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INVERSE SPECTRAL-SCATTERING PROBLEM FOR

THE STURM-LIOUVILLE OPERATOR ON A NONCOMPACT

STAR-TYPE GRAPH

S. A. BUTERIN AND G. FREILING

Abstract. We study the Sturm-Liouville operator on a noncompact star-type graph con-

sisting of a finite number of compact and noncompact edges under standard matching

conditions in the internal vertex. We introduce and investigate the so-called spectral-

scattering data, which generalize the classical spectral data for the Sturm-Liouville op-

erator on the half-line and the scattering data on the line. Developing the idea of the

method of spectral mappings we prove that the specification of the spectral-scattering

data uniquely determines the Sturm-Liouville operator on the graph.

1. Introduction

We study an inverse problem for the Sturm-Liouville differential operator on an arbitrary

noncompact star-type graph possessing a finite number of edges. This inverse problem con-

sists in recovering the potential of the Sturm-Liouville operator on the graph along with the

coefficients of boundary conditions in boundary vertices from appropriate spectral charac-

teristics. Differential operators on graphs (spatial networks) often appear in mathematics,

mechanics, physics, geophysics, physical chemistry, biology, electronics, nanoscale technol-

ogy and other branches of natural sciences and engineering (see [1]–[14]). Recently there has

increased interest in spectral theory of Sturm-Liouville or Schrödinger operators on graphs

(for a good review of such publications see [15], [16]). Most of the works in this direction

are devoted to the so-called direct problems of studying properties of the spectrum and the

root functions. Inverse spectral problems on graphs are because of their nonlinearity more

difficult and their intensive investigation started only several years ago.

Most complete results on inverse spectral problems for the Sturm-Liouville operator on

graphs were obtained for compact graphs including trees and also graphs with cycles (see
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[17]–[23] and the references therein). Certain systems of spectra or Weyl functions were shown

to be appropriate input data in the compact case. In [24] an inverse spectral problem was

studied for the Sturm-Liouville operator on a noncompact tree with a single noncompact

edge, where Weyl functions associated with finite boundary vertices were introduced and

used as the spectral data. Inverse spectral problems for higher-order differential operators

on compact trees were studied in [25] and on trees with a single noncompact edge in [26].

In the case of graphs with more than one noncompact edges it is natural to use the so-

called scattering data, which generalize the scattering data for the Sturm-Liouville operators

on the line [27]–[31]. For the first time the inverse scattering problem on a noncompact graph

was discussed in [32], but only for a very special case of star-type graphs without compact

edges. In [33] this case was reduced to the inverse scattering problem for the matrix Sturm-

Liouville operator on the half-line with a special selfadjoint boundary condition in the origin.

In [34]–[36] inverse scattering problems were studied for graphs consisting of a cycle and a

finite number rays.

In presence of compact boundary edges the scattering data are not sufficient to deter-

mine the potential on all edges of the graph. For example, in [37], [38] some non-uniqueness

results were obtained for inverse scattering problems on general noncompact graphs.

In this paper we provide a formulation and prove the uniqueness theorem for the inverse

problem of recovering the Sturm-Liouville operator on a noncompact star-type graph posses-

sing compact edges. In this situation it is natural to consider a mixture of inverse spectral and

inverse scattering problems. The spectral-scattering data, which we use, can be subdivided

into two parts. The ”spectral” part consists of the so-called Weyl functions associated with

the compact edges, which generalize the Weyl function of the Sturm-Liouville operator on

the half-line (see, e.g., [31]) and on a noncompact tree with a single infinite edge (see [24]).

The ”scattering” part, in turn, includes a portion of negative eigenvalues together with the

so-called reflection coefficients and norming constants associated with all but one noncom-

pact edges. Such scattering data generalizes the left (or right) scattering data for the Sturm-

Liouville operator on the line (see [27]–[31]). Since some eigenvalues are poles of the Weyl

functions from the ”spectral” part, in the ”scattering” part it suffices to specify only the so-

called invisible from compact edges eigenvalues. Developing the ideas of the method of spec-

tral mappings [39], we prove that the specification of these spectral-scattering data uniquely

determines the potential of the Sturm-Liouville operator on the graph along with the coef-

ficients of the boundary conditions in the boundary vertices. We note that the case without

compact edges was studied separately in [40] and also with general matching conditions in

[41]. The presence of compact edges causes, inter alia, new qualitative difficulties in the inves-

tigation of inverse problems due to a more complicated behavior of the scattering solutions

and reflection coefficients.
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In the next section we introduce and investigate special solutions of the differential equa-

tion on the graph, which possess necessary asymptotical and analytical properties. In Sec-

tion 3 properties of spectral characteristics are studied and the spectral-scattering data are

introduced. In Section 4 we prove the uniqueness theorem of the inverse problem.

2. Special solutions

In a finite-dimensional Euclidean space we consider a noncompact star-type graph Γ

with the vertices v0, v1, . . . , vp and the edges ε1, . . . ,εm , where ε j = [v0, v j ], j = 1, p , are seg-

ments and ε j , j = p +1,m, are rays with the common vertex v0. Let for definiteness p ≥ 1

and m − p ≥ 2. Moreover, for simplicity we assume that the length of each compact edge is

equal to 1 (it follows from the proofs that our method works also for arbitrary lengthes). The

vertices v j , j = 1, p , are called boundary vertices. The vertex v0 is called internal vertex and

considered as the initial point of all edges, which, in turn, are parameterized by x ≥ 0, and

x = 0 corresponds always to the internal vertex. For the compact edges we have x ∈ [0,1] and

x = 1 corresponds to the boundary vertex. Any function y on Γ can be represented as a vector

y = [y j (x)] j=1,m (but not a vector-function), where the function y j (x) is defined on the edge

ε j . Let q = [q j (x)] j=1,m be a real-valued function on Γ, which we will call the potential. We

assume that

q j (x) ∈ L(0,1), j = 1, p ; q j (x), xq j (x) ∈ L(0,∞), j = p +1,m.

Consider the Sturm-Liouville equation on Γ :

ℓ j y j :=−y ′′
j +q j (x)y j =λy j , (1)

where x ∈ (0,1) for j = 1, p ; x ∈ (0,∞) for j = p +1,m and λ is the spectral parameter. Let the

function y = [y j (x)] j=1,m satisfy the following m matching conditions in the vertex v0 :

y1(0) = y j (0), j = 2,m, (continuity condition)

m
∑

j=1

y ′
j (0) = 0 (Kirchhoff’s condition).



















(2)

and the following boundary conditions in the boundary vertices:

U j (y j ) := y ′
j (1)+H j y j (1) = 0, j = 1, p , (3)

where H j ∈ R, j = 1, p . Denote by L = L(q, H ) the boundary value problem (1)–(3), where

H = [H j ] j=1,p . We also consider the corresponding operator

L : D(L ) → L2(Γ), y = [y j ] j=1,m 7→L y := [ℓ j y j ] j=1,m,
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where the domain of definition D(L ) consists of functions y = [y j (x)] j=1,m such that

y j ∈W 2
1 [0,1], j = 1, p ; y j ∈W 2

1,loc [0,∞), y j ,ℓ j y j ∈ L2(0,∞), j = p +1,m,

and y satisfies (2), (3). The matching conditions (2) are called the standard matching condi-

tions. In electrical circuits (2) express Kirchhoff’s law, in elastic string network they express

the balance of tension, etc.

Let λ= ρ2. Denote

R
∗
= R\ {0}, Ω± = {ρ : ±Imρ > 0},

Q0 j (x) =

∫∞

x
|q j (t )|d t , Q1 j (x) =

∫∞

x
Q0 j (t )d t =

∫∞

x
(t −x)|q j (t )|d t .

