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SOME LANDAU TYPE INEQUALITIES FOR FUNCTIONS

WHOSE DERIVATIVES ARE OF LOCALLY BOUNDED

VARIATION

N. S. BARNETT AND S. S. DRAGOMIR

Abstract. Some inequalities of the Landau type for functions whose derivatives are of locally

bounded variation are pointed out.

1. Introduction

The following version of Ostrowski’s inequality for functions of bounded variation was
obtained by the second author in [2] (see also [3]):

Theorem 1. Let ϕ : [a, b] → R be a function of bounded variation on [a, b] . Then

for any x ∈ [a, b] one has the inequality:

∣∣∣∣∣ϕ (x) − 1

b − a

∫ b

a

ϕ (t) dt

∣∣∣∣∣ ≤
[

1

2
+

∣∣x − a+b
2

∣∣
b − a

]
∨b

a
(ϕ) , (1.1)

where
∨b

a (ϕ) denotes the total variation of ϕ on [a, b] . The constant 1
2 is the best possible.

We now recall some classical results due to Landau [8].
Let I = R+ or I = R. If f : I → R is twice differentiable and f, f ′′ ∈ Lp (I) ,

p ∈ [1,∞] , then f ′ ∈ Lp (I) . Moreover, there exists a constant Cp (I) > 0 independent
of the function f, such that

‖f ′‖I,p ≤ Cp (I) ‖f‖
1
2

I,p ‖f ′′‖
1
2

I,p , (1.2)

where ‖·‖I,p is the p−norm on the interval I, i.e., we recall

‖h‖I,∞ := ess sup
t∈I

|h (t)| ,

and

‖h‖I,p :=

(∫

I

|h (t)|p dt

) 1
p

if p ∈ [1,∞).
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Landau considered the case p = ∞ and proved that

C∞ (R+) = 2 and C∞ (R) =
√

2 (1.3)

are the best constants for which (1.2) holds.
In 1932, G.H. Hardy and J. E. Littlewood [5] proved (1.2) for p = 2, with the best

constants
C2 (R+) =

√
2 and C2 (R) = 1. (1.4)

In 1935, G. H. Hardy, E. Landau and J. E. Littlewood [6] showed that the best constant
Cp (R+) in (1.2) satisfies the estimate

Cp (R+) ≤ 2 for p ∈ [1,∞), (1.5)

which yields Cp (R) ≤ 2 for p ∈ [1,∞). Actually, as shown in [7] and [1], Cp (R) ≤
√

2.
In this paper, by the use of the inequality (1.1), we point out some Landau type

results for arbitrary subintervals I of R and under more relaxed assumptions on the
derivative f ′.

2. A Technical Lemma

The following technical lemma, that is important in the sequel, holds [4]. For the
sake of completeness, a short proof is outlined below.

Lemma 1. Let C, D > 0 and r, u ∈ (0, 1]. Consider the function gr,u : (0,∞] → R

given by

gr,u (λ) =
C

λu
+ Dλr. (2.1)

Define

λ0 :=

(
uC

rD

) 1
r+u

∈ (0,∞) ,

then for λ1 ∈ (0,∞) we have,

inf
λ∈(0,λ1]

gr,u (λ) =





r + u

u
u

r+u · r u
r+u

C
r

r+u D
r

r+u if λ1 ≥ λ0,

C
λu
1

+ Dλr
1 if 0 < λ1 < λ0.

(2.2)

Proof. We observe that

g′r,u (λ) =
rDλr+u − Cu

λu+1
, λ ∈ (0,∞) .

The unique solution of the equation g′r,u (λ) = 0, λ ∈ (0,∞) is

λ0 =

(
uC

rD

) 1
r+u

∈ (0,∞) .
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The function gr,u is decreasing on (0, λ0) and increasing on (λ0,∞). The global minimum
for gr,u on (0,∞) is

gr,u (λ0) =
C

(
uC
rD

) u
r+u

+ D ·
(

uC

rD

) r
r+u

=
r + u

u
u

r+u r
r

r+u

· C r
r+u D

u
r+u

which proves (2.2).

The following particular cases are useful.

