Available online at http://journals.math.tku.edu.tw/

ON THE ARITHMETIC–GEOMETRIC MEAN INEQUALITY

MEHDI HASSANI

Abstract. We obtain some refinements of the Arithmetic–Geometric mean inequality. As an application, we find the maximum value of a multi-variable function.

1. Introduction

We assume that $a_1, a_2, ..., a_n$ are *n* positive real numbers, and as usual, we define their arithmetic and geometric means, respectively by

$$A = \frac{1}{n} \sum_{i=1}^{n} a_i$$
, and $G = \left(\prod_{i=1}^{n} a_i\right)^{\frac{1}{n}}$.

We consider the functions $g(x) = e^x - x^e$ and $h(x) = x^{1/x}$ over $(0, \infty)$. The function h has an absolute maximum at x = e. Thus, if x > 0 then $e^{1/e} \ge x^{1/x}$, or equivalently $g(x) \ge 0$, with equality if and only if x = e. For i = 1, 2, ..., n, we take $x = a_i e/G$ in $e^x \ge x^e$, and then we multiply the resulting inequalities to get

$$\mathbf{e}^{\frac{\mathbf{e}}{G}nA} = \mathbf{e}^{\frac{\mathbf{e}}{G}\sum_{i=1}^{n}a_{i}} \ge \left(\prod_{i=1}^{n}\frac{a_{i}\mathbf{e}}{G}\right)^{\mathbf{e}} = \left(\frac{\mathbf{e}^{n}G^{n}}{G^{n}}\right)^{\mathbf{e}} = \mathbf{e}^{n\mathbf{e}},$$

from which we obtain $A \ge G$, with equality if and only if $a_i e/G = e$ for i = 1, 2, ..., n, or equivalently for when $a_1 = a_2 = \cdots = a_n$.

The above argument for obtaining the Arithmetic–Geometric mean inequality is due to Schaumberger [1]. In this note we replace g(x) by a smaller positive function to get some refinements of the this inequality. More precisely, we obtain the following result.

Theorem 1.1. Assume that $a_1, a_2, ..., a_n$ are *n* positive real numbers with arithmetic and geometric means *A* and *G*, respectively. Then, we have

 $A \geq G + \mathcal{R} \geq G,$

Received May 15, 2013, accepted July 16, 2013.

Communicated by Chung-Tsun Shieh.

2010 Mathematics Subject Classification. 26D15.

Key words and phrases. Arithmetic-Geometric mean inequality.

where

$$\mathscr{R} = \frac{G}{ne} \log \left(1 + \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right) \ge 0,$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

2. Proof of Theorem 1.1

Lemma 2.1. *For x* > 0 *we define*

$$f(x) = e^{x} - x^{e} - \frac{1}{e^{2}}(x - e)^{2}.$$

The inequality $f(x) \ge 0$ is valid for x > 0, with equality if and only if x = e. Moreover, $\frac{1}{e^2}$ is the best possible constant for which the above inequality is valid.

Proof. As Figure 1 shows, f(x) takes its minimum value equal to 0 at x = e. Also, we have $\lim_{x \to 0^+} f(x) = 0$, which proves optimal choose of the constant $\frac{1}{e^2}$. This completes the proof. \Box

Figure 1: Graphs of the functions $f(x) = e^x - x^e - \frac{1}{e^2}(x-e)^2$ and $g(x) = e^x - x^e$ over the intervals (0,3) and (0,5).

Proof of Theorem 1.1. We apply Lemma 2.1 by taking $x = a_i e/G$ in f(x), from which we obtain

$$\mathbf{e}^{\frac{\mathbf{e}}{G}a_i} \ge \left(\frac{a_i\mathbf{e}}{G}\right)^{\mathbf{e}} + \frac{1}{\mathbf{e}^2}\left(\frac{a_i\mathbf{e}}{G} - \mathbf{e}\right)^2 = \left(\frac{a_i\mathbf{e}}{G}\right)^{\mathbf{e}} + \left(\frac{a_i}{G} - 1\right)^2 \qquad (\text{for } i = 1, 2, \dots, n).$$