Let C j (x,λ), S j (x,λ) be the solutions of equation (1) on the edge ε j satisfying the initial con-

ditions

C j (0,λ) = S ′
j (0,λ) = 1, C ′

j (0,λ) = S j (0,λ) = 0. (4)

On the compact edges ε j , j = 1, p, we introduce also the solutions ψ j (x,λ), θ j (x,λ) such that

ψ j (1,λ) =−θ′j (1,λ) = 1, U j (ψ j (x,λ)) = θ j (1,λ) = 0. (5)

For |ρ|→∞ the following estimates hold (see, e.g., [31]):

ψ j (x,λ) = cosρ(1−x)−ω j (x)
sinρ(1−x)

ρ
+o

( 1

ρ
exp(|Imρ|(1−x))

)

,

ψ′
j (x,λ) = ρ sinρ(1−x)+ω j (x)cosρ(1−x)+o(exp(|Imρ|(1−x))),















(6)

where

ω j (x) =−H j −
1

2

∫1

x
q j (t )d t , j = 1, p .

The following theorem introduces the Jost solution e j (x,ρ) on the noncompact edges ε j , j =

p +1,m, with prescribed behaviour in ∞ (see [31]).

Theorem 1. Let ρ ∈Ω+ and j ∈ {p +1, . . . ,m}. Equation (1) has a unique solution y j = e j (x,ρ)

satisfying the integral equation

e j (x,ρ)= exp(iρx)+

∫∞

x

sinρ(t −x)

ρ
q j (t )e j (t ,ρ)d t . (7)

The function e j (x,ρ) has the following properties:

(i) For each fixed x the functions e (ν)
j

(x,ρ), ν= 0,1, are analytic in Ω+ and continuous in Ω+.
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(ii) For ν= 0,1

e (ν)
j

(x,ρ)= (iρ)νexp(iρx)(1+o(1)), x →+∞, (8)

uniformly in Ω+. Moreover, for ρ ∈Ω+

|e j (x,ρ)exp(−iρx)| ≤ exp(Q1 j (x)),

|e j (x,ρ)exp(−iρx)−1| ≤Q1 j (x)exp(Q1 j (x)),

|e ′
j
(x,ρ)exp(−iρx)− iρ| ≤Q0 j (x)exp(Q1 j (x)).



























(9)

(iii) For each fixed ρ ∈Ω+ e j (x,ρ)∈ L2(0,∞). Moreover, e j (x,ρ) is a unique solution of (1) (up

to a multiplicative constant) having this property.

(iv) For |ρ|→∞, ρ ∈Ω+, ν= 0,1

e (ν)
j

(x,ρ)= (iρ)νexp(iρx)
(

1+
ω j (x)

iρ
+o

( 1

ρ

))

, ω j (x) =−
1

2

∫∞

x
q j (t )d t (10)

uniformly for x ≥ 0.

(v) For ρ ∈R
∗ the functions e j (x,ρ), e j (x,−ρ) form a fundamental system of solutions for (1),

and

〈e j (x,ρ),e j (x,−ρ)〉 ≡−2iρ, (11)

where 〈y, z〉 := y z ′− y ′z.

The next lemma (see [31]) gives properties of the Jost solutions e j ,r (x,ρ) related to the

potentials q j ,r (x) that approximate q j (x).

Lemma 1. If

lim
r→∞

∫∞

0
(1+x)|q j ,r (x)−q j (x)|d x = 0,

then

lim
r→∞

sup
ρ∈Ω+

sup
x≥0

|(e (ν)
j ,r

(x,ρ)−e (ν)
j

(x,ρ))exp(−iρx)| = 0, ν= 0,1.

Here e j ,r (x,ρ) are the Jost solutions for the potentials q j ,r (x).

LetΨk (λ) = [Ψk j (x,λ)] j=1,m, k = 1, p , be solutions of (1), (2) satisfying the following bound-

ary conditions in the boundary vertices:

U j (Ψk j (x,λ)) =−δ j k , j = 1, p , (12)

and having the following asymptotics on the noncompact edges:

Ψk j (x,λ) =O(exp(iρx)), x →∞, ρ ∈Ω+, j = p +1,m. (13)
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The functions Ψk (λ) and Mk (λ) :=Ψkk (1,λ) are called respectively the Weyl solution and the

Weyl function associated with the boundary vertex vk , k = 1, p .

We introduce also the solutions fk (ρ)= [ fk j (x,ρ)] j=1,m, k = p +1,m, of (1)–(3) having the

following asymptotics on the noncompact edges:

fkk (x,ρ)∼ exp(−iρx), fk j (x,ρ)=O(exp(iρx)), x →∞, ρ ∈Ω+, j = p +1,m \ k . (14)

The function fk (ρ) is called the scattering solution associated with the edge εk , k = p +1,m.

In order to investigate the Weyl and scattering solutions we construct the auxiliary solu-

tions gk (ρ)= [gk j (x,ρ)] j=1,m, k = 1,m, of (1), (2) in the following way:

gk j (x,ρ) = e j (x,ρ)
∏

l 6=k , j

el (0,ρ), j 6= k , (15)

gkk (x,ρ) = Ck (x,λ)
∏

l 6=k

el (0,ρ)−Sk (x,λ)
∑

j 6=k

e ′
j (0,ρ)

∏

l 6=k , j

el (0,ρ), (16)

where here and in the sequel for briefness we use the notation

e j (x,ρ) :=ψ j (x,ρ2), j = 1, p. (17)

Obviously gk , j (x,ρ) for each fixed x ≥ 0 is analytic in Ω+ and continuous in Ω+. Moreover, we

have
U j (gk j (x,ρ)) = 0, j = 1, p \ k ,

gk j (x,ρ)=O(exp(iρx)), x →∞, ρ ∈Ω+, j = p +1,m \ k .







(18)

Lemma 2. The following representation holds

Ψk (λ) =
1

∆(λ)
gk (ρ), k = 1, p , (19)

where

∆(λ) =
m
∑

j=1

e ′
j (0,ρ)

∏

l 6= j

el (0,ρ). (20)

Proof. According to (12), (13), (18) we have Ψk (λ) = −(Uk (gkk (x,ρ)))−1gk (ρ), k = 1, p . Using

(3)–(5) we get

Uk (Ck (x,λ)) =−ψ′
k (0,λ) =−e ′

k (0,ρ), Uk (Sk (x,λ)) =ψk (0,λ) = ek (0,ρ), k ∈ 1, p ,

which together with (16) gives Uk (gkk (x,ρ))=−∆(λ). ���

It is obvious that for k = 1, p the following relations hold

Ψkk (x,λ) = θk (x,λ)+Mk (λ)ψk (x,λ) =
gkk (x,ρ)

∆(λ)
, Mk (λ) =

gkk(1,ρ)

∆(λ)
. (21)
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Thus, the Weyl solutions and the Weyl functions have a jump along the real semi-axis [0,∞)

in the λ-plane.

Further, let k = p +1,m. Then for ρ ∈R
∗ we have

gkk (x,ρ)= a(ρ)ek (x,−ρ)+bk (ρ)ek(x,ρ), k = p +1,m, (22)

where a(ρ) does not depend on k . Indeed, using (11) we have

[

a(ρ)

bk (ρ)

]

=
1

2iρ

[

e ′
k

(0,ρ) −ek (0,ρ)

−e ′
k

(0,−ρ) ek (0,−ρ)

][

gkk (0,ρ)

g ′
kk

(0,ρ)

]

.

Thus, using (15), (16), (20) we calculate

a(ρ) =
1

2iρ
〈gkk(x,ρ),ek (x,ρ)〉 =

1

2iρ
∆(ρ2), (23)

bk (ρ) = −
1

2iρ

(

e ′
k(0,−ρ)

∏

l 6=k

el (0,ρ)+ek (0,−ρ)
∑

j 6=k

e ′
j (0,ρ)

∏

l 6=k , j

el (0,ρ)
)

. (24)

The second equality in (23) is valid for k = 1,m.

We note that (23) gives an analytic continuation of a(ρ) in Ω+. Hence the function a(ρ)

is analytic in Ω+ and ρa(ρ) is continuous in Ω+. Moreover, using (20), (23) together with the

asymptotics of the Jost solutions (10) and the entire solutions e j (x,ρ) =ψ j (x,ρ2), j = 1, p , (6)

for each ε> 0 we get

a(ρ)=
m

2p+1
exp(−piρ)

(

1+
1

iρ

m
∑

j=1

ω j (0)+o
( 1

ρ

))

, |ρ|→∞, ρ ∈Ωε, (25)

where Ωε = {ρ : argρ ∈ [ε,π−ε]}.