Corollary 1. Let C, D > 0 and r ∈ (0, 1]. Consider the function gr : (0,∞) → R,

given by

gr (λ) =
C

λ
+ Dλr .

Define

λ0 =

(
C

rD

) 1
r+1

∈ (0,∞) ,

then for λ1 ∈ (0,∞) ,

inf
λ∈(0,λ1]

gr (λ) =





r+1

r
r

r+u
C

r
r+1 D

1
r+1 if λ1 ≥ λ0,

C
λ1

+ Dλr
1 if 0 < λ1 < λ0.

(2.3)

Corollary 2. Let C, D > 0 and u ∈ (0, 1]. Consider the function gu : (0,∞) → R

given by

gu (λ) =
C

λu
+ Dλ.

Define

λ̃0 =

(
uC

D

) 1
1+u

∈ (0,∞) ,

then for λ1 ∈ (0,∞),

inf
λ∈(0,λ1]

gu (λ) =





1+u

u
u

1+u
C

1
u+1 D

u
u+1 if λ1 ≥ λ̃0,

C
λu
1

+ Dλ1 if 0 < λ1 < λ̃0.
(2.4)

Remark 1. If r = u = 1, then the following result holds:

inf
λ∈(0,λ1]

(
C

λ
+ Dλ

)
=





2
√

CD if λ1 ≥
√

C
D

,

C
λ1

+ Dλ1 if 0 < λ1 <

√
C
D

.
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3. The Case When f ∈ L∞ (I)

The following theorem holds.

Theorem 2. Let I be an interval in R and f : I → R a locally absolutely continuous

function on I. If f ∈ L∞ (I) , the derivative f ′ : I → R is of locally bounded variation

and there exists a constant VI > 0 and r ∈ (0, 1] such that

∣∣∣∣
∨b

a
(g′)

∣∣∣∣ ≤ VI |a − b|r for any a, b ∈ I; (3.1)

then f ′ ∈ L∞ (I) and

‖f ′‖I,∞ ≤





2
r

r+1 (r + 1)

r
r

r+1
‖f‖

r
r+1

I,∞ V
1

r+1

I if m (I) ≥
2

r+2
r+1 ‖f‖

r
r+1

I,∞

r
1

r+1 V
1

r+1

I

,

4 ‖f‖I,∞

m (I)
+

VI (m (I))
r

2r
if 0 < m (I) <

2
r+2
r+1 ‖f‖

r
r+1

I,∞

r
1

r+1 V
1

r+1

I

.

(3.2)

Proof. Applying (1.1) for ϕ = f ′, we deduce

|f ′ (x)| ≤
∣∣∣∣
f (b) − f (a)

b − a

∣∣∣∣ +

[
1

2
+

∣∣x − a+b
2

∣∣
b − a

] ∣∣∣∣
∨b

a
(f ′)

∣∣∣∣

for any a, b ∈ I, a 6= b and x between them, giving, for x = a,

|f ′ (a)| ≤ |f (b) − f (a)|
|b − a| +

∣∣∣∣
∨b

a
(f ′)

∣∣∣∣ (3.3)

for any a, b ∈ I, a 6= b.

Using the hypothesis (3.1) and the fact that f ∈ L∞ (I) , we conclude that

|f ′ (a)| ≤ |f (b) − f (a)|
|b − a| + VI |b − a|r

=
2 ‖f‖I,∞

|b − a| + VI |b − a|r (3.4)

for almost every a, b ∈ I, a 6= b.

Now, observe that for any a ∈ I and any s ∈
(
0,

m(I)
2

)
, there exists b ∈ I such that

s = |b − a| and then, by (3.4),

|f ′ (a)| ≤
2 ‖f‖I,∞

s
+ VIs

r (3.5)
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for almost any a ∈ I and every s ∈
(
0,

m(I)
2

)
. By taking the infimum over s on

(
0,

m(I)
2

)
,

we have,

|f ′ (a)| ≤ inf
s∈(0,

m(I)
2 )

[
2 ‖f‖I,∞

s
+ VIs

r

]
= K (3.6)

for almost any a ∈ I.

