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(a,d)-CONTINUOUS MONOTONIC SUBGRAPH DECOMPOSITION
OF Kn+1 AND INTEGRAL SUM GRAPHS G0,n

K. VILFRED∗ AND A. SURYAKALA

Abstract. For a,d ,n ∈N, we define (a,d)−Conti nuous Monotonic Subgraph Decomposi-
tion or (a,d)−C MSD of a graph G of size (2a+(n−1)d)n

2 as the decomposition of G into n sub-
graphs G1,G2, . . . ,Gn without isolated vertices such that each Gi is connected and isomor-
phic to a proper subgraph of Gi+1 and |E(Gi )| = a+(i −1)d for i = 1,2, . . . ,n. (1,1)−C MSD
of a graph G is called a Continuous Monotonic Subgraph Decomposition or CMSD of G.
Harary introduced the concepts of sum and integral sum graphs and a family of integral
sum graphs G−n,n over [−n,n] and it was generalized to G−m,n where [r, s] = {r,r +1, . . . , s},
r, s ∈Z and m,n ∈N0. In this paper, we study (a,d)−C MSD of Kn+1 and G0,n into families
of triangular books, triangular books with book mark and Fans with handle.

1. Introduction

Alavi [1] introduced the concept of Ascending Subgraph Decomposition (ASD) of a graph

G with size (n+1)C2 as the decomposition of G into n subgraphs G1,G2, . . .Gn without isolated

vertices such that each Gi is isomorphic to a proper subgraph of Gi+1 and |E(Gi )| = i for 1 ≤
i ≤ n. Nagarajan [10] generalized ASD to (a,d)-ASD of graph G with size (2a+(n−1)d)n

2 as the

decomposition of G into n subgraphs G1,G2, . . . ,Gn without isolated vertices such that each

Gi is isomorphic to a proper subgraph of Gi+1 and |E(Gi )| = a + (i −1)d for 1 ≤ i ≤ n. Clearly,

ASD of a graph G and its (1,1)-ASD are the same.

Gnana Dhas [5] defined (a,d)−Conti nuous Monotonic Decomposition or (a,d)−CMD

of a graph G of size (2a+(n−1)d)n
2 as the decomposition of G into n subgraphs G1,G2, . . . ,Gn

such that each Gi is connected and |E(Gi )| = a+(i −1)d for i = 1,2, . . . ,n. (1,1)-ASD of a graph

G of size (n+1)C2 is known as Ascending Subgraph Decomposition or ASD of G . Clearly, CMD

of a graph G and its (1,1)−CMD are the same.
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Harary introduced the concept of sum graph in [7]. A graph G = (V ,E) is a sum graph if

the vertices of G can be labeled with distinct positive integers so that e = uv is an edge of G if

and only if the sum of the labels on vertices u and v is also a label in G . Harary [8] extended

the sum graph concept to integral sum graph to allow any integers to be used as labels. He

provided examples of graphs of these types. To distinguish between the two types, we refer to

sum graphs that use only positive integers as N− sumgraphs and those that use any integers

as Z− sumgraphs [12].

Properties of sum graphs have been investigated by many authors, including Beineke,

Chen, Harary, Mary Florida, Nicholas, Rubin Mary, Suryakala, and Vilfred [2], [7], [8], [12]-

[20]. For integers r and s with r < s, let [r, s] denote the set of integers {r,r +1, . . . , s} and for

any non-empty set of integers S, let G+(S) denote the integral sum graph on the set S. The

Z− sum graphs of Harary are therefore G−r,r = G+([−r,r ]) for r ∈ N [12]. The extension of

Harary graphs G−r,r to all intervals of integers was introduced by Vilfred and Mary Florida in

[13] and [14]. In G+(S), the set of all edges, each with edge sum k is called an edge sum class of

G+(S) and is denoted by [k]G+(S) or simply [k],k ∈ S [15]. Integral sum graphs G−4,4,G−4,5 and

G−5,5 are given in Figures 1 to 3, respectively.

Two vertices with label j and k of a sum graph G+(S) with n as its maximum vertex la-

bel, are called supplementary vertices if j +k = n +1 and the corresponding labels are called

supplementary labels, 1 ≤ j ,k ≤ n, j ̸= k and n ≥ 2 [12]. In Gn , |E(Gn)| = 1
2 (n(n −1)/2− ⌊n

2

⌋
),

d(v j ) = n −1− j if 1 ≤ j ≤ ⌊n+1
2

⌋
and d(v j ) = n − j if

⌊n+1
2

⌋+1 ≤ j ≤ n where ⌊x⌋ is the floor of

x, V (Gn) = {v1, v2, . . . , vn} and j is the vertex sum label of v j in Gn , 1 ≤ j ≤ n and 2 ≤ n.

Theorem 1.1 ([13]). If −r, s ∈N with r < 0 < s, then Gr,s = K1 + (G−r +GS).

Fig. 1. G−4,4 Fig. 2. G−4,5 Fig. 3. G−5,5

A graph G is called an anti-sum graph if its vertices can be labeled with distinct positive

integers in such a way that two vertices are adjacent in G if and only if the sum of their labels

is not the label of another vertex. Obviously, a graph G is an anti-sum graph if and only if its

complement is a sum graph. Thus, many results on anti-sum graphs are simply analogues of

the corresponding results on sum graphs. An anti-integral sum graph is also defined just as

anti-sum graph, the difference being that the labels may be any distinct integers [15].
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A graph G is a split graph if its vertices can be partitioned into a clique and a stable set or

independent set. A clique in a graph is a set of pair-wise adjacent vertices and a stable set or

independent set in a graph is a set of pair-wise non-adjacent vertices [3]. Gn is a split graph for

3 ≤ n, n ∈N.

When k copies of Cn share a common edge, it will form an n-gon book of k pages and is

denoted by B(n,k). The common edge is called the spine or base of the book. A triangular book

B(3,n) or B3,n consists of n triangles with a common edge and can be described as ST (n)+
K1 = P2 +nK1 where ST (n) denotes the star with n leaves. Let us denote the triangular book

B(3,n) with the spine (u, v) by T Bn(u, v) = P2(u, v)+nK1. Clearly T B0 = K2 represent a book

without pages or the trivial book [20].

An n−g on book of k pages B(n,k) with a pendant edge terminating from any one of the

end vertices of the spine is called an n-gon book with a book mark. Triangular book T Bn(u, v)

with book mark (u, w) is denoted by T Bn(u, v)(u, w) or T B∗
n (u, v) where w is the pendant

vertex adjacent to u. T B∗
n (u, v) is of order n +3 and size 2n +2 [20]. T B4(u0, v0)(u0, w0) with

pages (u0 v0 v j ) for j = 1,2,3,4 is shown in Figure 4.

