuous at 1. We observe that T has no fixed point.

Example 2.4. Let X = {0, 1} ∪ {2−k : k ∈ N} ∪ {1 + 2−k : k ∈ N} with the usual
metric. We define T on X by T0 = 1; T1 = 0 and for x0 = 1 + 2−1 we define the
sequence {xn}

∞

n=1 by xn = T nx0 where x2n = 1 + 2−(n+1) and x2n−1 = 2−n for n ∈ N .
Then O(x0 ) = X\{0, 1}. Also x2n → 1 as n → ∞ and Tx2n = 2−(n+1) → 0 = T (1) as
n → ∞ , so that T is orbitally continuous at 1. Also T is not asymptotically regular at
any point of X and T has no fixed point in X .

Example 2.5. Let X = {0, 1} ∪ {2−k : k ∈ N} with the usual metric. We define
T : X → X by T (0) = 0, T (1) = 2−1, T (2−n) = 2−(n+1) for n ∈ N . Then for x0 = 1,
O(x0 ) = {2−n : n = 0, 1, 2, 3, . . .} and T satisfies all the conditions of the Proposition 2.1
and T has a fixed point 0.

Example 2.6. Let X = {0, 1} ∪ {2−k : k ∈ N} ∪ {1 + 2−k : k ∈ N} with the
usual metric. We define T on X by T1 = 1; T0 = 0; T (2−n) = 2−(n+1) for n ∈ N and
T (1 + 2−n) = 1 + 2−(n+1) for n ∈ N ; here O(2−1) = {2−n : n ∈ N} and O(1 + 2−1) =
{1+ 2−n : n ∈ N}. T is asymptotically regular at 2−1 and 1 + 2−1; O(2−1) has a cluster
point 0 and O(1 + 2−1) has a cluster point 1 ; T is orbitally continuous at 0 and 1; and
T has two fixed points 0 and 1.

3. Main Results

Theorem 3.1. Let (X, d) be a T -orbitally complete metric space. Let T be a selfmap
of X. Assume that for some x0 ∈ X there exists ϕx0

∈ Φ such that

d(Tx, Ty) ≤ ϕx0
(d(x, y)) for every x 6= y, and x, y ∈ O(x0 ). (3.1.1)

Then the sequence {xn}
∞

n=1 defined by xn = T nx0 is Cauchy in X, limn→∞ xn = z,
z ∈ X and if T is orbitally continuous at z then z is a fixed point of T and z is unique
in the sense that O(x0 ) contains one and only one fixed point of T .
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Proof. We define the sequence {xn} by xn = T nx0. If xn = xn+1 for some n, then
we are through.

Hence, without loss of generality, we assume xn 6= xn+1 for all n. Let an =
d(T nx0, T

n+1x0). Now, by using (3.1.1) and property (i) of ϕx0
, we have

an+1 = d(T n+1x0, T
n+2x0) ≤ ϕx0

(d(T nx0, T
n+1x0)) < d(T nx0, T

n+1x0) = an

so that {an} is strictly decreasing sequence of reals. We now prove that limn→∞ an = 0.
Suppose limn→∞ an = a > 0. Then by (ii) of ϕx0

, we have

a = lim sup
n→∞

an+1 ≤ lim sup
n→∞

ϕx0
(an) < a,

a contradiction. Therefore limn→∞ an = 0.

Hence T is asymptotically regular at x0. (3.1.2)

We now show that the sequence {xn} ⊂ O(xo) is Cauchy. Otherwise, there is an
ε > 0 and there exist sequences {m(k)} and {n(k)} with m(k) > n(k) > k such that

d(xm(k), xn(k)) ≥ ε and d(xn(k)−1, xm(k)) < ε.

Hence

ε ≤ d(xm(k), xn(k)) ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)) < am(k)−1 + ε.

By taking limits as k → ∞, we have

lim
k→∞

d(xm(k), xn(k)) = ε. (3.1.3)

Also

ε ≤ d(xm(k), xn(k)) ≤ ϕx0
(d(xm(k)−1, xn(k)−1)))

< d(xm(k)−1, xn(k)−1)

≤ d(xm(k)−1, xm(k)) + d(xm(k), xn(k)) + d(xn(k), xn(k)−1)

= am(k)−1 + d(xm(k), xn(k)) + an(k)−1.

Now, taking limits as k → ∞, we have

ε ≤ lim
k→∞

d(xm(k)−1, xn(k)−1) ≤ lim
k→∞

d(xm(k), xn(k)) = ε

so that
lim

k→∞

d(xm(k)−1, xn(k)−1) = ε. (3.1.4)

Therefore, using (3.1.3), (3.1.4) and property (ii) of ϕx0
, we have

ε = lim sup
k→∞

d(xm(k), xn(k)) ≤ lim sup
k→∞

ϕx0
(d(xm(k)−1, xn(k)−1)) < ε,
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a contradiction. Hence {xn} ⊂ O(xo) is Cauchy. Since X is T -orbitally complete,

lim
n→∞

xn = z (say), z ∈ X. (3.1.5)

Since T is orbitally continuous at z, using (3.1.2) and (3.1.5) and by Proposition 2.1,

it follows that z is a fixed point of T .

Uniqueness of the fixed point trivially follows from (3.1.1).

This completes the proof of the theorem.

