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WEIGHTED SHARING AND UNIQUENESS OF MEROMORPHIC

FUNCTIONS WITH REGARD TO MULTIPLICITY

PULAK SAHOO AND BISWAJIT SAHA

Abstract. In the paper we study the uniqueness problems of meromorphic functions

whose certain nonlinear differential polynomials share certain value or fixed point with

finite weight and obtain two theorems which improve two recent results due to S.S. Bhoos-

nurmath and S.R. Kabbur [Tamkang J. Math., 44, 11-22, Spring 2013].

1. Introduction, definitions and results

In this paper, by meromorphic functions we will always mean meromorphic functions in

the complex plane. We adopt the standard notations in the Nevanlinna theory of meromor-

phic functions as explained in [5, 16, 19]. Let E denote any set of positive real numbers of

finite linear measure, not necessarily the same at each occurrence. For a nonconstant mero-

morphic function f , we denote by T (r, f ) the Nevanlinna characteristic of f and by S(r, f )

any quantity satisfying S(r, f ) = o{T (r, f )}(r →∞,r 6∈ E ). We denote by T (r ) the maximum of

T (r, f ) and T (r, g ), by S(r ) any quantity satisfying S(r )= o{T (r )} (r →∞,r 6∈ E ).

Let f and g be two nonconstant meromorphic functions. We say that f and g share the

value a CM (counting multiplicities), if f − a and g − a have the same zeros with the same

multiplicities. Similarly, we say that f and g share the value a IM, provided that f − a and

g − a have the same zeros ignoring multiplicities. A finite value z0 is a fixed point of f (z) if

f (z0) = z0. Throughout this paper, we need the following definition.

Θ(a, f ) = 1− limsup
r−→∞

N (r, a; f )

T (r, f )
,

where a is a value in the extended complex plane.

In 1999 I. Lahiri [6] studied the uniqueness problems of meromorphic functions when

two linear differential polynomials share the same 1-points. In the same paper regarding the

nonlinear differential polynomials Lahiri asked the following question.
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What can be said if two nonlinear differential polynomials generated by two meromor-

phic functions share 1 CM ?

Afterwards research works concerning the above question have been done by many math-

ematicians and continuous efforts are being put in to relax the hypothesis of the results. {cf.

[1], [3], [4], [10], [11], [12], [13], [14]}.

In 2004 W.C. Lin and H.X. Yi [11] proved the following results which corresponded to the

above question.

Theorem A. Let f and g be two nonconstant meromorphic functions satisfying Θ(∞, f ) >

2/(n +1), n ≥ 12 an integer. If f n( f −1) f ′ and g n(g −1)g ′ share the value 1 CM, then f ≡ g .

Theorem B. Let f and g be two nonconstant meromorphic functions, n ≥ 13 an integer. If

f n( f −1)2 f ′ and g n(g −1)2g ′ share the value 1 CM, then f ≡ g .

In the same year W.C. Lin and H.X. Yi [12] considered the fixed point sharing and ex-

tended Theorems A and B as follows.

Theorem C. Let f and g be two transcendental meromorphic functions, n ≥ 12 an integer.

If f n( f − 1) f ′ and g n(g − 1)g ′ share z CM, then either f ≡ g or g =
(n+2)(1−hn+1)
(n+1)(1−hn+2)

and f =

(n+2)h(1−hn+1 )
(n+1)(1−hn+2)

, where h is a nonconstant meromorphic function.

Theorem D. Let f and g be two transcendental meromorphic functions, n ≥ 13 an integer. If

f n( f −1)2 f ′ and g n(g −1)2g ′ share z CM, then f ≡ g .

In 2008 X.Y. Zhang, J.F. Chen and W.C. Lin [20] studied the uniqueness problem of mero-

morphic functions considering some general differential polynomials and proved the follow-

ing result which also extends Theorems A and B.