A fan graph Fn−1 is the graph obtained by taking n −3 concurrent chords at a vertex in a

cycle Cn , n ≥ 3 [17]. The vertex at which all the n −3 chords are concurrent is called the apex

vertex. Fan graph Fn can be described as Fn = Pn +K1 where Pn is a path on n vertices, n ≥ 2.

If a fan graph Fn has a pendant edge attached with the apex vertex, then the graph is called a

fan with a handle or a palm fan and is denoted by F∗
n [20]. Fan graph F∗

5 with a handle u0v0

is shown in Figure 5.

Among the family of graphs some graphs may have (a,d)-ASD, some may have (a,d)-

CMD, some may have both (a,d)-ASD and (a,d)-CMD and the others have neither (a,d)-ASD

nor (a,d)-CMD. Huaitand [9] studied (a,d)-ASD of regular graphs and proved that every reg-

ular bipartite graph as ASD. Nagarajan [10] studied (a,d)− ASD of wheels. Finding graphs

having either (a,d)-ASD or (a,d)-CMD is difficult and finding graphs having both (a,d)-ASD

and (a,d)-CMD seem to be more difficult, a,d ∈ N. While studying decomposition of inte-

gral sum graphs we come across graphs having both (a,d)-ASD and (a,d)−C MD and this

motivated us to define C MSD and (a,d)−C MSD of graphs as follows.

Definition 1.2. A decomposition of graph G that is both (a,d)-ASD and (a,d)-CMD is called

a (a,d) −Conti nuous Monotonic Subgraph Decomposition or (a,d)-CMSD of G, a,d ∈ N.

Thus (a,d)-CMSD of graph G with size (2a+(n−1)d)n
2 is the decomposition of G into n subgraphs

G1,G2, . . . ,Gn without isolated vertices such that each Gi is connected and isomorphic to a

proper subgraph of Gi+1 and |E(Gi )| = a + (i −1)d for 1 ≤ i ≤ n.

In this paper we prove that (i) for n ≥ 3, Kn admits (a,d)-CMSD into triangular books

for some a and d , a,d ∈ N; (ii) for n ∈ N, G0,2n , G0,4n+2 and G0,4n+3 admit (a,d)-CMSD into
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triangular books with book mark for some a and d , a,d ∈ N; (iii) G0,4n+1 admits ASD but

doesn’t admit (a,d)-ASD and (a,d)-CMD into triangular books with book mark for any a,d ∈
N; (iv) for n ∈ N, G0,4n+2, G0,4n and G0,4n−1 admit (a,d)-CMSD into Fans with a handle for

some a and d , a,d ∈ N and (v) G0,4n+1 admits ASD into Fans with a handle and one P2 but

doesn’t admit (a,d)-ASD and (a,d)-CMD into Fans with a handle for any a,d ∈N.

For all basic notation and definitions in graph theory, we follow [6]. For additional mate-

rial on graph labeling problems, we refer to [4]. In this paper the underlying graph of a sum

graph or an integral sum graph is obtained by removing all vertex labels; comparison of sum

graphs or integral sum graphs of the same order means comparison of the corresponding un-

derlying graphs only. All graphs in this paper are simple graphs. To present our results, we

need a few known results.

Theorem 1.3 ([13]). For m +n ≥ 3, |E(G−m,n)| = 1
4 (m2 +n2 +3(m +n)+4mn) - 1

2 (
⌊m

2

⌋+ ⌊n
2

⌋
)

where ⌊x⌋denotes the floor of x, m,n ∈N0. In particular, |E(G0,n)| = n(n+3)
4 - 1

2 (
⌊n

2

⌋
), |E(G−n,n)| =

3n(n+1)
2 -

⌊n
2

⌋
and |E(G−(n−1),n)| = n(3n−1)

2 , n ∈N.

Theorem 1.4 ([13]). For m,n ≥ 2, G0,n and G−m,n contain exactly one vertex of degree n and

m +n, respectively. For 2 ≤ n, G−1,n has exactly two vertices of degree n +1. G−1,1 is the only

integral sum graph G having more than two vertices of degree 2.

Theorem 1.5 ([20]). Let k and n be such that 2 ≤ 2k < n. If k pairs of supplementary vertices are

removed from (i) Harary graph Gn , then the result is isomorphic to Gn−2k without the vertex

labels and (ii) the graph Gc
n , then the result is isomorphic to Gc

n−2k without the vertex labels.

Theorem 1.6 ([20]). For n ≥ 3, the underlying graphs of G0,n − {0,n} and G0,n−2 are isomorphic

and for n ≥ 2r+3 and r ∈N, the underlying graphs of G0,n−({0,n,n−1,n−2, · · · ,n−2r+1,n−2r }

∪ ([n]∪ [n −1]∪·· ·∪ [n −2r +1])) and G0,n−2r−2 are isomorphic.

Theorem 1.7 ([17]). For n ≥ 2, Fan graph Fn = Pn +K1 is an integral sum graph.

Integral sum labeling of F5 is shown in Figure 6.

Fig. 4. Fig. 5. Fig. 6.

Theorem 1.8 ([20]). For n ∈N, (i) T Bn(u0, v0)(u0, w0) and (ii) F∗
n are integral sum graphs.
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Proof.

(i) T Bn(u0, v0)(u0, w0) is of order n + 3, size 2n + 2 and (u0, w0) is the pendant edge ter-

minating at u0 and let V (T Bn(u0, v0)(u0, w0)) = {w0,u0, v0, v1, . . . , vn}. Define mapping

f : V (T Bn(u0, v0)(u0, w0)) → N0 such that f (u0) = 0, f (v0) = 2m, f (vi ) = 2mi + 1 for

i = 1,2, . . . ,n and f (w0) = 2m(n +1)+1, m ∈N.

Consider the integral sum graph G+(S) where S = {0,2m,2m+1,4m+1,6m+1, . . . ,2mn+
1,2m(n + 1)+ 1 : m ∈ N} = f (V (T Bn(u0, v0)(u0, w0))). Our aim is to prove that f is an

integral sum labeling of T Bn(u0, v0)(u0, w0) and G+(S) = T Bn(u0, v0)(u0, w0).

f (u0) = 0 implies, f (u0)+ f (vi ) = f (vi ) and f (u0)+ f (w0) = f (w0) for i = 0,1,2, . . . ,n.

This implies, u0 is adjacent to w0, v0 and vi for i = 1,2, . . . ,n. For i = 1,2, . . . ,n − 1,

f (v0) + f (vi ) = f (vi+1), f (v0) + f (vn) = f (w0), f (v0) + f (u0) = f (v0), f (v0) + f (w0) ̸=
f (u0), f (v0), f (w0), f (v j ) for j = 1,2, . . . ,n. This implies, v0 is adjacent to u0 and vi and

non-adjacent to w0 for i = 1,2, . . . ,n. Also f (w0)+ f (u0) = f (w0) and f (w0)+ f (v j ) ̸=
f (w0), f (u0), f (v j ) for j = 0,1, . . . ,n. This implies, w0 is a pendant vertex adjacent only

to u0. For i , j = 0,1,2, . . . ,n, f (vi )+ f (w0) ̸= f (u0), f (v j ). Also for 1 ≤ i , j ,k ≤ n, f (vi )+
f (v j ) ̸= f (vk ) since f (vi )+ f (v j ) is an even number and f (vk ) is an odd number. This

implies, vi and v j are non-adjacent in T Bn(u0, v0)(u0, w0) when i ̸= j and 1 ≤ i , j ≤ n.