Lemma 3. For ρ ∈R
∗, k = p +1,m the following relations hold:

a(ρ) = a(−ρ), bk (ρ)= bk (−ρ), (26)

|a(ρ)|2 −|bk (ρ)|2 =

m
∑

j 6=k
j=p+1

∏

l 6=k , j

|el (0,ρ)|2. (27)

Proof. By virtue of (7), (17) we have e j (x,−ρ) = e j (x,ρ) = e j (x,ρ) for j = 1, p and e j (x,−ρ) =

e j (x,ρ) for j = p +1,m, ρ ∈R. Thus, (26) follows from (23), (24). Further, (11), (22) give

〈gkk(x,ρ), gkk (x,−ρ)〉 = 2iρ(a(ρ)a(−ρ)−bk(ρ)bk (−ρ)), k = p +1,m. (28)

On the other hand, according to (11), (16) we have

〈gkk(x,ρ), gkk (x,−ρ)〉 = 2iρ
m
∑

j 6=k
j=p+1

∏

l 6=k , j

el (0,ρ)el (0,−ρ), k = p +1,m,

which together with (26), (28) give (27). ���
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Corollary 1. Let ρ ∈ R
∗. Since e j (x,ρ) 6= 0, x ≥ 0, j = p +1,m, according to (20), (23), (27) we

have a(ρ) = 0 only if ψlν (0,ρ2) = 0 for at least two distinct indices lν ∈ {1, . . . , p}, ν= 1,2. More-

over, for all pairs of distinct indices k , j ∈ {p +1, . . . ,m} we have

∣

∣

∣

1

a(ρ)

∏

l 6=k , j

el (0,ρ)
∣

∣

∣≤ 1, ρ ∈R
∗
1 := {ρ : ρ ∈R

∗, a(ρ) 6= 0}. (29)

Lemma 4. For ρ ∈Ω+ such that a(ρ) 6= 0 the following representation holds:

fk (ρ)=
1

a(ρ)
gk (ρ), k = p +1,m. (30)

Proof. According to (8), (14) we have

〈ek(x,ρ), fkk (x,ρ)〉 =−2iρ. (31)

Let us first show that if a(ρ) 6= 0 then

fk (ρ)= Dk (ρ)gk (ρ). (32)

For a(ρ) 6= 0 and j 6= k it is easy to show that fk j (x,ρ) = Dk j (ρ)gk j (x,ρ), whence according to

(2), (15) we get

(Dk j1
(ρ)−Dk j2

(ρ))
∏

j 6=k

e j (0,ρ) = 0, j1, j2 6= k .

Thus, if
∏

j 6=k

e j (0,ρ) 6= 0, (33)

then all Dk j (ρ), j 6= k , are equal and we put Dk (ρ) := Dk j (ρ). Let (33) be false. Then there

exists a unique j0 6= k such that e j0
(0,ρ) = 0 (otherwise (20), (23) infer a(ρ) = 0). Taking (15)

into account we obtain gk j (x,ρ) ≡ 0, for j 6= k , j0 and put Dk (ρ) = Dk j0
(ρ). Thus, we have

fk j (x,ρ) = Dk (ρ)gk j (x,ρ), j 6= k . Since both the functions fk (ρ), gk (ρ) satisfy the matching

conditions (2) we get

fkk (x,ρ)= Dk (ρ)gkk (x,ρ) (34)

and arrive at (32). Substituting (34) into (31) and using (23) we obtain

−2iρ = Dk (ρ)〈ek(x,ρ), gkk(x,ρ)〉 =−2iρDk (ρ)a(ρ),

which together with (32) gives (30). ���

For ρ ∈R
∗
1 we consider (30) as a definition of the function fk(ρ). By virtue of the continuity

of the functions ek(x,ρ), fkk (x,ρ) with respect toρ in their domains of definition, formula (31)

remains valid also for ρ ∈R
∗
1 .
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3. Spectral-scattering data

According to (22) and (30) we get

fkk(x,ρ) = ek (x,−ρ)+ sk (ρ)ek (x,ρ), ρ ∈R
∗
1 , k = p +1,m, (35)

where the function

sk (ρ)=
bk (ρ)

a(ρ)
(36)

is called the reflection coefficient associated with the edge εk , k = p +1,m.

Let us point out some properties of sk(ρ). By virtue of (23), (24), (26), (36) the functions

sk(ρ) are continuous for ρ ∈R
∗
1 , and

sk (ρ)= sk(−ρ).

Moreover, (27) implies

|sk(ρ)|2 = 1−
1

|a(ρ)|2

m
∑

j 6=k
j=p+1

∏

l 6=k , j

|el (0,ρ)|2,

and consequently we have

|sk (ρ)| < 1, ρ ∈R
∗
1 .

Let us now study the properties of the discrete spectrum.

Definition 1. The values of the parameter λ, for which equation (1) has nonzero solutions y =

[y j (x)] j=1,m, satisfying the matching conditions (2), the boundary conditions (3) and y j (x) ∈

L2(0,∞), j = p +1,m, are called eigenvalues of L, and the corresponding nonzero solutions

are called eigenfunctions.

Denote by Λ the set of all eigenvalues of L and put

Λ1 := {λ= ρ2 : ρ ∈Ω+, a(ρ)= 0}, Λ2 := {λ= ρ2 : ρ ∈R
∗, a(ρ)= 0},

∆0(λ) :=
p
∑

j=1

ψ′
j (0,λ)

p
∏

l 6= j
l=1

ψl (0,λ),

(37)

∆1(λ) :=
p
∏

j=1

ψ j (0,λ),

Λ3 := {λ : λ≥ 0, ∆0(λ) =∆1(λ) = 0}.

According to (20), (23) we have

a(ρ)=∆0(ρ2)a1(ρ)+∆1(ρ2)a0(ρ), (38)
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where

a0(ρ) :=
1

2iρ

m
∑

j=p+1

e ′
j (0,ρ)

m
∏

l 6= j

l=p+1

el (0,ρ), a1(ρ) :=
1

2iρ

m
∏

j=p+1

e j (0,ρ). (39)

Consider the boundary value problem L0 for equation (1) on the graph Γ0 that is obtained

from Γ by removing the noncompact edges ε j , j = p +1,m, with the new matching conditions

y1(0) = . . .= yp (0), y ′
1(0)+ . . .+ y ′

p (0) = 0

and the boundary conditions (3). It is obvious that the eigenvalues of L0 coincide with the

zeros of the entire function ∆0(λ).

Lemma 5. Λ2 =Λ3 \ {0}.

Proof. According to (38) it is sufficient to prove the inclusion Λ2 ⊂ Λ3. Let λ = ρ2 ∈ Λ2, then

(26), (38) give






∆0(λ)a1(ρ)+∆1(λ)a0(ρ)= 0,

∆0(λ)a1(−ρ)+∆1(λ)a0(−ρ)= 0.

(40)

By virtue of (11), (39) the determinant of this linear algebraic system does not vanish:

a1(ρ)a0(−ρ)−a1(−ρ)a0(ρ)=
1

2iρ

m
∑

j=p+1

m
∏

l 6= j

l=p+1

|el (0,ρ)|2 6= 0.

Thus, from (40) it follows that λ∈Λ3. ���

Theorem 2. The set Λ= {λn} is at most countable. All eigenvalues λn are real. Eigenfunctions

related to different eigenvalues are orthogonal in L2(Γ). For each eigenvalue there exist up to

m −1 linearly independent eigenfunctions. Moreover,

(i) Λ=Λ1 ∪Λ3;

(ii) y j (x) ≡ 0, j = p +1,m, for each eigenfunction y = [y j (x)] j=1,m related to λ∈Λ3.