Theorem E. Let f and g be two nonconstant meromorphic functions, let n and m be two

positive integers with n > max{m+10,3m+3}, and let P(z) = am zm+am−1zm−1+·· ·+a1z+a0,

where a0(6= 0), a1,. . . , am−1, am(6= 0) are complex constants. If f nP( f ) f ′ and g n P(g )g ′ share 1

CM, then either f = t g for a constant t such that t d = 1, where d = (n +m +1, . . . ,n +m +1−

i , . . . ,n+1), am−i 6= 0 for some i = 0,1, . . . ,m or f and g satisfy the algebraic equation R( f , g )= 0,

where

R(x, y) = xn+1
( am

n +m +1
xm

+
am−1

n +m
xm−1

+·· ·+
a0

n +1

)

−

yn+1
( am

n +m +1
ym

+
am−1

n +m
ym−1

+·· ·+
a0

n +1

)

.

In 2009 H.Y. Xu and T.B. Cao [14] considered fixed point sharing instead of value sharing

in Theorem E and proved the following result.
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Theorem F. Let f and g be two transcendental meromorphic functions, and let n and m be

two positive integers with n > m+10, and let P(z) be defined as in Theorem E. If f nP( f ) f ′ and

g nP(g )g ′ share z CM, then the conclusions of Theorem E hold.

In 2011 R.S. Dyavanal [3] consider the uniqueness problem of meromorphic function re-

lated to the value sharing of two nonlinear differential polynomials in which the multiplicities

of zeros and poles of f and g are taken into account. Recently S.S. Bhoosnurmath and S.R.

Kabbur [2] proved the following two theorems for value sharing as well as for fixed point shar-

ing which improve the results of Dyavanal [3].

Theorem G. Let f and g be two nonconstant meromorphic functions, whose zeros and poles

are of multiplicities at least s, where s is a positive integer. Let n, m be two positive integers

with (n −m −1)s ≥ max{10,2m +3} and let P(z) be defined as in Theorem E. If f nP( f ) f ′ and

g nP(g )g ′ share 1 CM, then the conclusions of Theorem E hold.

Theorem H. Let f and g be two transcendental meromorphic functions, whose zeros and poles

are of multiplicities at least s, where s is a positive integer. Let n, m be two positive integers with

(n−m−1)s ≥ max{10,2m+3} and let P(z) be defined as in Theorem E. If f nP( f ) f ′ and g nP(g )g ′

share z CM, then the conclusions of Theorem E hold.

Now one may ask the following question which is the motivation of the paper.

Question 1.1. Is it possible simultaneously to relax the nature of sharing the value or fixed

point and reduce the lower bound of n in Theorems G and H ?

In the paper we will affirmatively solve the above question. Relaxation of the sharing

can be done by the following definition known as weighted sharing of values introduced by I.

Lahiri [7] which measure how close a shared value is to being shared CM or to being shared

IM.

Definition 1.1. Let k be a nonnegative integer or infinity. For a ∈C∪{∞} we denote by Ek (a; f )

the set of all a-points of f where an a-point of multiplicity m is counted m times if m ≤ k and

k+1 times if m > k . If Ek (a; f ) =Ek (a; g ), we say that f , g share the value a with weight k .

The definition implies that if f , g share a value a with weight k , then z0 is an a-point of

f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k) and z0

is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with multiplicity

n(> k), where m is not necessarily equal to n.

We write f , g share (a,k) to mean that f , g share the value a with weight k. Clearly if f ,

g share (a,k) then f , g share (a, p) for any integer p , 0 ≤ p < k . Also we note that f , g share a

value a IM or CM if and only if f , g share (a,0) or (a,∞) respectively.
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We now state the main results of the paper.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions, whose zeros and poles

are of multiplicities at least s, where s is a positive integer. Suppose that n, m be two positive

integers and P(z) be defined as in Theorem E. Let f nP( f ) f ′ and g nP(g )g ′ share (1, l ), where

l (≥ 0) is an integer. Then the conclusions of Theorem E hold in each of the following cases.