Thus v j is adjacent only to u0 and v0 for j = 1,2, . . . ,n.

From all the above conditions integral sum graph G+(S) is same as T Bn(u0, v0)(u0, w0)

and f is an integral sum labeling of T Bn(u0, v0)(u0, w0) where S = {0,2m,2m +1,4m +
1, . . . ,2mn +1,2m(n +1)+1 : m ∈N}. Integral sum labeling of T B∗

7 is shown in Figure 7.

(ii) Fn = Pn + K1 and F∗
n is of order n + 2 and size 2n where Pn is a path on n vertices.

Let V (F∗
n ) = {u0, v0, v1, . . . , vn} where u0 is the pendant vertex, v0 is the apex vertex and

d(v0) = n +1 = ∆(F∗
n ). Define mapping f : V (F∗

n ) →N0 such that f (v0) = 0, f (v1) = pm ,

the mth Fibonacci number, m ≥ 2, f (vi ) = pm+i−1 for i = 2, . . . ,n and f (u0) = pm+n .

Here, f (v0) = 0 < f (v1) = pm < f (v2) = pm+1 < ·· · < f (vn) = pm+n−1 < f (u0) = pm+n and

for i − j ̸= 1 and 1 ≤ i , j ,k ≤ n, f (vi )+ f (v j ) ̸= f (vk ). Also f (vi )+ f (vi+1) = f (vi+2) for

i = 1,2, . . . ,n −2 and f (vn−1)+ f (vn) = f (u0), m ≥ 2. Hence the labeling f is an integral

sum labeling of graph F∗
n and thereby F∗

n is an integral sum graph. Integral sum labeling

of F∗
9 is shown in Figure 8. ���

Fig. 7. Fig. 8.
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2. CMSD and (a,d)-CMSD of Kn and G0,n

Motivated by the studies of Alavi [1],Nagarajan [10] and Gnana Dhas [5], we define CMSD

and (a,d)-CMSD of graphs and in particular we study CMSD and (a,d)-CMSD of Kn and G0,n

into families of triangular books, triangular books with book mark and Fans with a handle.

Throughout this section, vertices of Kn as well as vertices of G0,n−1 are considered as the ver-

tices of an n − g on ordered in the anti-clockwise direction.

Theorem 2.1. For n ≥ 3, Kn admits (1,4)-CMSD or (3,4)-CMSD into triangular books when n

is even or odd, respectively.

Proof. Let V (Kn) = {0,1, . . . ,n − 1}. |E(Kn)| = nC2. Consider (a,d)-CMSD of Kn for even and

odd values of n, separately

Case (i) n is even, n ≥ 3.

Let n = 2m, m ≥ 2. Then decomposition of Kn = K2m into triangular books of (1,4)-CMSD is

obtained as follows.

K2m = T B2m−2(0,1)∪T B2m−4(2,3)∪ . . .∪T B2(2m−4,2m−3)∪T B0(2m−2,2m−1) where

T B2m−2 j (2 j −2,2 j −1) in K2m represents triangular book with spine (2 j −2,2 j −1) and (2 j −
2,2 j−1,2 j ), (2 j−2,2 j−1,2 j+1), · · · , (2 j−2,2 j−1,2m−1) as the (2m−2 j ) number of triangular

pages and is a connected subgraph, j = 1,2, . . . ,m. In K2m , (0,1) is the spine for T B2m−2(0,1),

both the vertices 0 and 1 are adjacent to the remaining 2m-2 vertices, 2,3, . . . ,2m − 1 and

each one is of degree 2m −1 in T B2m−2(0,1); (2,3) is the spine for T B2m−4(2,3), both the ver-

tices 2 and 3 are adjacent to the 2m − 4 vertices, 4,5, . . . ,2m − 1 and each one is of degree

2m −1 in T B2m−2(0,1)∪T B2m−4(2,3); (4,5) is the spine for T B2m−6(4,5), both the vertices 4

and 5 are adjacent to the 2m − 6 vertices, 6,7, . . . ,2m − 1 and each one is of degree 2m − 1

in T B2m−2(0,1)∪T B2m−4(2,3)∪T B2m−6(4,5); . . . ; (2m − 4,2m − 3) is the spine for T B2(2m −
4,2m − 3), both the vertices 2m − 4 and 2m − 3 are adjacent to the 2 vertices, 2m − 2 and

2m −1 and each one is of degree 2m −1 in T B2m−2(0,1)∪T B2m−4(2,3)∪T B2m−6(4,5)∪ . . .∪
T B2(2m −4,2m −3); (2m −2,2m −1) is the spine for T B0(2m −2,2m −1) which is a triangu-

lar book without pages and each one of the vertices 2m − 2 and 2m − 1 is of degree 2m − 1

in T B2m−2(0,1)∪T B2m−4(2,3)∪T B2m−6(4,5)∪ . . .∪T B2(2m − 4,2m − 3)∪T B0(2m − 2,2m −
1) = K2m . Also |E(T B0(2m − 2,2m − 1))| = 1 < |E(T B2(2m − 4,2m − 3))| = 5 < |E(T B4(2m −
6,2m − 5))| = 9 < ·· · < |E(T B2m−4(2,3))| = 4m − 7 < |E(T B2m−2(0,1))| = 4m − 3. And clearly,

T B0(2m−2,2m−1) is a connected subgraph of T B2(2m−4,2m−3) which is a connected sub-

graph of T B4(2m −6,2m −5) which is a connected subgraph of . . . which is a connected sub-

graph of T B2m−4(2,3) which is a connected subgraph of T B2m−2(0,1), without vertex labels.

Thus K2m admits (1,4)-CMSD into triangular books for m ≥ 2. In different colors (1,4)-CMSD

of K4,K6 and K8 are shown in Figures 9, 10 and 11, respectively and K4 = T B2(0,1)∪T B0(2,3),

K6 = T B4(0,1)∪T B2(2,3)∪T B0(4,5) and K8 = T B6(0,1)∪T B4(2,3)∪T B2(4,5)∪T B0(6,7).
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Case (ii): n is odd, n ≥ 3.

Let n = 2m +1, m ∈ N. Then Kn = K2m+1 can be decomposed into triangular books of (3,4)-

CMSD as follows.