Remark 3.2. In the following we provide an example for the applicability of Theorem

3.1 where as Theorem 1.6 is not applicable.

Example 3.3. Let

X = {0, 1, 2} ∪ {

n∑

i=0

2−i; n ∈ N}.

We define T on X by T0 = 1; T1 = 0; T2 = 2; and

T (

n∑

i=0

2−i) =

n+1∑

i=0

2−i for n ∈ N.

Clearly, X is T -orbitally complete metric space and T is orbitally

continuous at 2.

At x = 0; y = 1; for any ϕ ∈ Φ , the condition (1.6.1) does not hold.

If x0 = 1 + 2−1 then

O(x0 ) = {

n∑

i=0

2−i : n ∈ N}, O(x0 ) = O(x0 ) ∪ {2}

and T satisfies all the hypotheses of Theorem 3.1 with ϕ(t) = 2−1t, for all t > 0; and 2

is the unique fixed point of T .

Remark 3.4. Under the hypotheses of Theorem 3.1, T may have more than one

fixed point in X . For example, we consider the space X as in Example 2.6. We define T

on X by T1 = 1, T0 = 0,

T (2−n) = 2−(n+1), T (1 + 2−n) = 1 + 2−(n+1) for n ∈ N.

If x0 = 2−1 then O(2−1) = {2−n : n ∈ N} and O(2−1) = O(2−1) ∪ {0}. T satisfies all

the hypotheses of Theorem 3.1 with ϕ2−1(t) = t(1 + t)−1 , t > 0 and ’0’ is a fixed point

of T .

If x0 = 1+2−1, then O(1+2−1) = {1+2−n : n ∈ N} and O(1 + 2−1) = O(1+2−1)∪

{1}. Then T satisfies all the conditions of Theorem 3.1 with ϕ(1+2−1)(t) = 2−1t, t > 0

and 1 is another fixed point of T .

We observe that T has two fixed points 0 and 1.
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Remark 3.5. We extend Theorem 1.6 of Mukherjee to T -orbitally complete metric
spaces in the following way.

Theorem 3.6. Let (X, d) be a T -orbitally complete metric space. Let T be a selfmap
of X. Assume that there exists ϕ ∈ Φ such that

d(Tx, Ty) ≤ ϕ(d(x, y)), for each x 6= y, x, y ∈ X. (3.6.1)

Then, for x0 ∈ X, the sequence {xn}
∞

n=1 defined by xn = T nx0 is Cauchy in X,
limn→∞ xn = z, z ∈ X, z is the unique fixed point of T provided T is orbitally con-
tinuous at z.

We now generalize Theorem 1.7 of Nes̆ić in the following way.

Theorem 3.7. Suppose that T is a selfmap of a metric space (X, d). Assume that
there exist non-negative real numbers p, q and r such that

d(Tx, Ty) ≤ pd(x, y)+q[d(x, Tx)+d(y, Ty)]+r[d(x, Ty)+d(y, Tx)]+F (d(x, Tx).d(y, Ty))
(3.7.1)

for all x, y ∈ X and p + 2r < 1.
If T satisfies (i), (ii), (iii) of Proposition 2.1, then z is the unique fixed point of T and

for any x0 ∈ X the sequence {T nx0} converges to z.

Proof. Existence of a fixed point of T follows from Proposition 2.1. Uniqueness of
fixed point follows from the inequality (3.7.1). Let that fixed point be z.

We now show that limn→∞ xn = z. Let x0 ∈ X . We consider

d(z, T nx0) = d(Tz, T nx0)

≤ d(Tz, T n+1x0) + d(T n+1x0, T
nx0)

≤ p d(z, T nx0) + q [d(z, T z) + d(T nx0, T
n+1x0) + r[d(z, T n+1x0)

+d(T nx0, T z)] + F (d(z, T z).d(T nx0, T
n+1x0)) + d(T nx0, T

n+1x0)

≤ p d(z, T nx0) + q d(T nx0, T
n+1x0) + r[d(z, T nx0)

+d(T nx0, T
n+1x0) + d(T nx0, z)] + d(T nx0, T

n+1x0)

(by using Tz = z).

Hence
d(z, T nx0) ≤ (1 + q + r) (1 − p − 2r)−1 d(T nx0, T

n+1x0).

Taking limits as n → ∞, by using (i) of Proposition 2.1, and since p + 2r < 1, it
follows that limn→∞ xn = z.

This completes the proof of this theorem.

Example 3.8. Let X be as in the Example 3.3. Now, we define F be the identity
mapping on R+. Let x0 = 1 + 2−1 then

O(x0 ) = {T nx0 =

n+1∑

k=0

2−k : n ∈ N} ∪ {1 + 2−1}.



80 G. V. R. BABU AND M. V. R. KAMESWARI

Clearly T is asymptotically regular at x0, T satisfies the inequality (3.7.1) with p = 0;

r = 3−1 so that p + 2r < 1 and q = 3; O(x0 ) has a cluster point 2; and T is orbitally

continuous at 2; so that T satisfies all the hypotheses of Theorem 3.7 and T has the

unique fixed point 2.
We observe that if we choose q = 0 then for x = 1 and y = 2, the inequality (1.7.1)

does not satisfied for any non-negative reals p and r with p + 2r < 1, and hence Nes̆ić’s

theorem (Theorem 1.7) is not applicable.
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