(i) l ≥ 2 and n > max{m +1+2m/s,m +1+9/s};

(ii) l = 1 and n > max{m +1+2m/s,3m/2+3/2+21/2s };

(iii) l = 0 and n > max{m +1+2m/s,4m +4+18/s}.

Remark 1.1. Theorem 1.1 is a two fold improvement of Theorem G.

Theorem 1.2. Let f and g be two transcendental meromorphic functions, whose zeros and

poles are of multiplicities at least s, where s is a positive integer. Suppose that n, m be two

positive integers and P(z) be defined as in Theorem E. Let f nP( f ) f ′ and g nP(g )g ′ share (z, l ),

where l (≥ 0) is an integer. Then the conclusions of Theorem E hold in each of the following

cases.

(i) l ≥ 2 and n > max{m +1+2m/s,m +1+9/s};

(ii) l = 1 and n > max{m +1+2m/s,3m/2+3/2+21/2s };

(iii) l = 0 and n > max{m +1+2m/s,4m +4+18/s}.

Remark 1.2. Theorem 1.2 is a two fold improvement of Theorem H.

Though the standard definitions and notations of the value distribution theory are avail-

able in [5], we explain some definitions and notations which are used in the paper.

Definition 1.2. [7] Let a ∈C∪{∞}. We denote by N (r, a; f |= 1) the counting function of simple

a points of f . For a positive integer p we denote by N (r, a; f |≤ p) the counting function of

those a-points of f (counted with proper multiplicities) whose multiplicities are not greater

than p . By N (r, a; f |≤ p) we denote the corresponding reduced counting function.

Analogously we can define N (r, a; f |≥ p) and N (r, a; f |≥ p).

Definition 1.3. [8] Let k be a positive integer or infinity. We denote by Nk (r, a; f ) the counting

function of a-points of f , where an a-point of multiplicity m is counted m times if m ≤ k and

k times if m > k . Then

Nk (r, a; f ) = N (r, a; f )+N (r, a; f |≥ 2)+·· ·+N (r, a; f |≥ k).

Clearly N1(r, a; f ) = N (r, a; f ).
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2. Lemmas

Let f and g be two nonconstant meromorphic functions defined in the open complex

plane C. We denote by H the function as follows:

H =

( f ′′

f ′
−

2 f ′

f −1

)

−

(g ′′

g ′
−

2g ′

g −1

)

.

Lemma 2.1 ([15]). Let f be a transcendental meromorphic function, and let Pn( f ) be a poly-

nomial in f of the form

Pn( f ) = an f n(z)+an−1 f n−1(z)+·· ·+a1 f (z)+a0,

where an(6= 0), an−1,. . . , a1, a0 are complex numbers. Then

T (r,Pn( f )) = nT (r, f )+O(1).

Lemma 2.2 ([17]). Let f be a nonconstant meromorphic function. Then

N
(

r,0; f (k)
)

≤ N (r,0; f )+k N (r,∞; f )+S(r, f ).

Lemma 2.3 ([7]). Let f and g be two nonconstant meromorphic functions sharing (1,2). Then

one of the following three cases hold:

(i) T (r ) ≤ N2(r,0; f )+N2(r,0; g )+N2(r,∞; f )+N2(r,∞; g )+S(r ),

(ii) f = g ,

(iii) f g = 1.

Lemma 2.4 ([1]). Let f and g be two nonconstant meromorphic functions that share (1,m)

and H 6≡ 0. Then

(i) if m = 1 then T (r, f ) ≤ N2(r,0; f ) + N2(r,0; g ) + N2(r,∞; f ) + N2(r,∞; g ) + 1
2 N (r,0; f ) +

1
2 N (r,∞; f )+S(r, f )+S(r, g );

(ii) if m = 0 then T (r, f ) ≤ N2(r,0; f ) + N2(r,0; g ) + N2(r,∞; f ) + N2(r,∞; g ) + 2N (r,0; f ) +

N (r,0; g )+2N (r,∞; f )+N (r,∞; g )+S(r, f )+S(r, g ).