K2m+1 = T B2m−1(0,1) ∪T B2m−3(2,3) ∪ . . . ∪ T B3(2m −4,2m −3) ∪ T B1(2m −2,2m −1)

where T B2m+1−2 j (2 j −2,2 j −1) in K2m+1 represents triangular book with spine (2 j −2,2 j −1)

and (2 j −2,2 j −1,2 j ), (2 j −2,2 j −1,2 j +1), . . . , (2 j −2,2 j −1,2m) as the (2m +1−2 j ) num-

ber of triangular pages and is a connected subgraph, j = 1,2, . . . ,m. The above decompo-

sition of K2m+1 is similar to the decomposition given in case (i ) except K2m+1 admits (3,4)-

CMSD into triangular books since |E(T B1(2m−2,2m−1))| = 3 < |E(T B3(2m−4,2m−3))| = 7 <
|E(T B5(2m −6,2m −5))| = 11 < ·· · < |E(T B2m−3(2,3))| = 4m −5 < |E(T B2m−1(0,1))| = 4m −1

and T B1(2m−2,2m−1) is a connected subgraph of T B3(2m−4,2m−3) which is a connected

subgraph of T B5(2m −6,2m −5) which is a connected subgraph of . . . which is a connected

subgraph of T B2m−3(2,3) which is a connected subgraph of T B2m−1(0,1), without vertex la-

bels. (3,4)-CMSD of K3,K5 and K7 are shown in different colors in Figures 12, 13 and 14,

respectively and K3 = T B1(0,1),K5 = T B3(0,1) ∪ T B1(2,3) and K7 = T B5(0,1) ∪ T B3(2,3) ∪
T B1(4,5). Hence the result. ���

Fig. 9. Fig. 10. Fig. 11.

Fig. 12. Fig. 13. Fig. 14.

Corollary 2.2. Kn admits (a,d)-CMSD into triangular books for some a and d, a,d ∈N.

Theorem 2.3. For n ≥ 3, Kn admits (1,1)-CMSD into stars.

Proof. The (1,1)-CMSD of Kn into stars is obtained as follows. K1,1(0;1)∪K1,2(2;0,1)∪K1,3(3;

0,1,2)∪ . . .∪K1,n−1(n−1;0,1,2, . . . ,n−2)∪K(1,n)(n;0,1,2, . . . ,n−1) where K1, j ( j ;0,1, . . . , j −1)

is the star K1,n with internal vertex j and leaves 0,1, . . . , j −1, 1 ≤ j ≤ n. ���
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Theorem 2.4. For m ∈N, G0,2m admits (2,2)-CMSD into triangular books with book mark.

Proof. In the sum graph Gm , |E(Gm)| = 1
2 ( m(m−1)

2 −⌊m
2

⌋
), d(v j ) = m−1− j if 1 ≤ j ≤ ⌊m+1

2

⌋
and

d(v j ) = m− j if
⌊m+1

2

⌋+1 ≤ j ≤ m where ⌊x⌋ is the floor of x and 2 ≤ m. Therefore |E(G0,2m)| =
2m + |E(G2m)| = 2m + 1

2 ( 2m(2m−1)
2 − ⌊2m

2

⌋
) = m(m +1) where G0,2m = K1 +G2m . The proof of

the theorem is similar to the proof given to Theorem 2.1. Let V (G0,2m) = {v0, v1, v2, . . . , v2m}

where j is the integral sum label of vertex v j in the integral sum graph G0,2m , 0 ≤ j ≤ 2m.

(2,2)-CMSD of G0,2m into triangular books with book mark is obtained as follows.

G0,2m = T B0(0,2m − 1)(0,2m)∪T B1(1,2m − 2;0)(1,2m − 1)∪T B2(2,2m − 3;0,1)(2,2m −
2)∪T B3(3,2m−4;0,1,2)(3,2m−3)∪ . . .∪T Bm−1(m−1,m;0,1,2, . . . ,m−2)(m−1,m+1) where

T B j ( j ,2m − ( j + 1);0,1,2, . . . , j − 1)( j ,2m − j ) represents triangular book with spine ( j ,2m −
( j +1)), book mark ( j ,2m − j ) and leaves 0,1,2, . . . , j −1 for j = 1,2, . . . ,m −1 and T B0(0,2m −
1)(0,2m) is the triangular book with spine (0,2m − 1), book mark (0,2m) and without any

leaf. This implies G0,2m admits (2,2)-CMSD into triangular books with book mark since

|E(T B0(0,2m − 1)(0,2m))| = 2 < |E(T B1(1,2m − 2;0)(1,2m − 1))| = 4 < |E(T B2(2,2m − 3;0,1)

(2,2m − 2))| = 6 < ·· · < |E(T Bm−2(m − 2,m + 1)(m − 2,m + 2))| = 2m − 2 < |E(T Bm−1(m −
1,m;0,1,2, . . . ,m −1)(m −1,m +1))| = 2m and T B0(0,2m −1)(0,2m) is a connected subgraph

of T B1(1,2m −2;0)(1,2m −1) which is a connected subgraph of T B2(2,2m −3;0,1)(2,2m −2)

which is a connected subgraph of T B3(3,2m −4;0,1,2)(3,2m −3) which is a connected sub-

graph of . . . which is a connected subgraph of T Bm−1(m −1,m;0,1,2, . . . ,m −2)(m −1,m +1).

Hence the result is proved. (2,2)-CMSD of G0,6,G0,8 and G0,10 are shown in different colors in

Figures 15, 16 and 17, respectively and G0,6 = T B0(0,5)(0,6)∪T B1(1,4;0)(1,5)∪T B2(2,3;0,1)

(2,4), G0,8 = T B0(0,7)(0,8) ∪ T B1(1,6;0)(1,7) ∪ T B2(2,5;0,1)(2,6) ∪ T B3(3,4;0,1,2)(3,5) and

G0,10 = T B0(0,9)(0,10)∪T B1(1,8;0)(1,9)∪T B2(2,7;0,1)(2,8)∪T B3(3,6;0,1,2)(3,7)∪T B4(4,5;

0,1,2,3)(4,6). ���

Fig. 15. Fig. 16.

Theorem 2.5. For n ∈ N, G0,4n+1 doesn’t admit (a,d)-ASD and (a,d)-CMD into triangular

books with book mark for any a,d ∈N.
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Fig. 17.

Proof. For n ∈N and k ∈N0, we have |E(G0,4n+1)| = 1
2 ( (4n+1)(4n+4)

2 −⌊4n+1
2

⌋
) = (n +1)(4n +1)−

n = (2n+1)2 and |E(T Bk (u, v)(u, w))| = 2k+2. For n ∈N, if G0,4n+1 admits (a,d)-ASD or (a,d)-

CMD into triangular books with book mark for any a,d ∈N, then let G0,4n+1 = T B∗
k1

(u1, v1) ∪
T B∗

k2
(u2, v2) ∪ . . . ∪ T B∗

km
(um , vm) where T B∗

k1
(u1, v1),T B∗

k2
(u2, v2), . . . ,T B∗

km
(um , vm) are

edge disjoint triangular books with book mark in G0,4n+1,u1,u2, . . . ,um , v1, v2, . . . , vm ∈
V (G0,4n+1), 0 ≤ k1 < k2 < ·· · < km , k1,k2, . . . ,km ∈N0 and m ∈N. Then |E(G0,4n+1)| = |E(T B∗

k1

(u1, v1))|+|E(T B∗
k2

(u2, v2))|+· · ·+|E(T B∗
km

(um , vm))| which implies, (2n+1)2 = (2k1+2)+(2k2+
2)+·· ·+ (2km +2) which is not possible since the L.H.S. is an odd number whereas the R.H.S.

is an even number. Hence the result is true by the method of contradiction. ���

Corollary 2.6. For n ∈ N, G0,4n+1 doesn’t admit (a,d)-CMSD into triangular books with book

mark for any a,d ∈N.