(iii) for all λn =ρ2
n ∈Λ

gkk (x,ρn) = dknek (x,ρn), k = 1,m. (41)

(iv) gk (ρn) is an eigenfunction related to λn if and only if dkn 6= 0.

Proof. Since L is a selfadjoint operator in L2(Γ), it is known [42] that its eigenvalues are real

and eigenfunctions related to different eigenvalues are orthogonal in L2(Γ).

The components y j (x) of each eigenfunction y = [y j (x)] j=1,m corresponding to an eigen-

value λ= ρ2, ρ ∈Ω+, have the form y j (x) = A j e j (x,ρ), where A j are constants, which do not
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vanish simultaneously. Substituting this into the matching conditions (2) we arrive at a homo-

geneous system of linear algebraic equations with respect to A j , whose determinant equals

to ∆(ρ2). Thus, the set of eigenvalues λ = ρ2, ρ ∈ Ω+, coincides with Λ1. Moreover, since the

rank of the determinant ∆(λ) exceeds 0, the number of linearly independent eigenfunctions

related to an eigenvalue from Λ1 is not greater than m −1.

Further, let λ≥ 0 be an eigenvalue and let y = [y j (x)] j=1,m be a corresponding eigenfunc-

tion. Using the same arguments as in [24] one can show that y j (x) ≡ 0, j = p +1,m. Thus,

y0 := [y j (x)] j=1,p is an eigenfunction of the boundary value problem L0, and hence λ ∈ Λ3.

Conversely, each λ ∈Λ3 is an eigenvalue of L0 and the corresponding eigenfunctions vanish

in v0, hence it is an eigenvalue also of L. Thus, the set of real nonnegative eigenvalues co-

incides with Λ3 and (i), (ii) are proved. Moreover, it is obvious that the number of linearly

independent eigenfunctions related to each λ ∈Λ3 does not exceed p −1.

For λn ∈Λ according to (23), (38), (39) and the first assertion (i) of the theorem we have

∆(λn)= 0. Using the second equality in (23) for all k = 1,m we obtain (41). Further, let dkn 6= 0.

Then for λn ∈ Λ1 it is obvious that gk (ρn) is an eigenfunction. If λn = ρ2
n ∈ Λ3 we have

e j (x,ρn) ∉ L2(0,∞), j = p +1,m. However, for k = 1, p the function gk (ρn) is an eigenfunction

anyway because in this case according to (15), (37) we have gk j (x,ρ)≡ 0 for j = p +1,m. Note

that according to (16) for k = p +1,m and λn ∈ Λ3 we have dkn = 0. Conversely, let dkn = 0.

Then gkk (x,ρn) ≡ 0 and according to (16) there are two distinct indices j1, j2 6= k such that

e jν(0,ρn) = 0, ν = 1,2. By virtue of (15) we get gk (ρn) = 0, and hence gk (ρn) is not an eigen-

function. ���

Theorem 3. The set of negative eigenvalues Λ1 is finite.

Proof. According to (25) Λ1 ⊂ (−M ,0), M < ∞. Hence, the set of negative eigenvalues λn =

ρ2
n , Imρn > 0, has a uniquely possible accumulation point in the origin. Let us assume to

the contrary that Λ1 is infinite, then τn := −iρn → 0, n →∞. Since e j (0,ρn) 6= 0, j = 1,m, for

sufficiently large n (for j = p +1,m see, e.g., [27]), we have gk (ρn) 6= 0, k = 1,m, for large n,

and hence gk (ρn) is an eigenfunction. According to (7), (16), (41) we get dkn ∈ R. One can

choose such increasing sequences of natural numbers {nν}, {n′
ν} that for all ν ∈N

nν 6=n′
ν, d1nν

d1n′
ν
> 0, e j (0,ρnν

)e j (0,ρn′
ν
) > 0, j = 1,m. (42)

By virtue of (9), there exists A > 0 such that

∫∞

A
e j (x, iτ′)e j (x, iτ′′)d x ≥

exp(−2AM )

8M
, τ′, τ′′ ∈ (0, M ], j = p +1,m.

Hence for sufficiently large ν we obtain

∫∞

0
e j (x,ρnν

)e j (x,ρn′
ν
)d x =

∫∞

A
e j (x,ρnν

)e j (x,ρn′
ν
)d x
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+

∫A

0
e j (x,ρnν

)(e j (x,ρn′
ν
)−e j (x,ρnν

))d x +

∫A

0
e2

j (x,ρnν
)d x > 0, j = p +1,m, (43)

∫1

0
e j (x,ρnν

)e j (x,ρn′
ν
)d x =

∫1

0
ψ j (x,λnν

)ψ j (x,λn′
ν
)d x

=

∫1

0
ψ j (x,λnν

)(ψ j (x,λn′
ν
)−ψ j (x,λnν

))d x +

∫1

0
ψ2

j (x,λnν
)d x > 0, j = 1, p . (44)

Take, for example, gp+1(ρ). According to (15), (41)–(44) we have

m
∑

j=1

∫∞

0
gp+1, j (x,ρnν

)gp+1, j (x,ρn′
ν
)d x

= dp+1,nν
dp+1,n′

ν

∫∞

0
ep+1(x,ρnν

)ep+1(x,ρn′
ν
)d x

+

m
∑

j 6=p+1
j=1

∏

l 6=p+1, j

el (0,ρnν
)el (0,ρn′

ν
)

∫∞

0
e j (x,ρnν

)e j (x,ρn′
ν
)d x > 0, (45)

where gp+1, j (x,ρ) = 0 and e j (x,ρ) = 0 for x > 1, j = 1, p . Inequality (45) contradicts the or-

thogonality of the eigenfunctions gp+1(ρnν
), gp+1(ρn′

ν
) related to the different eigenvalues

λnν
, λn′

ν
. ���

Thus, the set of negative eigenvalues has the form

Λ1 = {λn}n=1,N , λn =ρ2
n , ρn = iτn , 0< τN < . . . < τ1.

For briefness denote

fk (ρ) :=Ψk (ρ2), fk j (x,ρ) :=ψk j (x,ρ2), j = 1,m, k = 1, p . (46)

Theorem 4. The functions fk (ρ), k = 1,m, have at most simple poles in ρn , n = 1, N . The cor-

responding nonzero residues are eigenfunctions related to the eigenvalues λn =ρ2
n .

Proof. Let ρn be a pole of order s ≥ 1 of the function fk (ρ). According to (3), (5), (8), (12), (15),

(17), (19), (30), (31), (46) we have

〈 fk j (x,ρ),e j (x,ρ)〉 = δk j







1, k = 1, p ,

2iρ, k = p +1,m,

j = 1,m, (47)

where δk j is the Kronecker delta. Consider the function u = [u j (x)] j=1,m, determined by the

formula

u = lim
ρ→ρn

(ρ−ρn)s fk (ρ). (48)

Formulae (47), (48) give

〈u j (x),e j (x,ρn)〉 = 0, j = 1,m, (49)
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and consequently

−u′′
j +q j (x)u j =λnu j , x ∈ ε j , j = 1,m; U j (u j ) = 0, j = 1, p . (50)

Since the function fk (ρ) satisfies the matching conditions (2), the function u satisfies them

too. Thus, u is an eigenfunction corresponding to the eigenvalue λn .

Let us assume to the contrary that s > 1. Determine the function v = [v j (x)] j=1,m by the

formula

v = lim
ρ→ρn

d

dρ
((ρ−ρn)s fk (ρ)).

By virtue of (47), (48) we have

〈v j (x),e j (x,ρn)〉+〈u j (x), ė j (x,ρn)〉 = 0, j = 1,m, (51)

where ė j (x,ρ)= d
dρ e j (x,ρ). Differentiating (51) with respect to x and then substituting

e ′′
j (x,ρn) = (q j (x)−ρ2

n)e j (x,ρn), ė ′′
j (x,ρn) = (q j (x)−ρ2

n)ė j (x,ρn)−2ρne j (x,ρn)

and (50) into the relation obtained, we arrive at

−v ′′
j (x)+q j (x)v j (x)= ρ2

n v j (x)+2ρnu j (x), x ∈ ε j , j = 1,m. (52)

Using (50), (52) we obtain

p
∑

j=1

〈v j (x),u j (x)〉
∣

∣

∣

1

x=0
+

m
∑

j=p+1

〈v j (x),u j (x)〉
∣

∣

∣

∞

x=0
= 2ρn

(
p
∑

j=1

∫1

0
u2

j (x)d x +

m
∑

j=p+1

∫∞

0
u2

j (x)d x
)

.