Lemma 2.5 ([18]). Let f and g be two nonconstant meromorphic functions and H = 0. If

limsup
r→∞,r 6∈E

N (r,0; f )+N (r,0; g )+N (r,∞; f )+N (r,∞; g )

T (r )
< 1

then f = g or f g = 1, where E is a set of finite linear measure and not necessarily the same at

each of its occurance.
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Lemma 2.6. Let f and g be two transcendental meromorphic functions, whose zeros and poles

are of multiplicities at least s, where s is a positive integer. Let P(z) be defined as in Theorem

E, and let n and m be two positive integers such that (n +m −1)p > 2m(1+1/s) where p is the

number of distinct roots of P(z) = 0. Then

f nP( f ) f ′g n P(g )g ′
6≡ z2.

Proof. If possible, we assume that

f nP( f ) f ′g nP(g )g ′
= z2. (2.1)

Let

P(z) = am(z −d1)l1 (z −d2)l2 · · ·(z −di )li · · · (z −dp )lp ,

where
p
∑

i=1

li = m, 1 ≤ p ≤ m; di 6= d j , i 6= j , 1 ≤ i , j ≤ p ; di ’s are nonzero constants and li ’s are

positive integers, i = 1,2, . . . , p. Let z0 (6= 0,∞) be a zero of f with multiplicity p0(≥ s). Then z0

is a pole of g with multiplicity q0(≥ s), say. From (2.1) we get

np0 +p0 −1 = (n +m +1)q0 +1

and so

mq0 +2 = (n +1)(p0 −q0). (2.2)

From (2.2) we get q0 ≥
n−1

m and so

p0 ≥
1

n +1

[

(n +m +1)(n −1)

m
+2

]

=
n +m −1

m
.

Let z1 (6= 0,∞) be a zero of P( f ) of order p1 and be a zero of f −di of order qi for i = 1,2, . . . , p.

Then p1 = li qi for i = 1,2, . . . , p. Then z1 is a pole of g with multiplicity q(≥ s), say. So from

(2.1) we get

qi li +qi −1 = (n +m +1)q +1

≥ (n +m +1)s +1

i.e.,

qi ≥
(n +m +1)s +2

li +1

for i = 1,2, . . . , p.

Suppose that z2 (6= 0,∞) be a pole of f . Then from (2.1), z2 is either a zero of g nP(g ) or a zero

of g ′. Therefore

N (r,∞; f ) ≤ N (r,0; g )+
p
∑

i=1

N (r,di ; g )+N 0(r,0; g ′)+S(r, f )+S(r, g )



WEIGHTED SHARING AND UNIQUENESS OF MEROMORPHIC FUNCTIONS 171

≤

(

m

n +m −1
+

m +p

(n +m +1)s +2

)

T (r, g )+N 0(r,0; g ′)

+S(r, f )+S(r, g ),

where N 0(r,0; g ′) denotes the reduced counting function of those zeros of g ′ which are not

the zeros of g P(g ). Then by the second fundamental theorem of Nevanlinna we get

pT (r, f ) ≤ N (r,∞; f )+N (r,0; f )+
p
∑

i=1

N (r,di ; f )−N 0(r,0; f ′)

+S(r, f )

≤

(

m

n +m −1
+

m +p

(n +m +1)s +2

)

{T (r, f )+T (r, g )}

+N 0(r,0; g ′)−N 0(r,0; f ′)+S(r, f )+S(r, g ). (2.3)

Similarly

pT (r, g ) ≤

(

m

n +m −1
+

m +p

(n +m +1)s +2

)

{T (r, f )+T (r, g )}

+N 0(r,0; f ′)−N 0(r,0; g ′)+S(r, f )+S(r, g ). (2.4)

Adding (2.3) and (2.4) we obtain
(

p −
2m

n +m −1
−

2(m +p)

(n +m +1)s +2

)

{T (r, f )+T (r, g )} ≤ S(r, f )+S(r, g ),

contradicting with the fact that (n +m −1)p > 2m(1+1/s). This proves the lemma. ���

Note 2.1. If P(z) = 0 has only one root of multiplicity m then the above lemma holds for n >

m +1+2m/s. If all the roots of P(z) = 0 are distinct then the lemma holds for n > 3−m +2/s.