Theorem 2.7. For n ∈N,

(i) G0,4n admits (6,8)-CMSD into triangular books with book mark;

(ii) G0,4n+1 can be decomposed into triangular books with book mark;

(iii) G0,4n+2 admits (2,8)-CMSD into triangular books with book mark and

(iv) G0,4n+3 admits (4,8)-CMSD into triangular books with book mark.

Proof. Let V (G0,n) = {0,1,2, . . . ,n}. In the sum graph Gn , |E(Gn)| = 1
2 ( n(n−1)

2 − ⌊n
2

⌋
), d(v j ) =

n − 1− j if 1 ≤ j ≤ ⌊n+1
2

⌋
and d(v j ) = n − j if

⌊
(n+1)

2

⌋
+ 1 ≤ j ≤ n where ⌊x⌋ is the floor of x,

j is the vertex sum label of v j and n ∈N. Therefore |E(G0,n)| = n +|E(Gn)| = 1
2 ( n(n+3)

2 − ⌊n
2

⌋
).

Consider the following four cases of n and the proof is similar to the proof given to Theorem

2.1.

Case (i) n = 4m, m ∈N.
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In this case (6,8)-CMSD of G0,n = G0,4m into triangular books with book mark is obtained as

follows.

G0,4m = T B4m−2(0,1;2,3, . . . ,4m −1)(0,4m)∪T B4m−6(2,3;4,5, . . . ,4m −3)(2,4m −2) ∪
T B4m−10(4,5;6,7, . . . ,4m−5)(4,4m−4)∪T B4m−14(6,7;8,9, . . . ,4m−7)(6,4m−6)∪. . .∪T B6(2m−
4,2m − 3;2m − 2,2m − 1, . . . ,2m + 3)(2m − 4,2m + 4)∪T B2(2m − 2,2m − 1;2m,2m + 1)(2m −
2,2m +2) where T B4m−(2+4 j )(2 j ,2 j +1;2 j +2,2 j +3, . . . ,4m −2 j −1)(2 j ,4m −2 j ) represents

triangular book in G0,4m with spine (2 j ,2 j +1), pendant vertex with label 4m −2 j and leaves

2 j +2,2 j +3, . . . ,4m −2 j −1 and is a connected subgraph for j = 0,1,2, . . . ,m −1. In this de-

composition all the edges of G0,4m are partitioned into the edges of triangular books with

book mark and |E(T B2(2m−2,2m−1;2m,2m+1)(2m−2,2m+2))| = 6 < |E(T B6(2m−4,2m−
3;2m − 2,2m − 1, . . . ,2m + 3)(2m − 4,2m + 4))| = 14 < |E(T B10(2m − 6,2m − 5;2m − 4,2m −
3, . . . ,2m +5)(2m −6,2m +6))| = 22 < ·· · < |E(T B4m−6(2,3;4,5, . . . ,4m −3)(2,4m −2))| = 8m −
10 < |E(T B4m−2(0,1;2,3, . . . ,4m−1)(0,4m))| = 8m−2 and T B4m−2(0,1;2,3, . . . ,4m−1)(0,4m) is

a connected subgraph of T B4m−6(2,3;4,5, . . . ,4m−3)(2,4m−2) which is a connected subgraph

of T B4m−10(4,5;6,7, . . . ,4m−5)(4,4m−4) which is a connected subgraph of T B4m−14(6,7;8,9,

. . . ,4m −7)(6,4m −6) which is a connected subgraph of . . . which is a connected subgraph of

T B6(2m−4,2m−3;2m−2,2m−1, . . . ,2m+3)(2m−4,2m+4) which is a connected subgraph of

T B2(2m−2,2m−1;2m,2m+1)(2m−2,2m+2). Thus G0,4m admits (6,8)-CMSD into triangular

books with book mark. Thus G0,4m admits (6,8)-ASD into triangular books with book mark.

(6,8)-CMSD of G0,4 = T B2(0,1;2,3)(0,4), G0,8 = T B6(0,1;2,3,4,5,6,7)(0,8) ∪ T B2(2,3;4,5)(2,6)

and G0,12 = T B10(0,1;2,3, . . . ,11)(0,12) ∪ T B6(2,3;4,5, . . . ,9)(2,10) ∪ T B2(4,5;6,7)(4,8) are

shown in Figures 18, 19 and 20, respectively.

Case (ii): n = 4m +1, m ∈N.

In this case decomposition of G0,4m+1 into triangular books with book mark is obtained as

follows.

Fig. 18. Fig. 19. Fig. 20.

G0,4m+1 = T B4m−1(0,1;2,3, . . . ,4m)(0,4m+1) ∪ T B4m−5(2,3;4,5, . . . ,4m−2)(2,4m−1) ∪
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T B4m−9(4,5;6,7, . . . ,4m−4)(4,4m−3) ∪ T B4m−13(6,7;8,9, . . . ,4m−6)(6,4m−5)∪. . .∪T B7(2m−
4,2m − 3;2m − 2,2m − 1, . . . ,2m + 4)(2m − 4,2m + 5) ∪T B3(2m − 2,2m − 1;2m,2m + 1,2m +
2)(2m − 2,2m + 3) ∪T B0(2m,2m + 1) where T B4m+1−(2+4 j )(2 j ,2 j + 1;2 j + 2,2 j + 3, . . . ,4m −
2 j )(2 j ,4m+1−2 j ) represents triangular book in G0,4m+1 with spine (2 j ,2 j+1), pendant vertex

with label 4m+1−2 j and leaves 2 j +2,2 j +3, . . . ,4m−2 j and is a connected subgraph for j =
0,1,2, . . . ,m −1 and T B0(2m,2m +1) is a triangular book with spine (2m,2m +1) and without

any leaf. All the edges of G0,4m+1 are covered under this decomposition and |E(T B0(2m,2m+
1))| = 1 < |E(T B3(2m − 2,2m − 1;2m,2m + 1,2m + 2)(2m − 2,2m + 3))| = 8 < |E(T B7(2m −
4,2m −3;2m −2,2m −1, . . . ,2m +4)(2m −4,2m +5))| = 16 < ·· · < |E(T B4m−5(2,3;4,5, . . . ,4m −
2)(2,4m −1))| = 8m −8 < |E(T B4m−1(0,1;2,3, . . . ,4m)(0,4m +1))| = 8m and T B0(2m,2m +1)

