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A GENERALIZATION OF AN IDENTITY INVOLVING

THE INVERSES OF BINOMIAL COEFFICIENTS

ZHIZHENG ZHANG AND HAITAO SONG

Abstract. By applying the integral expression of the inverses of binomial coefficients, the authors generalize the

Sury’s identity.

1. Introduction

As usual, the binomial coefficients are defined by

(
n

m

)
=


n!

m!(n −m)!
if n ≥ m,

0 if n < m,

where n and m are nonnegative integers. Sury [3] used(
n

m

)−1

= (n +1)
∫ 1

0
t m(1− t )n−md t (1)

to obtain that

n∑
m=0

1(n
m

) = n +1

2n

n∑
m=0

2m

m +1
= n +1

2n

∑
j odd

1

j

(
n +1

j

)
. (2)

It’s necessary to point out that the first equation of identity (2) is identity (2.25) in Could’s
collection [1]. Using the integral identity (1), many results have been obtained for the finite
and infinite sums related to the reciprocals of binomial coefficients. See [2, 3, 4, 5, 6, 7]. And
in [7], Sury, Wang and Zhao generalized identity (2) and obtained a polynomial version.

The purpose of this paper is to extend the identity (2) much further and obtain some in-
teresting results.
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2. Main results

Theorem 2.1. Let n, k, and r be nonnegative integers, then in the ring Q[T ] of rational
polynomials, the identity

n∑
m=k

T m(1−T )n−m(n+r
m

) = (n + r +1)
n−k∑
i=0

T n−i (1−T )n−k+1

(r +k + i +1)
(r+k+i

k

)
+ (n + r +1)

r∑
i=0

(
r

i

)
(−1)i

n∑
p=k

T n+1(1−T )n−p

i +p +1
(3)

holds for k ≤ n. An equivalent form is that for λ 6= −1,

n∑
m=k

λm(n+r
m

) = (n + r +1)
n−k∑
i=0

λk+i

(λ+1)i+1

n+r−k−i∑
p=0

(
n + r −k − i

p

)
(−1)p 1

p +k +1

+ (n + r +1)
λn+1

(λ+1)n+2

r∑
i=0

(
r

i

)
(−1)i

n∑
p=k

(λ+1)p+1

i +p +1
. (4)

Moreover,

n∑
m=k

λm(n+r
m

) = (n + r +1)
n−k∑
i=0

λn−i
i+r∑
p=0

(
i + r

p

)
(−1)p 1

n +p − i +1
. (5)

Proof. For a fixed real number λ, letting In,k,r (λ) =∑n
m=k

λm(n+r
m

) , it follows from identity (1)

that

In,k,r (λ) = (n + r +1)
∫ 1

0
(1− t )n+r

n∑
m=k

(
λt

1− t
)md t

= (n + r +1)
∫ 1

0
(1− t )r (λt )k (λt )n−k+1 − (1− t )n−k+1

(λ+1)t −1
d t .

Putting s = (λ+1)t −1, we get

In,k,r (λ) = (n + r +1)
λk

(λ+1)k+r+1

∫ λ

−1
(λ− s)r (s +1)k λ

n+1−k (s +1)n+1−k − (λ− s)n+1−k

s(λ+1)n+1−k
d s. (6)

Then we have that In,k,r = (n + r +1)(I1 + I2), where

I1 = λk

(λ+1)n+r+2

∫ λ

−1
(λ− s)r (s +1)k

s
(λn+1−k − (λ− s)n+1−k )d s

and

I2 = λn+1

(λ+1)n+r+2

∫ λ

−1
(λ− s)r (λ+1)n+1 − (s +1)k

s
d s.

By writting
(λ+1)n+1 − (s +1)k

s
=

n∑
p=k

(s +1)p
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and interchanging the order of the summation and the integration, we have

I2 = λn+1

(λ+1)n+2

r∑
i=0

(
r

i

)
(−1)i

n∑
p=k

(λ+1)p+1

i +p +1
.

Similarly,

I1 =
n−k∑
i=0

λn−i

(λ+1)n+1−k−i

i+r∑
p=0

(
i + r

p

)
(−1)p 1

p +k +1
.

The above manipulation are valid when λ is any real number different from −1. So, we have,
for λ 6= −1,

In,k,r (λ) = (n + r +1)
n−k∑
i=0

λk+i

(λ+1)i+1

n+r−k−i∑
p=0

(
n + r −k − i

p

)
(−1)p 1

p +k +1

+ (n + r +1)
λn+1

(λ+1)n+2

r∑
i=0

(
r

i

)
(−1)i

n∑
p=k

(λ+1)p+1

i +p +1
.