Proceeding similarly as in Lemma 2.6 we obtain the following lemma.

Lemma 2.7. Let f and g be two nonconstant meromorphic functions, whose zeros and poles

are of multiplicities at least s, where s is a positive integer. Let P(z) be defined as in Theorem

E, and let n and m be two positive integers such that (n +m −1)p > 2m(1+1/s) where p is the

number of distinct roots of P(z) = 0. Then

f nP( f ) f ′g nP(g )g ′
6≡ 1.

Lemma 2.8. Let f and g be two transcendental meromorphic functions and

F = f n+1
[ am

n +m +1
f m

+
am−1

n +m
f m−1

+·· ·+
a0

n +1

]

and

G = g n+1
[ am

n +m +1
g m

+
am−1

n +m
g m−1

+·· ·+
a0

n +1

]

,

where a0(6= 0), a1,. . . , am−1, am(6= 0) are complex constants. Further let F0 = F ′

z
and G0 = G ′

z
.

Then S(r,F0) and S(r,G0) are replaceable by S(r, f ) and S(r, g ) respectively.
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Proof. Since f and g be two transcendental meromorphic functions we have

T (r, z)= o{T (r, f )}andT (r, z)= o{T (r, g )}. (2.5)

Therefore using Lemma 2.1 we obtain

T (r,F0) ≤ T (r,F ′)+T (r, z)

≤ 2T (r,F )+S(r, f )

= 2(n +m +1)T (r, f )+S(r, f )

and similarly

T (r,G0)≤ 2(n +m +1)T (r, g )+S(r, g ).

This proves the lemma. ���

Lemma 2.9. Let F , G, F0 and G0 be defined as in Lemma 2.8. We define F = f n+1F∗ and

G = g n+1G∗ where

F∗
=

[ am

n +m +1
f m

+
am−1

n +m
f m−1

+·· ·+
a0

n +1

]

and

G∗
=

[ am

n +m +1
g m

+
am−1

n +m
g m−1

+·· ·+
a0

n +1

]

.

Then

(i) T (r,F )≤ T (r,F0)+N (r,0; f )+
m
∑

i=1

N (r,ci ; f )−
m
∑

j=1

N (r,d j ; f )−N (r,0; f ′)+S(r, f ),

(ii) T (r,G)≤ T (r,G0)+N (r,0; g )+
m
∑

i=1

N (r,ci ; g )−
m
∑

j=1

N (r,d j ; g )−N (r,0; g ′)+S(r, g ),

where c1, c2,. . . , cm are the roots of the equation

am

n +m +1
zm

+
am−1

n +m
zm−1

+·· ·+
a0

n +1
= 0,

and d1, d2,. . . , dm are the roots of the equation P(z) = 0.

Proof. Noting that f and g be two transcendental meromorphic functions the proof of the

lemma can be carried out in the line of the proof of Lemma 11 [13]. ���

Following lemma can be proved in the line of Lemma 2.10 [9].

Lemma 2.10. Let F and G be defined as in Lemma 2.8, where m and n(> m +2) are positive

integers. Then F ′ =G ′ implies F =G.
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3. Proof of the Theorem

Proof of Theorem 1.2. Let F , G , F0 and G0 be defined as in Lemma 2.8. Then F0 and G0 share

(1, l ) where l (≥ 0) is an integer. Now we discuss following three cases separately.