(53)

Since the functions u, v satisfy the matching conditions (2), we get

m
∑

j=1

〈v j (x),u j (x)〉
∣

∣

∣

x=0
= 0. (54)

From (49) we get u j (x) =C j e j (x,ρn), j = 1,m, which together with (3), (5), (17) gives

〈v j (x),u j (x)〉|x=1 =−C jU j (v j (x)) = 0, j = 1, p . (55)

Moreover, for j = p +1,m we have ė (ν)
j

(x,ρn) = O(1), x →∞, ν = 0,1, (see [31]). By virtue of

(51) we have

lim
x→∞

〈v j (x),u j (x)〉=C j lim
x→∞

〈v j (x),e j (x,ρn)〉 =

=C j lim
x→∞

〈ė j (x,ρn),u j (x)〉 = 0, j = p +1,m,

(56)

because u(ν)
j

(x) = o(1), x → ∞, ν = 0,1. According to (7), (15), (16), (23), (30) the functions

fk (iτ), τ ≥ 0, are real-valued. Thus, by virtue of (48) the function u(x) is real or imaginary

depending on the fact if s is even or odd, respectively. Taking into account (53)–(56) we get

u(x)≡ 0, which is impossible. ���
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Corollary 2. For the eigenvalue λn0
= ρ2

n0
∈ Λ1 to be multiple, i.e. a(ρn0

) = ȧ(ρn0
) = 0, it is

necessary and sufficient that there are at least three distinct numbers j1, j2, j3 ∈ {1, . . . ,m}, such

that e jν(0,ρn0
) = 0, ν= 1,3.

Proof. The sufficiency follows from (20), (23). Let a(ρn0
) = ȧ(ρn0

) = 0, then according to

Theorem 4 and formula (30) we have gk j (x,ρn0
) ≡ 0 for all k , j ∈ {1, . . . ,m}. Hence, for all k , j in

the right-hand part of (15) for ρ = ρn0
there should be at least one zero-multiplier el (0,ρn0

) =

0, l 6= k , j , which proves the necessity. ���

Lemma 6. For all k , j ∈ {p+1, . . . ,m} and µ such that µ2 ∈Λ3∪{0} the following estimate holds:

ak j (ρ) :=
1

a(ρ)

∏

l 6=k , j

el (0,ρ) =O(1), ρ→µ, ρ ∈Ω+. (57)

Proof. Fix k , j ∈ {p + 1, . . . ,m} and µ such that µ2 ∈ Λ3 ∪ {0}. Suppose that the functions

e (ν)
l

(0,ρ), l = p +1,m, ν = 0,1, are analytic in a vicinity of µ. Then, using (20), (23), (29) we

deduce that the function ak j (ρ) has a removable singularity in µ, and hence (57) holds.

In the general case we cannot use these arguments. Therefore, we introduce the potential

q(r ) = [q j ,r (x)] j=1,m, where

q j ,r (x) = q j (x), j = 1, p , q j ,r (x) =







q j (x), 0 < x < r,

0, x > r,
j = p +1,m,

and consider the corresponding Jost solutions e j ,r (x,ρ), j = p +1,m. Clearly, for each fixed x

the functions e (ν)
j ,r

(x,ρ), ν= 0,1, are entire in ρ. Put

ar (ρ)=
1

2iρ

m
∑

j=1

e ′
j ,r (0,ρ)

∏

l 6= j

el ,r (0,ρ),

where e j ,r (x,ρ) =ψ j (x,ρ2), j = 1, p. By virtue of Lemma 1 and (6), (10) for each fixed ε> 0 we

have

lim
r→∞

ar (ρ)exp(piρ)= a(ρ)exp(piρ) uniformly in Ω+ \ {ρ : |ρ| < ε}. (58)

Choose δ> 0 such that a(ρ) 6= 0 for ρ ∈ [µ−δ,µ)∪ (µ,µ+δ] and consider the set Oδ(µ) := {ρ :

0 < |ρ−µ| ≤ δ}∩Ω+. Denote

ak j ,r (ρ) :=
1

ar (ρ)

∏

l 6=k , j

el ,r (0,ρ).

(i) Let µ 6= 0, then according to (58)

lim
r→∞

ak j ,r (ρ) = ak j (ρ)
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uniformly with respect to ρ ∈Oδ(µ) \Oε(µ) for each fixed ε> 0. This means, in particular, that

|ak j ,r (ρ)| ≤ C , |ρ| = δ, where C does not depend on r. Moreover, according to Corollary 1 we

have |ak j ,r (ρ)| ≤ 1 for ρ ∈R. Using the maximum modulus principle we get

|ak j ,r (ρ)| ≤C , ρ ∈Oδ(µ). (59)

Taking in (59) the limit as r →∞ we arrive at |ak j (ρ)| ≤ C , ρ ∈ Oδ(µ). Thus, (57) is proved for

µ 6= 0.

(ii) Let µ= 0. According to Lemma 5 and Theorem 3 ρ = 0 is not a concentration point for

the set {ρ : ρ ∈Ω+ \ {0}, a(ρ) = 0}. Hence, there exists δ> 0 such that a(ρ) 6= 0 for all ρ ∈ Oδ(0).

By virtue of (58) for each ε> 0 there exists R such that ar (ρ) 6= 0 for ρ ∈Oδ(0)\Oε(0), r ≥ R . Let

ρn,r , n = 1, Nr , be all zeros of the function ar (ρ) in Oε counted with multiplicity.

Let us show that Nr ≤ K for all r. Since the function e j ,r (0,ρ) has a uniformly bounded

number of zeros (see [27]), it is sufficient to prove that the number of the zeros ρn,r of ar (ρ),

such that e j ,r (0,ρn,r ) 6= 0, j = 1,m, is uniformly bounded too. Construct the solution gk ,r (ρ)=

[gk j ,r (x,ρ)] j=1,m for the potential q(r ) analogously to gk (ρ) for q. According to Theorem 2 and

(16) gk ,r (ρn,r ) is an eigenfunction of L(q(r ), H ) related to the eigenvalue ρ2
n,r and

gkk ,r (x,ρn,r ) = dkn,r ek ,r (x,ρn,r ), dkn,r 6= 0, k = 1,m. (60)

Assume to the contrary that the number of zeros Nr is not bounded. Then there exist such

increasing sequences {rν}, {nν}, {n′
ν} that

nν 6=n′
ν, d1nν,rνd1n′

ν,rν > 0, e j ,rν(0,ρnν,rν)e j ,rν(0,ρn′
ν,rν) > 0, j = 1,m. (61)

Analogously to the estimates (43), (44) we obtain

∫∞

0
e j ,rν(x,ρnν,rν )e j ,rν(x,ρn′

ν,rν)d x > 0, j = 1,m, (62)

for sufficiently large ν. According to (15), (60) and (61), (62) we have

m
∑

j=1

∫∞

0
g1 j ,rν(x,ρnν,rν)g1 j ,rν(x,ρn′

ν,rν)d x

= d1nν,rνd1n′
ν,rν

∫∞

0
e1,rν(x,ρnν,rν)e1,rν(x,ρn′

ν,rν )d x

+

m
∑

j=2

∏

l 6= j

el ,rν (0,ρnν,rν)el ,rν (0,ρn′
ν,rν )

∫∞

0
e j ,rν(x,ρnν,rν)e j ,rν(x,ρn′

ν,rν )d x > 0,

which contradicts the orthogonality in L2(Γ) of the eigenfunctions g1,rν(ρnν,rν ), g1,rν(ρn′
ν,rν).