This proves (4). Now, using (4) with λ replaced by θ
1−θ for θ 6= 1 (because θ

1−θ can takes all
values except −1), and multiplying both sides with (1−θ)n , then we have

n∑
m=k

θm(1−θ)n−m(n+r
m

) = (n + r +1)
n−k∑
i=0

θn−i (1−θ)n−k+1
r+i∑
p=0

(
r + i

p

)
(−1)p 1

p +k +1

+ (n + r +1)θn+1
r∑

i=0

(
r

i

)
(−1)i

n∑
p=k

(1−θ)n−p

i +p +1
. (7)

Now, if we compare the coefficients of θk on both sides of (7), we can obtain

1(n+r
k

) = (n + r +1)
k∑

p=0

(
k

p

)
(−1)k−p 1

n + r −p +1
. (8)

In terms of n + r = s +k, then we have

k∑
p=0

(
k

p

)
(−1)p 1

s +p +1
= 1

(s +k +1)
(s+k

k

) . (9)

To show that (7) is a polynomial identity over Q, it is means that both sides of (7) have to
coincide in Q[T ]. Using (9) in (7), we can get the desired result (3). From (6), we can also
obtain (5), the proof of which is not detailed here.

Corollary 2.2. For any nonnegative integer n, k, and r , then

n∑
m=k

(−1)n−m(n+r
m

) = (n + r +1)
n−k∑
i=0

(−1)i

(n−k+1
i

)(k+r+i
k

)
(k + r + i +1)

. (10)
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Proof. Comparing the coefficients of θn on both sides of (7), we can obtain the desired

result.

Theorem 2.3. Let n and r be nonnegative integers. Then

n∑
m=0

1(n+r
m

) =
n∑

m=0

1(n+r
m+r

) = n + r +1

2n+1

n∑
m=0

2m

m + r +1

(
1+

(
m + r

m

)−1)
(11)

= n + r +1

2n+r

∑
j odd ,
i even

(
n +1

j

)(
r

i

)
1

i + j
. (12)

Proof. The particular case k = 0, λ = 1 of (4) in theorem 2.1 gives (11). Now, let us to see

the second identity, it follows from identity (1) that

n∑
m=0

1(n+r
m

) =
n∑

m=0

1( n+r
n−m

) = n∑
m=0

1(n+r
m+r

) = (n + r +1)
n∑

m=0

∫ 1

0
t m+r (1− t )n−md t

= (n + r +1)
∫ 1

0
t r (1− t )n

n∑
m=0

t m(1− t )−md t

= (n + r +1)
∫ 1

0
t r t n+1 − (1− t )n+1

2t −1
d t

= n + r +1

2

∫ 1

−1
(

1+ s

2
)r ( 1+s

2 )n+1 − ( 1−s
2 )n+1

s
d s

= n + r +1

2n+r+2

∫ 1

−1
(1+ s)r (1+ s)n+1 − (1− s)n+1

s
d s

= n + r +1

2n+r+2

n+1∑
j=0

(
n +1

j

)(
1− (−1) j

)∫ 1

−1
(1+ s)r s j−1d s

= n + r +1

2n+r+2

n+1∑
j=0

(
n +1

j

)(
1− (−1) j

)∫ 1

−1

r∑
i=0

(
r

i

)
si+ j−1d s

= n + r +1

2n+r+2

n+1∑
j=0

(
1− (−1) j

)(n +1

j

)
r∑

i=0

(
r

i

)
1+ (−1)i+ j+1

i + j

= n + r +1

2n+r+1

∑
j odd

(
n +1

j

)
r∑

i=0

(
r

i

)
1+ (−1)i

i + j

= n + r +1

2n+r

∑
j odd

∑
i even

(
n +1

j

)(
r

i

)
1

i + j

= n + r +1

2n+r

∑
j odd ,
i even

(
n +1

j

)(
r

i

)
1

i + j
.

This proves identity (12).
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Then in theorem 2.3, when r = 0, we obtain (2) directly, and when r = 1, r = 2 or r = n, we
give the corresponding results as the following corollary.