Case 3.1. Let l ≥ 2. Then one of the possibilities of Lemma 2.3 hold. If possible, suppose that

T0(r ) ≤ N2(r,0;F0)+N2(r,0;G0)+N2(r,∞;F0)

+N2(r,∞;G0)+S(r,F0)+S(r,G0), (3.1)

where T0(r )= max{T (r,F0),T (r,G0)}. Using Lemmas 2.2, 2.8, 2.9 and (3.1) we obtain

T (r,F ) ≤ T (r,F0)+N (r,0; f )+
m
∑

i=1

N (r,ci ; f )−
m
∑

j=1

N (r,d j ; f )

−N (r,0; f ′)+S(r, f )

≤ N2(r,0;F0)+N2(r,0;G0)+N2(r,∞;F0)+N2(r,∞;G0)

+N (r,0; f )+
m
∑

i=1

N (r,ci ; f )−
m
∑

j=1

N (r,d j ; f )

−N (r,0; f ′)+S(r, f )+S(r, g )

≤ 2N (r,0; f )+
m
∑

j=1

N (r,d j ; f )+N (r,0; f ′)+2N (r,∞; f )

+2N (r,0; g )+
m
∑

j=1

N (r,d j ; g )+N (r,0; g ′)+2N (r,∞; g )

+N (r,0; f )+
m
∑

i=1

N (r,ci ; f )−
m
∑

j=1

N (r,d j ; f )

−N (r,0; f ′)+S(r, f )+S(r, g )

= 2N (r,0; f )+N (r,0; f )+
m
∑

i=1

N (r,ci ; f )+2N (r,∞; f )

2N (r,0; g )+N (r,0; g ′)+
m
∑

j=1

N (r,d j ; g )++2N (r,∞; g )

+S(r, f )+S(r, g )

≤ (m +1+4/s)T (r, f )+ (m +1+5/s)T (r, g )+S(r, f )+S(r, g ).

Therefore by Lemma 2.1 we obtain

(n +m +1)T (r, f ) ≤ (2m +2+9/s)T (r )+S(r ).

Similarly

(n +m +1)T (r, g ) ≤ (2m +2+9/s)T (r )+S(r ).
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Combining the above two inequalities we get

(n −m −1−9/s)T (r ) ≤ S(r ),

which contradicts the fact that n >max{m+1+2m/s,m+1+9/s}. Therefore by Lemma 2.3 we

have either F0G0 = 1 or F0 = G0. Since F0G0 6≡ 1, by Lemma 2.6, using Lemma 2.10 we obtain

F =G. That is

f n+1
[ am

n +m +1
f m

+
am−1

n +m
f m−1

+·· ·+
a0

n +1

]

= g n+1

[ am

n +m +1
g m

+
am−1

n +m
g m−1

+·· ·+
a0

n +1

]

. (3.2)

Let h =
f

g
. If h is a constant, replacing f = g h in (3.2) we get

am

m +n +1
g m(hn+m+1

−1)+
am−1

m +n
g m−1(hn+m

−1)+·· ·

+
a0

n +1
(hn+1

−1) = 0,

which implies hd = 1, where d = (n +m +1, . . . ,n +m +1− i , . . . ,n +1), am−i 6= 0 for some i =

0,1, . . . ,m. Thus f = t g for a constant t such that t d = 1, d = (n+m+1, . . . ,n+m+1−i , . . . ,n+1),

am−i 6= 0 for some i = 0,1, . . . ,m.

If h is not a constant, then from (3.2) we can say that f and g satisfy the algebraic equation

R( f , g ) = 0, where

R(x, y) = xn+1
( am

n +m +1
xm

+
am−1

n +m
xm−1

+·· ·+
a0

n +1

)

−

yn+1
( am

n +m +1
ym

+
am−1

n +m
ym−1

+·· ·+
a0

n +1

)

.

This completes the proof of Case 3.1.

Case 3.2. We suppose that l = 1 and H 6≡ 0. Then using Lemmas 2.2, 2.4(i), 2.8 and 2.9 we

obtain

T (r,F ) ≤ T (r,F0)+N (r,0; f )+
m
∑

i=1

N (r,ci ; f )−
m
∑

j=1

N (r,d j ; f )

−N (r,0; f ′)+S(r, f )

≤ N2(r,0;F0)+N2(r,0;G0)+N2(r,∞;F0)+N2(r,∞;G0)

+
1

2
N (r,0;F0)+

1

2
N (r,∞;F0)+N (r,0; f )+

m
∑

i=1

N (r,ci ; f )