Thus, we have proved that Nr ≤ K .
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Further, put

Ak j ,r (ρ) := ak j ,r (ρ)ϕr (ρ), ϕr (ρ)=
Nr
∏

n=1

ρ−ρn,r

ρ+ρn,r
. (63)

After removing its singularities the function Ak j ,r (ρ) is analytic in Oδ(0). It is obvious that

|ϕr (ρ)| ≤ 1, ρ ∈Ω+, and

lim
r→∞

ϕr (ρ)= 1, ρ 6= 0. (64)

By virtue of (58), (63), (64) and Lemma 1 we obtain

lim
r→∞

Ak j ,r (ρ) = ak j (ρ), ρ ∈Oδ(0).

Using (59), (63) we get |ak j (ρ)| ≤C , ρ ∈Oδ(0). Thus, (57) is proved also for µ= 0. ���

Corollary 3. For all fixed x ≥ 0, k = p +1,m, ν = 0,1 and µ such that µ2 ∈ Λ2 the following

estimates hold:

f (ν)
kk

(x,ρ)=O
( 1

ρ

)

, ρ→ 0, f (ν)
kk

(x,ρ)=O(1), ρ→ µ, ρ ∈Ω+.

Proof. According to (16), (30) and Lemma 6 it is sufficient to prove that

1

a(ρ)

∑

j 6=k

e ′
j (0,ρ)

∏

l 6=k , j

el (0,ρ) = O
( 1

ρ

)

, ρ→ 0, ρ ∈Ω+, (65)

1

a(ρ)

∑

j 6=k

e ′
j (0,ρ)

∏

l 6=k , j

el (0,ρ) = O(1), ρ→µ, ρ ∈Ω+. (66)

We note that one cannot apply Lemma 6 directly, because in (57) j can be chosen only from

{p +1, . . . ,m}, while in (65), (66) we have j = 1,m \ k . Using (20), (23) we get

1

a(ρ)

∑

j 6=k

e ′
j (0,ρ)

∏

l 6=k , j

el (0,ρ) =
2iρ

ek (0,ρ)
−

e ′
k

(0,ρ)

ek (0,ρ)a(ρ)

∏

l 6=k

el (0,ρ).

Since ek (x,ρ) 6= 0 for ρ ∈ R
∗, (66) follows solely from Lemma 6. As for (65) one should also

recall that (see [27])

ρ

ek (0,ρ)
=O(1), ρ→ 0, ρ ∈Ω+. ���

Denote

ϕk (ρn) := Res
ρ=ρn

fk (ρ), k = 1,m, n = 1, N . (67)

Theorem 4 yields that nonzero functions ϕk (ρn) = [ϕk j (x,ρn)] j=1,m are eigenfunctions re-

lated to the eigenvalue λn = ρ2
n ∈Λ1 and hence we have

ϕkk (x,ρn) =αknek (x,ρn), k = 1,m, n = 1, N . (68)
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The numbers αkn are called norming constants associated with the edge εk . We note that if

ȧ(ρn) 6= 0, then

αkn =
dkn

ȧ(ρn)
.

Definition 2. The eigenvalue λn is called invisible from the edge ε j , j ∈ {1, . . . ,m}, if y j (x) ≡ 0,

for each eigenfunction y = [yi (x)]i=1,m related to λn ; otherwise it is called visible from ε j .

Denote by Λ
′
1 the set of all eigenvalues that are visible from at least one infinite edge ε j ,

j ∈ {p +1, . . . ,m −1}. By virtue of Theorem 2 Λ
′
1 ⊂Λ1, and hence Λ

′
1 has the form

Λ
′
1 = {λns

}
s=1,N ′ .

For λn ∉Λ
′
1 we obviously have αkn = 0, k = p +1,m −1.

Definition 3. The set

J := {Mν(λ), sk (ρ),λns
,αkns

}
ν=1,p, k=p+1,m−1, s=1,N ′

is called spectral-scattering data of L.

Remark 1. Denote by Λ
′′
1 the subset of Λ′

1 consisting of all eigenvalues that are visible from

at least one compact edge. Using (16), (19), (20) and Theorem 4 one can show that if λn is

visible from some compact edge ε j , j ∈ {1, . . . , p}, then λn is a pole of the Weyl function M j (λ).

Thus, the set Λ′′
1 is completely determined by specification of {Mν(λ)}ν=1,p . Therefore in J it

is sufficient to specify among λns
, s = 1, N ′, only those eigenvalues that belong to Λ

′
1 \Λ′′

1 , i.e.

invisible from compact edges.

4. Inverse problem. Uniqueness theorem

The inverse problem is formulated as follows.

Inverse Problem 1. Given J , find q and H .

We agree that together with L we consider here and in the sequel a boundary value prob-

lem L̃ = L(q̃ , H̃) of the same form but with other coefficients. If a certain symbol γ denotes an

object corresponding to L, then this symbol with tilde γ̃ denotes the analogous object related

to L̃.

Theorem 5. If J = J̃ , then L = L̃, i.e. q j (x)
a.e.
= q̃ j (x), j = 1,m, H j = H̃ j , j = 1, p . Thus, the

specification of the spectral-scattering data J uniquely determines the coefficients of L.
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Proof. (i) Fix k ∈ {1, . . . , p}. Let us show that Mk(λ) ≡ M̃k (λ) implies Hk = H̃k and qk(x) = q̃k (x)

a.e. on (0,1). Define the matrix P(x,λ) = [Pν j (x,λ)]ν, j=1,2 by the formula

P(x,λ)

[

ψ̃k (x,λ) Ψ̃kk (x,λ)

ψ̃′
k

(x,λ) Ψ̃′
kk

(x,λ)

]

=

[

ψk (x,λ) Ψkk (x,λ)

ψ′
k

(x,λ) Ψ′
kk

(x,λ)

]

. (69)

Using 〈ψk (x,λ),Ψkk (x,λ)〉 ≡−1, we calculate

Pν1(x,λ) =Ψ
(ν−1)
kk

(x,λ)ψ̃′
k

(x,λ)−ψ(ν−1)
k

(x,λ)Ψ̃′
kk

(x,λ),

Pν2(x,λ) =ψ(ν−1)
k

(x,λ)Ψ̃kk (x,λ)−Ψ
(ν−1)
kk

(x,λ)ψ̃k (x,λ).







(70)

Moreover, formula (69) in particular gives

ψk (x,λ) = P11(x,λ)ψ̃k (x,λ)+P12(x,λ)ψ̃′
k (x,λ). (71)

By virtue of (6), (10), (16)–(19), (23), (25), (70) and the asymptotis of the functions C (ν)
k

(x,λ),

S(ν)
k

(x,λ), ν= 0,1, (see [31]) we have

P11(x,λ) = 1+O
( 1

ρ

)

, P12(x,λ) =O
( 1

ρ2

)

, ρ ∈Ωε, |ρ|→∞, (72)

for each fixed ε> 0. On the other hand, according to (21) and (70),

P11(x,λ) = θk (x,λ)ψ̃′
k (x,λ)− θ̃′k (x,λ)ψk (x,λ)+ (Mk (λ)− M̃k (λ))ψk (x,λ)ψ̃′

k (x,λ),

P12(x,λ) = ψk (x,λ)θ̃k (x,λ)− ψ̃k (x,λ)θk (x,λ)+ (M̃k (λ)−Mk (λ))ψk (x,λ)ψ̃k (x,λ).

Thus, if Mk (λ) ≡ M̃k (λ), then for each fixed x the functions P11(x,λ), P12(x,λ) are entire in

λ of order r ≤ 1/2. By virtue of the Phragmen–Lindelöf and Liouville theorems formulae (72)

yield P11(x,λ) ≡ 1, P12(x,λ) ≡ 0. Substituting this into (71) we get ψk (x,λ) ≡ ψ̃k (x,λ) for all

x ∈ [0,1] and consequently Hk = H̃k and qk (x) = q̃k(x) a.e. on (0,1).