Corollary 2.4. For any nonnegative integer n, then we have

n∑
m=0

1(n+1
m

) = n +2

2n+1

n∑
m=0

2m

m +1
= n +2

2n+1

∑
j odd

1

j

(
n +1

j

)
, (13)

n∑
m=0

1(n+2
m

) = n +3

2n+1

n∑
m=0

2m (m +2)(m +1)+2!

(m +3)(m +2)(m +1)

= n +3

2n+1

∑
j odd

j +1

j ( j +2)

(
n +1

j

)
, (14)

n∑
m=0

1(2n
m

) = 2n +1

2n+1

n∑
m=0

2m

m +n +1

(
1+

(
m +n

m

)−1)

= 2n +1

22n

∑
j odd ,
i even

(
n +1

j

)(
n

i

)
1

i + j
. (15)

From (11) and (12), we can also obtain the following corollary.

Corollary 2.5. For any nonnegative integer n and r , we have

n∑
m=0

2m+r−1

m + r +1

(
1+

(
m + r

m

)−1)
= ∑

j odd ,
i even

(
n +1

j

)(
r

i

)
1

i + j
. (16)

For example, when r = 0 or r = 1, we have

n∑
m=0

2m

m +1
= ∑

j odd

1

j

(
n +1

j

)
. (17)

When r = 2, we obtain

n∑
m=0

2m

m +3

(
1+

(
m +2

m

)−1)
= ∑

j odd

j +1

j ( j +2)

(
n +1

j

)
. (18)

When r = (k −1)n, where k ∈ N+, we obtained a rather general theorem.

Theorem 2.6. For any nonnegative integer n, and k ∈ N+, then

n∑
m=0

1(kn
m

) = kn +1

2n+1

n∑
m=0

2m

m + (k −1)n +1

(
1+

(
m +kn −n

m

)−1)
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= kn +1

2kn

∑
j odd ,
i even

(
n +1

j

)(
kn −n

i

)
1

i + j
. (19)

Proof. When r = (k−1)n, substituting it into (11) and (12), we can immediately obtain the
desired results.

When k = 1, from (19) we can also obtain the (2). Next, we use another approach to eval-
uate the sums

∑n
m=0

1(n+1
m

) and
∑n

m=0
1(n+2
m

) .

Theorem 2.7. For any nonnegative integer n, then

n∑
m=0

1(n+1
m

) = n +2

2n+1

∑
j odd

1

j

(
n +2

j

)
−1, (20)

n∑
m=0

1(n+2
m

) = n +3

2n+2

n∑
m=0

2m

m +1
+ 1

2
− 1

2(n +2)
(21)

= n +3

2n+2

∑
j odd

1

j

(
n +3

j

)
− 1

n +2
−1. (22)

Proof. First, we have

n∑
m=0

1(n+1
m

) = n+1∑
m=0

1(n+1
m

) − 1(n+1
n+1

) = n +2

2n+1

∑
j odd

1

j

(
n +2

j

)
−1

and

n∑
m=0

1(n+2
m

) =
n+2∑
m=0

1(n+2
m

) − 1(n+2
n+1

) − 1(n+2
n+2

) = n +3

2n+2

n+2∑
m=0

2m

m +1
− 1

n +2
−1

= n +3

2n+2

( 2n+2

n +3
+ 2n+1

n +2
+

n∑
m=0

2m

m +1

)
− 1

n +2
−1

= n +3

2n+2

n∑
m=0

2m

m +1
+ 1

2
− 1

2(n +2)
.

On the other hand ,

n∑
m=0

1(n+2
m

) = n+2∑
m=0

1(n+2
m

) − 1(n+2
n+1

) − 1(n+2
n+2

) = n +3

2n+2

∑
j odd

1

j

(
n +3

j

)
− 1

n +2
−1,

which conclude the result.

From (13), (14), (20), (21) and (22), after some computation, we can obtain the following
result.

Theorem 2.8. For any nonnegative integer n, then

n∑
m=0

2m m2 +m +2

(m +3)(m +2)(m +1)
= (n +1)2n+1

(n +2)(n +3)
. (23)
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∑
j odd ,
j≤n+2

1

j

(
n +1

j −1

)
= 2n+1

n +2
. (24)

∑
j odd ,
j≤n+3

1

j

((
n +3

j

)
− 2( j +1)

j +2

(
n +1

j

))
= 2n+2

n +2
. (25)

Proof. From the first equation of (14) and (21), we can get (23). From the second equation
of (13) and (20), we obtain (24) easily. From the second equation of (14) and (22), we obtain
(25).
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