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ON THE ARITHMETIC–GEOMETRIC MEAN INEQUALITY

MEHDI HASSANI

Abstract. We obtain some refinements of the Arithmetic–Geometric mean inequality. As

an application, we find the maximum value of a multi-variable function.

1. Introduction

We assume that a1, a2, . . . , an are n positive real numbers, and as usual, we define their

arithmetic and geometric means, respectively by

A =
1

n

n
∑

i=1

ai , and G =

(

n
∏

i=1

ai

)
1
n

.

We consider the functions g (x) = ex
− xe and h(x) = x1/x over (0,∞). The function h has an

absolute maximum at x = e. Thus, if x > 0 then e1/e
Ê x1/x , or equivalently g (x) Ê 0, with

equality if and only if x = e. For i = 1,2, . . . ,n, we take x = ai e/G in ex
Ê xe, and then we

multiply the resulting inequalities to get

e
e
G

n A
= e

e
G

n
∑

i=1
ai

Ê

(

n
∏

i=1

ai e

G

)e

=

(

enGn

Gn

)e

= ene,

from which we obtain A ÊG , with equality if and only if ai e/G = e for i = 1,2, . . . ,n, or equiva-

lently for when a1 = a2 = ·· · = an .

The above argument for obtaining the Arithmetic–Geometric mean inequality is due to

Schaumberger [1]. In this note we replace g (x) by a smaller positive function to get some

refinements of the this inequality. More precisely, we obtain the following result.

Theorem 1.1. Assume that a1, a2, . . . , an are n positive real numbers with arithmetic and geo-

metric means A and G, respectively. Then, we have

A ÊG +R ÊG ,
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where

R =
G

ne
log

(

1+
1

ene

n
∏

i=1

(ai

G
−1

)2
)

Ê 0,

with equality if and only if a1 = a2 = ·· · = an .

2. Proof of Theorem 1.1

Lemma 2.1. For x > 0 we define

f (x)= ex
−xe

−
1

e2
(x −e)2.

The inequality f (x) Ê 0 is valid for x > 0, with equality if and only if x = e. Moreover, 1
e2 is the

best possible constant for which the above inequality is valid.

Proof. As Figure 1 shows, f (x) takes its minimum value equal to 0 at x = e. Also, we have

lim
x→0+

f (x) = 0, which proves optimal choose of the constant 1
e2 . This completes the proof. ���

Figure 1: Graphs of the functions f (x) = ex
−xe

−
1
e2 (x−e)2 and g (x) = ex

−xe over the intervals

(0,3) and (0,5).

Proof of Theorem 1.1. We apply Lemma 2.1 by taking x = ai e/G in f (x), from which we obtain

e
e
G

ai
Ê

(ai e

G

)e
+

1

e2

(ai e

G
−e

)2
=

(ai e

G

)e
+

(ai

G
−1

)2
(for i = 1,2, . . . ,n).

We multiply these inequalities to get

e
e
G

n A
= e

e
G

n
∑

i=1
ai

Ê

(

n
∏

i=1

ai e

G

)e

+

n
∏

i=1

( ai

G
−1

)2
= ene

+

n
∏

i=1

(ai

G
−1

)2
.

Thus, we have

e
e
G

n A
Ê ene

(

1+
1

ene

n
∏

i=1

(ai

G
−1

)2
)

.
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Finally, we take logarithm and we divide the resulting inequality by ne to obtain

A

G
Ê 1+

1

ne
log

(

1+
1

ene

n
∏

i=1

(ai

G
−1

)2
)

,

with equality if and only if a1 = a2 = ·· · = an . This completes the proof. ���

3. Some applications

On may rewrite the Arithmetic–Geometric mean inequality in the forms

A−G Ê 0, and
A

G
−1 Ê 0.

As the first application of Theorem 1.1, we obtain the following refinement of the above men-

tioned inequalities.

Theorem 3.1. Assume that a1, a2, . . . , an are n positive real numbers which are not simultane-

ously equal, with arithmetic and geometric means A and G, respectively. Then, we have

A−G Ê
Gene( A

G
−1)

ne(ene A
G −ene)

n
∏

i=1

(ai

G
−1

)2
Ê 0,

or equivalently

A

G
−1 Ê

ene( A
G
−1)

nene+1
(

ene( A
G
−1)

−1
)

n
∏

i=1

( ai

G
−1

)2
Ê 0.

Proof. Assume that a1, a2, . . . , an are n positive real numbers which are not simultaneously

equal, so that A >G . By using the result of Theorem 1.1, we have R ≤ A−G , which is equiva-

lent to
1

ene

n
∏

i=1

(ai

G
−1

)2
É ene( A

G
−1)

−1.

On the other hand, for 0 É x É β, we have log(1+ x) Ê
log(1+β)

β
x because

log(1+x)

x
is decreasing

on (0,β]. We use this inequality by putting x =
1

ene

n
∏

i=1

( ai

G −1
)2

Ê 0 and β= ene( A
G
−1)

−1 to get

R =
G

ne
log

(

1+
1

ene

n
∏

i=1

( ai

G
−1

)2
)

Ê
G

ne

(

ene( A
G
−1)

ene A
G −ene

n
∏

i=1

( ai

G
−1

)2
)

.

This completes the proof. ���

As the second application of Theorem 1.1, we observe that it allows us to find the maxi-

mum value of a multi-variable function, without using partial derivative tests.
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Theorem 3.2. We have

max
ai>0

G

ne
log

(

1+
1

ene

n
∏

i=1

(ai

G
−1

)2
)

= A−G .

Remark 3.3. We assume that ai > 0, and then we replace ai by 1/ai , from which the inequality

A ÊG implies validity of the well-known Geometric-Harmonic mean inequality, asserting that

G Ê H , where H refers to the harmonic mean of the positive real numbers a1, a2, . . . , an . We

observe that the replacement ai → 1/ai gives the replacements A → 1/H and G → 1/G . By

applying this fact, one may rewrite all of the above results concerning the means A and G , to

obtain similar results concerning the means G and H .
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