(ii) Fix k ∈ {p +1, . . . ,m −1}. Denote

Φ
+(x,ρ) =

[

fkk (x,ρ) ek (x,ρ)

f ′
kk

(x,ρ) e ′
k

(x,ρ)

]

, Φ
−(x,ρ)=

[

ek (x,−ρ) fkk (x,−ρ)

e ′
k

(x,−ρ) f ′
kk

(x,−ρ)

]

. (73)

Lemma 7. For ρ ∈R
∗
1 the following relation holds:

Φ
−(x,ρ)=Φ

+(x,ρ)V (ρ), V (ρ) =

[

1 sk(−ρ)

−sk (ρ) 1− sk (−ρ)sk (ρ)

]

. (74)

Proof. According to (31) the functions fkk (x,ρ), ek (x,ρ) form a fundamental system of solu-

tions on the edge εk if fk (x,ρ) exists – in particular, for ρ ∈R
∗
1 . Thus, we have

ek (x,−ρ)= v11(ρ) fkk (x,ρ)+v21(ρ)ek (x,ρ),

fkk(x,−ρ) = v12(ρ) fkk (x,ρ)+v22(ρ)ek (x,ρ).







(75)
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Let us calculate the coefficients vν j (ρ). According to (11), (35), (75) we arrive at

2iρv11(ρ) = 〈ek(x,−ρ),ek (x,ρ)〉 = 2iρ,

2iρv21(ρ) = 〈 fkk(x,ρ),ek (x,−ρ)〉 =−2iρsk(ρ),

2iρv12(ρ) = 〈 fkk(x,−ρ),ek (x,ρ)〉 = 2iρsk(−ρ),

2iρv22(ρ) = 〈 fkk(x,ρ), fkk(x,−ρ)〉 = 2iρ(1− sk (ρ)sk(−ρ)),

whence we get

v11(ρ)= 1, v12(ρ) = sk (−ρ), v21(ρ) =−sk (ρ), v22(ρ) = 1− sk (−ρ)sk(ρ),

which together with (75) give (74). ���

Let us define the matrix P+(x,ρ)= [P+
ν j

(x,ρ)]ν, j=1,2, ρ ∈Ω+, by the formula

P+(x,ρ)Φ̃+(x,ρ)=Φ
+(x,ρ). (76)

By virtue of (31), (73), this yields

P+
ν1(x,ρ)=

1

2iρ

(

f (ν−1)
kk

(x,ρ)ẽ ′
k (x,ρ)−e (ν−1)

k
(x,ρ) f̃ ′

kk (x,ρ)
)

,

P+
ν2(x,ρ)=

1

2iρ

(

e (ν−1)
k

(x,ρ) f̃kk (x,ρ)− f (ν−1)
kk

(x,ρ)ẽk (x,ρ)
)

,















(77)

ek (x,ρ)= P+
11(x,ρ)ẽk (x,ρ)+P+

12(x,ρ)ẽ ′
k (x,ρ). (78)

Using (6), (10), (16), (17), (25), (30), (77) and the asymptotics of C (ν)
k

(x,λ), S(ν)
k

(x,λ), ν = 0,1,

(see [31]) we get

P+
11(x,ρ)= 1+o

( 1

ρ

)

,

P+
12(x,ρ)=O

( 1

ρ2

)

,















|ρ|→∞, ρ ∈Ωε. (79)

Analogously we define the matrix P−(x,ρ)= [P−
ν j

(x,ρ)]ν, j=1,2, ρ ∈Ω−, by the formula

P−(x,ρ)Φ̃−(x,ρ)=Φ
−(x,ρ). (80)

Obviously, we have

P−(x,ρ)= P+(x,−ρ). (81)

Since s̃k(ρ) = sk (ρ), formulae (74), (76), (80) give for ρ ∈R
∗
1 ,

P−(x,ρ)=Φ
−(x,ρ)(Φ̃−(x,ρ))−1 =Φ

+(x,ρ)V (ρ)(Φ̃+(x,ρ)Ṽ (ρ))−1 =

=Φ
+(x,ρ)V (ρ)(Ṽ (ρ))−1(Φ̃+(x,ρ))−1 =Φ

+(x,ρ)(Φ̃+x,ρ))−1 = P+(x,ρ),
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and consequently for each fixed x ≥ 0 the function P−(x,ρ) is an analytic continuation in Ω−

of P+(x,ρ). Thus, using (77), Corollary 3 and Definition 2 we conclude that the function

P(x,ρ) :=







P+(x,ρ), ρ ∈Ω+,

P−(x,ρ), ρ ∈Ω−,

is meromorphic with at most simple poles in the points ±ρns
, s = 1, N ′, ±ρ̃ns

, s = 1, Ñ ′, and

with an at most second-order pole in the origin. Since Ñ ′ = N ′, ρ̃ns
= ρns

, α̃kns
= αkns

, s =

1, N ′, according to (67), (68) we have

Res
ρ=ρns

P+
ν1(x,ρ) =

1

2iρns

(

ϕ(ν−1)
kk

(x,ρns
)ẽ ′

k (x,ρns
)−e (ν−1)

k
(x,ρns

)ϕ̃′
kk (x,ρns

)
)

=
αkns

− α̃kns

2iρns

e (ν−1)
k

(x,ρns
)ẽ ′

k (x,ρns
) = 0,

Res
ρ=ρns

P+
ν2(x,ρ) =

1

2iρns

(

ϕ̃kk (x,ρns
)e (ν−1)

k
(x,ρns

)− ẽk (x,ρns
)ϕ(ν−1)

kk
(x,ρns

)
)

=
α̃kns

−αkns

2iρns

ẽk (x,ρns
)e (ν−1)

k
(x,ρns

) = 0.

Thus, according to (81) the function ρ2P(x,ρ) is entire in ρ of order r ≤ 1. By virtue of (79),

(81), the Phragmen-Lindelöf and Liouville theorems we get

P+
11(x,ρ) ≡ 1+

C1

ρ2
, P+

12(x,ρ) ≡
C2

ρ2
, C1, C2 −const ,

which together with (78) give

ek (x,ρ)= ẽk (x,ρ)+
1

ρ2
(C1ẽk (x,ρ)+C2ẽ ′

k (x,ρ)). (82)

By virtue of continuity of ek (x, ·) in Ω+ we have

C1ẽk (x,0)+C2ẽ ′
k (x,0) ≡ 0, (83)

which gives C1 = 0. Indeed, according to (8) we have ẽk (x,0) 6≡ 0 and hence C1 6= 0 yields

C2 6= 0. Then (83) gives q̃k (x) = (C1/C2)2 6= 0, which contradicts q̃k (x) ∈ L(0,∞).

Suppose that C2 6= 0. Then by virtue of (83) we have ẽ ′
k

(x,0) ≡ 0 and consequently q̃k (x) =

0. Thus, ẽk (x,ρ)= exp(iρx), which together with (82) give

ek (x,ρ)= ẽk (x,ρ)+
iC2

ρ
exp(iρx).