−

m
∑

j=1

N (r,d j ; f )−N (r,0; f ′)+S(r, f )+S(r, g )



WEIGHTED SHARING AND UNIQUENESS OF MEROMORPHIC FUNCTIONS 175

≤ 2N (r,0; f )+
m
∑

j=1

N (r,d j ; f )+N (r,0; f ′)+2N (r,∞; f )

+2N (r,0; g )+
m
∑

j=1

N (r,d j ; g )+N (r,0; g ′)+2N (r,∞; g )

+
1

2
N (r,0; f )+

1

2

m
∑

j=1

N (r,d j ; f )+
1

2
N (r,0; f ′)+

1

2
N (r,∞; f )

+N (r,0; f )+
m
∑

i=1

N (r,ci ; f )−
m
∑

j=1

N (r,d j ; f )−N (r,0; f ′)

+S(r, f )+S(r, g )

=
5

2
N (r,0; f )+

1

2

m
∑

j=1

N (r,d j ; f )+N (r,0; f )+
1

2
N (r,0; f ′)+

5

2
N (r,∞; f )

+

m
∑

i=1

N (r,ci ; f )+2N (r,0; g )+
m
∑

j=1

N (r,d j ; g )+N (r,0; g ′)+2N (r,∞; g )

+S(r, f )+S(r, g )

≤ (3m/2+3/2+11/2s )T (r, f )+ (m +1+5/s)T (r, g )+S(r, f )+S(r, g ).

So by Lemma 2.1 we get

(n +m +1)T (r, f ) ≤ (5m/2+5/2+21/2s)T (r )+S(r ).

Similarly

(n +m +1)T (r, g ) ≤ (5m/2+5/2+21/2s )T (r )+S(r ).

Combining the above two inequalities we obtain

(n −3m/2−3/2−21/2s )T (r ) ≤ S(r ),

a contradiction with the fact that n >max{m+1+2m/s,3m/2+3/2+21/2s }. Therefore H = 0.

Since f and g are transcendental meromorphic functions, by Lemma 2.1 we get

(n +m)T (r, f ) = T (r, f nP( f ))+S(r, f )

≤ T (r,F ′)+T (r, f ′)+S(r, f )

≤ T (r,F0)+2T (r, f )+S(r, f )

and so

T (r,F0) ≥ (n +m −2)T (r, f )+S(r, f ).

Similarly

T (r,G0) ≥ (n +m −2)T (r, g )+S(r, g ).
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Also we see by Lemma 2.2 that

N (r,0;F0)+N (r,∞;F0)+N (r,0;G0)+N (r,∞;G0)

≤ N (r,0; f )+
m
∑

j=1

N (r,d j ; f )+N (r,0; f ′)+N (r,∞; f )

+N (r,0; g )+
m
∑

j=1

N (r,d j ; g )+N (r,0; g ′)+N (r,∞; g )

+S(r, f )+S(r, g )

≤ (m +1+3/s)T (r, f )+ (m +1+3/s)T (r, g )+S(r, f )+S(r, g )

≤
2m +2+6/s

n +m −2
T0(r )+S(r ),

where S0(r ) = o{T0(r )} as r → ∞ possibly outside a set of finite linear measure. Since n >

max{m +1+2m/s,3m/2+3/2+21/2s }, from above it follows that

limsup
r→∞,r 6∈E

N (r,0;F0)+N (r,∞;F0)+N (r,0;G0)+N (r,∞;G0)

T0(r )
< 1,

which gives by Lemma 2.5 either F0G0 = 1 or F0 =G0. Using Lemmas 2.6, 2.10 and proceeding

as in Case 3.1 we obtain the result of Case 3.2.

Case 3.3. This case can be carried out by Lemma 2.4(ii) and proceeding in the like manner as

Case 3.2. Here we omit the details. This proves the theorem. ���

Proof of Theorem 1.1. Using Lemma 2.7 the theorem can be proved as the proof of Theorem

1.2. ���
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