is a connected subgraph of T B3(2m −2,2m −1;2m,2m +1,2m +2)(2m −2,2m +3) which is a

connected subgraph of T B7(2m −4,2m −3;2m −2,2m −1, . . . ,2m +4)(2m −4,2m +5) which

is a connected subgraph of . . . which is a connected subgraph of T B4m−5(2,3;4,5, . . . ,4m −
2)(2,4m − 1) which is a connected subgraph of T B4m−1(0,1;2,3, . . . ,4m)(0,4m + 1), without

vertex labels. Thus G0,4m+2 is decomposed into triangular books with book mark. The follow-

ing decomposition of G0,5 = T B3(0,1;2,3,4)(0,5) ∪T B0(2,3), G0,9 = T B7(0,1;2,3, . . . ,8)(0,9) ∪
T B3(2,3;4,5,6)(2,7) ∪T B0(4,5) and G0,13 = T B11(0,1;2,3, . . . ,12)(0,13) ∪ T B7(2,3;4,5, . . . ,10)

(2,11) ∪ T B3(4,5;6,7,8)(4,9) ∪ T B0(6,7) are shown in Figures 21, 22 and 23, respectively.

Fig. 21. Fig. 22.

Case (iii): n = 4m +2, m ∈N.

In this case (2,8)-CMSD of G0,4m+2 into triangular books with book mark is obtained as fol-

lows.

G0,4m+2 = T B4m(0,1;2,3, . . . ,4m +1)(0,4m +2) ∪T B4m−4(2,3;4,5, . . . ,4m −1)(2,4m) ∪
T B4m−8(4,5;6,7, . . . ,4m−3)(4,4m−2)∪T B4m−12(6,7;8,9, . . . ,4m−5)(6,4m−4) ∪. . . ∪T B8(2m−
4,2m − 3;2m − 2,2m − 1, . . . ,2m + 5)(2m − 4,2m + 6) ∪T B4(2m − 2,2m − 1;2m,2m + 1,2m +
2,2m+3)(2m−2,2m+4) ∪T B0(2m,2m+1)(2m,2m+2). Here T B4m−4 j (2 j ,2 j +1;2 j +2,2 j +
3, . . . ,4m−2 j +1)(2 j ,4m−2 j +2) represents triangular book in G0,4m+2 with spine (2 j ,2 j +1),
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Fig. 23. Fig. 24.

pendant vertex 4m − 2 j +2 and leaves 2 j +2,2 j +3, . . . ,4m −2 j +1 and is a connected sub-

graph for j = 0,1,2, . . . ,m−1 and T B0(2m,2m+1)(2m,2m+2) is a triangular book with spine

(2m,2m +1), pendant vertex with label 2m +2 and without any leaf. In this decomposition

all the edges of G0,4m+2 are partitioned into edges of triangular books with book mark and

|E(T B0(2m,2m+1)(2m,2m+2))| = 2 < |E(T B4(2m−2,2m−1;2m,2m+1,2m+2,2m+3)(2m−
2,2m +4))| = 10 < |E(T B8(2m −4,2m −3;2m −2,2m −1, . . . ,2m +5)(2m −4,2m +6))| = 18 <
·· · < |E(T B4m−4(2,3;4,5, . . . ,4m −1)(2,4m))| = 8m −6 < |E(T B4m(0,1;2,3, . . . ,4m +1)(0,4m +
2))| = 8m +2 and T B0(2m,2m +1)(2m,2m +2) is a connected subgraph of T B4(2m −2,2m −
1;2m,2m+1,2m+2,2m+3)(2m−2,2m+4) which is a connected subgraph of T B8(2m−4,2m−
3;2m −2,2m −1, . . . ,2m +5)(2m −4,2m +6) which is a connected subgraph of . . . which is a

connected subgraph of T B4m−4(2,3;4,5, . . . ,4m −1)(2,4m) which is a connected subgraph of

T B4m(0,1;2,3, . . . ,4m +1)(0,4m +2), without vertex labels. Thus G0,4m+2 admits (2,8)-CMSD

into triangular books with book mark. (2,8)-CMSD of G0,14 = T B12(0,1;2,3, . . . ,13)(0,14) ∪
T B8(2,3;4,5, . . . ,11)(2,12) ∪ T B4(4,5;6,7,8,9)(4,10) ∪ T B0(6,7)(6,8) is shown in Figure 24.

Case (iv): n = 4m +3, m ∈N.

In this case, (4,8)-CMSD of G0,4m+3 into triangular books with book mark is obtained as fol-

lows. G0,4m+3 = T B4m+1(0,1;2,3, . . . ,4m+2)(0,4m+3) ∪ T B4m−3(2,3;4,5, . . . ,4m)(2,4m+1) ∪
T B4m−7(4,5;6,7, . . . ,4m−2)(4,4m−1)∪T B4m−11(6,7;8,9, . . . ,4m−4)(6,4m−3)∪ . . . ∪T B9(2m−
4,2m−3;2m−2,2m−1, . . . ,2m+6)(2m−4,2m+7) ∪ T B5(2m−2,2m−1;2m,2m+1, . . . ,2m+
4)(2m−2,2m+5) ∪ T B1(2m,2m+1;2m+2)(2m,2m+3) where T B4m+1−4 j (2 j ,2 j+1;2 j+2,2 j+
3, . . . ,4m−2 j +2)(2 j ,4m−2 j +3) represents triangular book in G0,4m+3 with spine (2 j ,2 j +1),

pendant vertex 4m − 2 j +3 and leaves 2 j +2,2 j +3, . . . ,4m −2 j +2 and is a connected sub-

graph for j = 0,1,2, . . . ,m. In this decomposition all the edges of G0,4m+3 are partitioned into

edges of triangular books with book mark and |E(T B1(2m,2m+1;2m+2)(2m,2m+3))| = 4 <
|E(T B5(2m − 2,2m − 1;2m,2m + 1, . . . ,2m + 4)(2m − 2,2m + 5))| = 12 < |E(T B9(2m − 4,2m −
3;2m −2,2m −1, . . . ,2m +6)(2m −4,2m +7))| = 20 < ·· · < |E(T B4m−3(2,3;4,5, . . . ,4m)(2,4m +
1))| = 8m−4 < |E(T B4m+1(0,1;2,3, . . . ,4m+2)(0,4m+3))| = 8m+4 and T B1(2m,2m+1;2m+
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2)(2m,2m + 3) is a connected subgraph of T B5(2m − 2,2m − 1;2m,2m + 1, . . . ,2m + 4)(2m −
2,2m+5) which is a connected subgraph of T B9(2m−4,2m−3;2m−2,2m−1, . . . ,2m+6)(2m−
4,2m+7) which is a connected subgraph of . . . which is a connected subgraph of T B4m−3(2,3;

4,5, . . . ,4m)(2,4m+1) which is a connected subgraph of T B4m+1(0,1;2,3, . . . ,4m+2)(0,4m+3),

without vertex labels. Thus G0,4m+3 admits (4,8)-CMSD into triangular books with book mark.