We multiply these inequalities to get

$$\mathbf{e}^{\frac{\mathbf{e}}{G}nA} = \mathbf{e}^{\frac{\mathbf{e}}{G}\sum_{i=1}^{n}a_i} \ge \left(\prod_{i=1}^{n}\frac{a_i\mathbf{e}}{G}\right)^{\mathbf{e}} + \prod_{i=1}^{n}\left(\frac{a_i}{G} - 1\right)^2 = \mathbf{e}^{n\mathbf{e}} + \prod_{i=1}^{n}\left(\frac{a_i}{G} - 1\right)^2.$$

Thus, we have

$$\mathbf{e}^{\frac{\mathbf{e}}{G}nA} \ge \mathbf{e}^{n\mathbf{e}} \left(1 + \frac{1}{\mathbf{e}^{n\mathbf{e}}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right).$$

454

Finally, we take logarithm and we divide the resulting inequality by *n*e to obtain

$$\frac{A}{G} \ge 1 + \frac{1}{ne} \log \left(1 + \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right),$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$. This completes the proof.

3. Some applications

On may rewrite the Arithmetic-Geometric mean inequality in the forms

$$A-G \ge 0$$
, and $\frac{A}{G}-1 \ge 0$.

As the first application of Theorem 1.1, we obtain the following refinement of the above mentioned inequalities.

Theorem 3.1. Assume that $a_1, a_2, ..., a_n$ are *n* positive real numbers which are not simultaneously equal, with arithmetic and geometric means A and G, respectively. Then, we have

$$A-G \ge \frac{Ge^{ne(\frac{A}{G}-1)}}{ne(e^{ne\frac{A}{G}}-e^{ne})} \prod_{i=1}^{n} \left(\frac{a_i}{G}-1\right)^2 \ge 0,$$

or equivalently

$$\frac{A}{G}-1 \ge \frac{\mathrm{e}^{n\mathrm{e}(\frac{A}{G}-1)}}{n\mathrm{e}^{n\mathrm{e}+1}\left(\mathrm{e}^{n\mathrm{e}(\frac{A}{G}-1)}-1\right)} \prod_{i=1}^{n} \left(\frac{a_{i}}{G}-1\right)^{2} \ge 0.$$

Proof. Assume that $a_1, a_2, ..., a_n$ are *n* positive real numbers which are not simultaneously equal, so that A > G. By using the result of Theorem 1.1, we have $\Re \le A - G$, which is equivalent to

$$\frac{1}{\mathrm{e}^{n\mathrm{e}}}\prod_{i=1}^{n}\left(\frac{a_{i}}{G}-1\right)^{2} \leq \mathrm{e}^{n\mathrm{e}(\frac{A}{G}-1)}-1.$$

On the other hand, for $0 \le x \le \beta$, we have $\log(1+x) \ge \frac{\log(1+\beta)}{\beta}x$ because $\frac{\log(1+x)}{x}$ is decreasing on $(0, \beta]$. We use this inequality by putting $x = \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1\right)^2 \ge 0$ and $\beta = e^{ne(\frac{A}{G}-1)} - 1$ to get

$$\mathscr{R} = \frac{G}{ne} \log \left(1 + \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right) \ge \frac{G}{ne} \left(\frac{e^{ne(\frac{A}{G}-1)}}{e^{ne\frac{A}{G}} - e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right).$$

This completes the proof.

As the second application of Theorem 1.1, we observe that it allows us to find the maximum value of a multi-variable function, without using partial derivative tests.

Theorem 3.2. We have

$$\max_{a_i > 0} \frac{G}{ne} \log \left(1 + \frac{1}{e^{ne}} \prod_{i=1}^n \left(\frac{a_i}{G} - 1 \right)^2 \right) = A - G.$$

Remark 3.3. We assume that $a_i > 0$, and then we replace a_i by $1/a_i$, from which the inequality $A \ge G$ implies validity of the well-known Geometric-Harmonic mean inequality, asserting that $G \ge H$, where H refers to the harmonic mean of the positive real numbers $a_1, a_2, ..., a_n$. We observe that the replacement $a_i \rightarrow 1/a_i$ gives the replacements $A \rightarrow 1/H$ and $G \rightarrow 1/G$. By applying this fact, one may rewrite all of the above results concerning the means A and G, to obtain similar results concerning the means G and H.

Acknowledgement

I express my gratitude to the referee for giving useful comments.

References

[1] N. Schaumberger, *The AM-GM Inequality via* $x^{1/x}$, College Math. J., **20**(1989), p320.

Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan. E-mail: mehdi.hassani@znu.ac.ir