Using again the continuity of e(x, ·) we infer that C2 = 0 and arrive at a contradiction. Thus,

we get C1 =C2 = 0 and according to (82) ek (x,ρ)≡ ẽk (x,ρ), which, in turn, gives qk(x) = q̃k (x)

a.e. on (0,∞), k = p +1,m −1.
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It remains to prove that qm(x) = q̃m(x). The function M (λ) := em(0,ρ)(e ′
m(0,ρ))−1 is the

Weyl function of the boundary value problem for equation (1) (for j = m) with the boundary

condition y ′
m(0) = 0. Thus, it is sufficient to prove that M̂(λ) ≡ 0 (see [31]). By virtue of (15),

(19) we have

M (λ) =
Ψ1m(0,λ)

Ψ
′
1m(0,λ)

. (84)

According to the matching conditions (2) and representation (21) we have

Ψ1m(0,λ) = Ψ11(0,λ) = θ1(0,λ)+M1(λ)ψ1(0,λ), (85)

Ψ
′
1m(0,λ) = −θ′1(0,λ)−M1(λ)ψ′

1(0,λ)−
m−1
∑

j=2

Ψ
′
1 j (0,λ). (86)

By virtue of (15), (19) we get

Ψ11(0,λ) =
1

∆(λ)

m
∏

l=2

el (0,ρ), Ψ
′
1 j (0,λ) =

e ′
j
(0,ρ)

∆(λ)

∏

l 6=1, j

el (0,ρ), j 6= 1,

whence we find

em(0,ρ)

∆(λ)
=Ψ11(0,λ)

(m−1
∏

l=2

el (0,ρ)
)−1

, Ψ
′
1 j (0,λ) =Ψ11(0,λ)

e ′
j
(0,ρ)

e j (0,ρ)
,

which together with (86) gives

Ψ
′
1m(0,λ) =−θ′1(0,λ)−M1(λ)ψ′

1(0,λ)− (θ1(0,λ)+M1(λ)ψ1(0,λ))
m−1
∑

j=2

e ′
j
(0,ρ)

e j (0,ρ)
. (87)

Using (84), (85), (87) we arrive at M̂ (λ) ≡ 0. ���

References

[1] E. Montrol, Quantum theory on a network, J. Math. Phys., 11(1970), 635–648.

[2] M. D. Faddeev and B. S. Pavlov, Model of free electrons and the scattering problem, Teor. Math. Fiz., 55 (1983),

257–269 (Russian); English transl. in Theor. Math. Phys., 55(1983), 485–492.

[3] J.-P. Roth, Spectre du laplacien sur un graphe, C. R. Acad. Sci. Paris, 296(1983), 783–795.

[4] S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission, Lect. Notes

Math. 1771, Springer, 1985, 532–541.

[5] J. von Below, Sturm-Liouville eigenvalue problem on networks, Math. Methods Appl. Sci., 10(1988), 383–395.

[6] J. E. Langese, Leugering G. and Schmidt J.P.G., Modelling, analysis and control of dynamic elastic multi-link

structures, Birkhäuser, Boston, 1994.

[7] F. Ali-Mehmeti, Nonlinear waves in networks, Math. Research, 80(1994).

[8] P. Exner, Contact interactions on graph superlattices, J. Phys. A: Math. Gen., 29(1996), 87–102.

[9] T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79(1997), 4794–4797.

[10] J. Tautz, M. Lindauer and D.C. Sandeman, Transmission of vibration across honeycombs and its detection by

bee leg receptors, J. Exp. Biol., 199(1999), 2585–2594.



348 S. A. BUTERIN AND G. FREILING

[11] B. Dekoninck and S. Nicaise, The eigenvalue problem for networks of beams, Linear Algebra Appl., 314(2000),

165–189.

[12] J. Desbois, Spectral determinant of Schrödinger operators on graphs, J. Phys. A: Math. Gen., 33(2000), L63-7.

[13] G. Berkolaiko, E. Bogomolny and J. Keating, Star graphs and Seba billiards, J. Phys. A: Math. Gen., 34 (2001),

335–350.

[14] A. Sobolev and M. Solomyak, Schrödinger operator on homogeneous metric trees: spectrum in gaps, Rev. Math.

Phys., 14(2002), 421–467.

[15] Yu. V. Pokornyi and A. V. Borovskikh, Differential equations on networks (geometric graphs), J. Math. Sci.

(N.Y.), 119(2004), 691–718.

[16] Yu. Pokornyi and V. Pryadiev, The qualitative Sturm-Liouville theory on spatial networks, J. Math. Sci. (N.Y.),

119(2004), 788–835.

[17] M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Prob-

lems, 20(2004), 647–672.

[18] V. A. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 21(2005),

1075–1086.

[19] B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.

Sci., 461(2005), no.2062, 3231–3243.

[20] G. Freiling and V. A. Yurko, Inverse problems for differential operators on graphs with general matching con-

ditions, Appl. Anal., 86(2007), 653–667.

[21] V. A. Yurko, Inverse problems for Sturm-Liouville operators on bush-type graphs, Inverse Problems, 25(2009),

no.10, 105008, 14pp.

[22] V. A. Yurko, Uniqueness of recovering Sturm-Liouville operators on A-graphs from spectra, Results in Mathe-

matics, 55(2009), 199–207.

[23] V. A. Yurko, Inverse spectral problems for differential operators on arbitrary compact graphs, J. Inv. Ill-Posed

Problems, 18(2010), 245–261.

[24] G. Freiling and V. A. Yurko, Inverse spectral problems for Sturm-Liouville operators on noncompact trees, Re-

sults in Mathematics, 50(2007), 195–212.

[25] V. A. Yurko, Inverse problems for differential operators of any order on trees, Matemat. Zametki, 83(2008),

139–152; English transl. in Math. Notes, 83(2008), 125–137.

[26] V. A. Yurko, Inverse spectral problems for arbitrary order differential operators on noncompact trees, J. Inverse

Ill-Posed Probl. 20 (2012), no.1, 111–131.

[27] V. A. Marchenko, Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, 1977; English

transl. in Birkhäuser, 1986.

[28] B. M. Levitan, Inverse Sturm-Liouville problems. Nauka, Moscow, 1984; English transl., VNU Sci. Press,

Utrecht, 1987.

[29] L. D. Faddeev, On a connection the S-matrix with the potential for the one-dimensional Schrödinger operator,

Dokl. Akad. Nauk SSSR, 121(1958), 63–66.

[30] P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math., 32(1979), 121–251.

[31] G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and their Applications. NOVA Science Publish-

ers, New York, 2001.

[32] N. I. Gerasimenko, Inverse scattering problem on a noncompact graph, Teoret. Mat. Fiz., 74(1988), 187–200

(Russian); English transl. in Theor. Math. Phys., 75 (1988) 460–470.

[33] M. Harmer, Inverse scattering on matrices with boundary conditions, J. Phys. A, 38(2005), 4875–4885.

[34] I. Trooshin, V. Marchenko and K. Mochizuki, Inverse scattering on a graph containing circle, Analytic Methods

of Analysis and DEs: AMADE 2006 (Cambridge: Cambridge Science), 237–243.

[35] G. Freiling and M. Ignatyev, Spectral analysis for Sturm-Liouville operator on sun-type graphs, Inverse Prob-

lems, 27(2011), 095033 (17pp).

[36] M. Ignatyev, Inverse scattering problem for Sturm-Liouville operator on one-vertex noncompact graph with a

cycle, Tamkang J. Math., 42 (2011), 365–384.



INVERSE SPECTRAL-SCATTERING PROBLEM 349

[37] P. Kurasov and F. Stenberg, On the inverse scattering problem on branching graphs, J. Phys. A: Math. Gen.,

35(2002), 101–121.

[38] J. Boman and P. Kurasov, Symmetries of quantum graphs and the inverse scattering problem, Adv. Appl. Math.,

35(2005), 58–70.

[39] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems

Series, VSP, Utrecht, 2002.

[40] S. A. Buterin and G. Freiling, Inverse scattering problem for the Sturm-Liouville operator on a noncompact

star-type graph, Schriftenreihe des Fachbereichs Mathematik, SM-DU-725, Universitaet Duisburg-Essen,

2011, 17pp.

[41] S. A. Buterin, Inverse scattering problem for the Sturm-Liouville operator on a noncompact star-type graph

with general matching conditions, Spectral and Evolutional Problems, 21(2011), 77–87 (Russian).

[42] M. A. Naimark, Linear Differential Operators. 2nd ed., Nauka, Moscow, 1969; English transl. of 1st ed., Parts

I,II, Ungar, New York, 1967, 1968.

Department of Mathematics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.

E-mail: buterinsa@info.sgu.ru

Department of Mathematics, Duisburg-Essen University, Forsthausweg 2, Duisburg 47057, Germany.

E-mail: gerhard.freiling@uni-due.de

mailto:buterinsa@info.sgu.ru
mailto:gerhard.freiling@uni-due.de

	1. Introduction
	2. Special solutions
	3. Spectral-scattering data
	4. Inverse problem. Uniqueness theorem
	References