(4,8)-CMSD of G0,15 = T B13(0,1;2,3, . . . ,14)(0,15)∪T B9(2,3;4,5, . . . ,12)(2,13)∪T B5(4,5;6,7,8,

9,10)(4,11)∪T B1(6,7;8)(6,9) is shown in Figure 25. Hence the result. ���

Theorem 2.8. For m ∈N, G0,4m+1 does not admit (a,d)-ASD and (a,d)-CMD into Fans with a

handle for any a,d ∈N.

Proof. If possible, let G0,4m+1 admit (a,d)− ASD into Fans with a handle for some a,d ∈ N.

Then let G0,4m+1
∼= F∗

n1
∪ F∗

n2
∪ . . . ∪ F∗

nk
where F∗

n1
,F∗

n2
, . . . ,F∗

nk
are edge disjoint fans with

handle for some n1,n2, . . . ,nk ∈ N and 2 ≤ n1 < n2 < ·· · < nk . Then |E(G0,4m+1)| = |E(F∗
n1

)| +
|E(F∗

n2
)|+· · ·+|E(F∗

nk
)| which implies (2m+1)2 = 2n1+2n2+·· ·+2nk which is a contradiction

since the L.H.S. is an odd number whereas the R.H.S. is an even number. Hence the result. ���

Corollary 2.9. For m ∈N, G0,4m+1 does not admit (a,d)-CMSD into Fans with a handle for any

a,d ∈N.

Theorem 2.10. For n ∈N,

(i) G0,4n+1 can be decomposed into Fans with a handle and one P2;

(ii) G0,4n+2 admits (2,8)-CMSD into Fans with a handle;

(iii) G0,4n−1 admits (4,8)-CMSD into Fans with a handle and

(iv) G0,4n admits (6,8)-CMSD into Fans with a handle.

Proof. For n ≥ 3, F∗
n−1, fan with a handle has n +1 vertices and 2(n −1) edges. Let V (G0,n) =

{v0, v1, v2, . . . , vn} where v j is the vertex with integral sum label j in G0,n , 0 ≤ j ≤ n. In the

sum graph Gn , |E(Gn)| = 1
2 ( n(n−1)

2 −⌊n
2

⌋
), d(v j ) = n −1− j if 1 ≤ j ≤ ⌊n+1

2

⌋
and d(v j ) = n − j if⌊n+1

2

⌋+1 ≤ j ≤ n where ⌊x⌋ is the floor of x and v j is the vertex with sum label j in Gn . Now

consider decomposition of G0,n into Fans with a handle for different values of n separately.

In G0,n , the subset {vi v j : i + j = n or n−1, 0 ≤ i , j ≤ n}∪{v0vi : i = 1,2, . . . ,n−2} of E(G0,n)

forms F∗
n−1, fan graph with cycle (v0vn−1v1vn−2 . . . v⌊ n

2 ⌋), pendant edge v0vn attached at the

apex vertex v0 and n−3 concurrent edges, v0v j s for j = 1,2, . . . ,
⌊n

2

⌋−1,
⌊n

2

⌋+1,
⌊n

2

⌋+2, . . . ,n−2.

Using the definition of integral sum labeling, Gn−({vn , vn−1} ∪{vi v j : i+ j = n or n−1,1 ≤ i , j ≤
n−2}) =Gn −{n,n−1,[n], [n−1]} =Gn−2. Also using Theorem 1.5, Gn−2−{v1, vn−2} is isomor-

phic to unlabeled graph Gn−4. Therefore G0,n − ({v0, vn , vn−1, vn−2} ∪ {vi v0 : i + j = n or n −1,

1 ≤ i , j ≤ n −2}) is isomorphic to unlabeled graph G0,n−4. This also follows from Theorem 1.6.

Relabeling the vertices v1, v2, . . . , vn−3 in the resultant graph G0,n−({v0, vn , vn−1, vn−2} ∪{vi v j :
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i+ j = n or n−1,1 ≤ i , j ≤ n−2}) as v0, v1, . . . , vn−4 using the bijection i → i−1 among the vertex

labels and continuing the same technique of choosing the vertex subset {v0, vn−4, vn−5, vn−6}

and the relabeled edge subset {vi v j : i + j = n − 4 or n − 5 for 0 ≤ i , j ≤ n − 4} ∪ {v0vi : i =
1,2, . . . ,n − 6} (in the relabeled graph) which form a fan F∗

n−5. The underlying graph of the

subgraph G0,n−4 − ({v0, vn−4, vn−5, vn−6} ∪ {vi v j : i + j = n −4 or n −5,1 ≤ i , j ≤ n −6}) of the

relabeled graph G0,n−4 is isomorphic to the underlying graph of G0,n−8. Continue the above

process. And to complete the proof, we consider the following four cases of n.

Case (i): n = 4m +1, m ∈N.

In this case, G0,n = G0,4m+1 = F∗
4m ∪ F∗

4(m−1) ∪ F∗
4(m−2) ∪ . . . ∪ F∗

8 ∪ F∗
4 ∪ P2(m,m + 1) =

P2(m,m +1) ∪ (
m−1∪
j=0

F∗
4(m− j )) where F∗

4m ,F∗
4(m−1),F∗

4(m−2), . . . ,F∗
8 ,F∗

4 ,P2(m,m +1) are edge dis-

joint subgraphs of G0,4m+1; here F∗
4m is the Fan with the handle (v0, v4m+1), apex vertex v0 and

P4m = v4m v1v4m−1v2 . . . v2m+2v2m−1v2m+1v2m ; |E(G0,4m+1)| = 4m +1+|E(G4m+1)| = 4m +1+
(4m+1)(4m)

4 − 2m
2 = (2m+1)2; |E(P2)| = 1 < |E(F∗

4 )| = 8 < |E(F∗
8 )| = 16 < ·· · < |E(F∗

n−5)| = 2(n−5) <
|E(F∗

n−1)| = 2(n −1) = 8m; |E(P2)| + |E(F∗
4 )| + |E(F∗

8 )| + · · · + |E(F∗
n−1)| = 1+8+16+ ·· · +8m =

4m2+4m+1 = (2m+1)2 and v j is the vertex with integral sum label j in G0,4m+1, j ∈ [0,4m+1].

Moreover, P2 is a connected subgraph of F∗
4 which is a connected subgraph of F∗

8 which is a

connected subgraph of . . . which is a connected subgraph of F∗
n−5 which is a connected sub-

graph of F∗
n−1, without vertex labels. Thus G0,4m+1 admits CMSD into Fans with a handle and

one P2. The decomposition of G0,13 into Fans with a handle and one P2 is given in Figure 26

and its subgraph decomposition is shown separately in Figures 26.1 to 26.4.

Fig. 25. Fig. 26.

Case (ii): n = 4m +2, m ∈N.

In this case, G0,n =G0,4m+2 = F∗
4m+1 ∪F∗

4(m−1)+1 ∪F∗
4(m−2)+1 ∪ . . .∪F∗

5 ∪P3(m,m +1,m +2) =
P3(m,m+1,m+2)∪(

m−1∪
j=0

F∗
4(m− j )+1) where F∗

4m+1,F∗
4(m−1)+1,F∗

4(m−2)+1, . . . ,F∗
5 ,P3(m,m+1,m+

2) are edge disjoint subgraphs of G0,4m+2;F∗
4m+1 is the Fan with the handle (v0, v4m+2), apex

vertex v0 and P4m+1 = v4m+1v1v4m v2 . . . v2m−1v2m+2v2m v2m+1; P3(vm , vm+1, vm+2) is the path
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Fig. 26.1. Fig. 26.2.

Fig. 26.3. Fig. 26.4.

vm vm+1vm+2 in G0,4m+2 and v j is the vertex with integral sum label j in G0,4m+2, j ∈ [0,4m+2].

Also |E(G0,4m+2)| = 4m+2+|E(G4m+2)| = 4m+2+ (4m+2)(4m+1)
4 − (2m+1)

2 = 4m2+6m+2 = 2(2m+
1)(m + 1), |E(P3)| = 2 < |E(F∗

5 )| = 10 < |E(F∗
9 )| = 18 < ·· · < |E(F∗

n−5)| = 2(n − 5) < |E(F∗
n−1)| =

2(n −1) = 2(4m +1) = 8m +2 and 2+10+18+·· ·+ (2+8m) = 2(2m +1)(m +1). Thus G0,4m+2

admits (2,8)-CMSD into Fans with a handle. Here P3 is the trivial fan with a handle. (2,8)-

CMSD of G0,10 into Fans with a handle is shown in Figure 27 and its subgraph decomposition

is shown separately in Figures 27.1 to 27.3.

Fig. 27. Fig. 27.1.

Case (iii) : n = 4m −1, m ∈N.

In this case, G0,n = G0,4m−1 = F∗
4m−2 ∪ F∗

4m−6 ∪ F∗
4m−10 ∪ . . . ∪ F∗

6 ∪ F∗
2 =

m−1∪
j=0

F∗
4(m− j )−2,
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Fig. 27.2. Fig. 27.3.

|E(G0,4m−1)| = 4m−1+|E(G4m−1)| = 4m−1+ (4m−1)(4m−2)
4 − (2m−1)

2 = 4m2, |E(F∗
2 )| = 4 < |E(F∗

6 )| =
12 < |E(F∗

10)| = 20 < ·· · < |E(F∗
4m−6)| = 2(4m−6) < |E(F∗

4m−2)| = 2(4m−2) where F∗
4m−2,F∗

4(m−1)−2,

F∗
4(m−2)−2, . . . ,F∗

6 ,F∗
2 are edge disjoint subgraphs of G0,4m−1;F∗

4m−2 is the Fan with the handle

(v0, v4m−1) and v j is the vertex with integral sum label j in G0,4m−1, j ∈ [0,4m −1]. This im-

plies G0,4m−1 admits (4,8)-CMSD into Fans with a handle. (4,8)-CMSD of G0,11 into Fans with

a handle is shown in Figure 28 and its subgraph decomposition is shown separately in Figures

28.1 to 28.3.

Fig. 28. Fig. 28.1.

Fig. 28.2. Fig. 28.3.
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Case (iv): n = 4m, m ∈N.

In this case, G0,n =G0,4m = F∗
4m−1 ∪F∗

4m−5 ∪F∗
4m−9 ∪. . . ∪F∗

7 ∪F∗
3 =

m−1∪
j=0

F∗
4(m− j )−1, |E(G0,4m)| =

4m+|E(G4m)| = 4m+ 4m(4m−1)
4 − 2m

2 = 2m(2m+1), |E(F∗
3 )| = 6 < |E(F∗

7 )| = 14 < |E(F∗
11)| = 22 <

·· · < |E(F∗
4m−5)| = 2(4m−5) < |E(F∗

4m−1) = 2(4m−1) and 6+14+·· ·+(6+8(m−1)) = 2m(2m+1)

where F∗
4m−1,F∗

4(m−1)−1,F∗
4(m−2)−1, . . . ,F∗

7 ,F∗
3 are edge disjoint subgraphs of G0,4m , F∗

4m−1 is the

Fan with the handle (v0, v4m) and v j is the vertex with integral sum label j in G0,4m , j ∈ [0,4m].

Thus G0,4m admits (6,8)-CMSD into Fans with a handle. (6,8)-CMSD of G0,12 into Fans with a

handle is shown in Figure 29 and its subgraph decomposition is shown separately in Figures

29.1 to 29.3.

Thus in all the above four cases we could prove the result. ���

Fig. 29. Fig. 29.1.

Fig. 29.2. Fig. 29.3.

Theorem 2.11. The necessary condition for the existence of (a,d)-CMSD of Kn into families of

Fans with a handle is n ≡ 0,1 mod(4).

Proof. Let Kn admit (a,d)-CMSD into families of Fans with a handle for some a,d ∈N. And let

Kn = F∗
n1

∪F∗
n2

∪ . . . ∪ F∗
nk

where F∗
n1

,F∗
n2

, . . . ,F∗
nk

are edge disjoint Fans with a handle for some

n1,n2, . . . ,nk ∈ N and 1 ≤ n1 < n2 < ·· · < nk . Then |E(Kn)| = |E(F∗
n1

)| + |E(F∗
n2

)| + · · · + |E(F∗
nk

)|
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which implies, nC2 = 2n1 +2n2 +·· ·+2nk . This implies, n(n −1) = 4(n1 +n2 +·· ·+nk ) which

implies n ≡ 0,1 mod(4). Hence the result. ���

Conjecture For n ∈ N, K4n admits (2n,2)-CMSD of Fans with a handle and K4n+1 admits

(2(n +1),2)-CMSD of Fans with a handle.

The above conjecture is verified true for n = 1 and 2. Figures 30, 31, 32, 33 show (2,2)-

CMSD, (4,2)-CMSD, (4,2)-CMSD, (6,2)-CMSD of Kn into Fans with a handle for n = 4,5,8,9,

respectively.

Fig. 30. K4 = F∗
1 ∪F∗

2 . Fig. 31. K5 = F∗
2 ∪F∗

3 .

Fig. 32. K8 = F∗
2 ∪F∗

3 ∪F∗
4 ∪F∗

5 .

Fig. 33. K9 = F∗
3 ∪F∗

4 ∪F∗
5 ∪F∗

6 .
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