If we take the essential supremum over a ∈ I in (3.6), we conclude that

‖f ′‖I,∞ ≤ K. (3.7)

Making use of Corollary 1, we get

K =





r + 1

r
r

r+1

(
2 ‖f‖I,∞

) r
r+1 · V

1
r+1

I if
m (I)

2
≥

(
2 ‖f‖I,∞

rVI

) 1
r+1

,

2 ‖f‖I,∞

m(I)
2

+ VI

(
m (I)

2

)r

if
m (I)

2
<

(
2 ‖f‖I,∞

rVI

) 1
r+1

=





2
r

r+1 (r + 1)

r
r

r+1
‖f‖

r
r+1

I,∞ V
1

r+1

I if m (I) ≥
2

r+2
r+1 ‖f‖

r
r+1

I,∞

r
1

r+1 V
1

r+1

I

,

4 ‖f‖I,∞

m (I)
+

VI (m (I))
r

2r
if 0 < m (I) <

2
r+2
r+1 ‖f‖

r
r+1

I,∞

r
1

r+1 V
1

r+1

I

and the inequality (3.2) is obtained.

4. The Case when f is Hölder Continuous

The following theorem holds.

Theorem 3. Let I be an interval in R and f : I → R a locally absolutely continuous

function on I. If f satisfies the Hölder condition

|f (b) − f (a)| ≤ K |b − a|ℓ for any a, b ∈ I, (4.1)

where K > 0 and ℓ ∈ (0, 1) are given, and the derivative f ′ : I → R is of locally bounded

variation and the condition (3.1) holds, then f ′ is bounded in I and

‖f ′‖I,∞

≤





r + 1 − ℓ

(1 − ℓ)
1−ℓ

r+1−ℓ r
r

r+1−ℓ

K
r

r+1−ℓ V
1−ℓ

r+1−ℓ

I if m (I) ≥ 2
[

(1−ℓ)K
rVI

] 1
r+1−ℓ

,

21−ℓK

[m (I)]
1−ℓ

+
VI [m (I)]

r

2r
if 0 < m (I) < 2

[
(1−ℓ)K

rVI

] 1
r+1−ℓ

.

(4.2)
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Proof. We know, from the proof of Theorem 2, that

|f ′ (a)| ≤ |f (b) − f (a)|
|b − a| + VI |b − a|r , for all a, b ∈ I, a 6= b. (4.3)

Using the hypothesis (4.1), we conclude that

|f ′ (a)| ≤ K

|b − a|1−ℓ
+ VI |b − a|r (4.4)

for any a, b ∈ I, a 6= b.

By a similar argument to the one used in proving Theorem 2, we conclude that

|f ′ (a)| ≤ inf
s∈(0,

m(I)
2 )

[
K

s1−ℓ
+ VIs

r

]
= M (4.5)

for any a ∈ I.

If we now apply Lemma 1 for C = K, u = 1 − ℓ, D = VI , we observe that

inf
s∈(0,

m(I)
2 )

[
K

s1−ℓ
+ VIs

r

]

=





r + 1 − ℓ

(1 − ℓ)
1−ℓ

r+1−ℓ r
r

r+1−ℓ

K
r

r+1−ℓ V
1−ℓ

r+1−ℓ

I if
m (I)

2
≥

(
(1−ℓ)K

rVI

) 1
r+1−ℓ

,

K
(

m(I)
2

)1−ℓ
+ VI

(
m (I)

2

)r

if
m (I)

2
<

(
(1−ℓ)K

rVI

) 1
r+1−ℓ

.

and the inequality (4.2) is obtained.

The following corollary holds.

Corollary 3. Let I be an interval in R and f : I → R be a locally absolutely

continuous function on I. If f ′ ∈ Lp (I) , p > 1 and if f ′ is of locally bounded variation

and the condition (3.1) holds, then f ′ ∈ L∞ (I) and

‖f ′‖I,∞

≤





pr + 1

p
pr

pr+1 r
pr

pr+1

‖f‖
pr

pr+1

I,p V
1

pr+1

I if m (I) ≥ 2

(‖f‖I,p

prVI

) p
pr+1

,

2
1
p ‖f‖I,p

[m (I)]1−ℓ
+

VI [m (I)]
r

2r
if 0 < m (I) < 2

(‖f‖I,p

prVI

) p

pr+1

.

(4.6)
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Proof. If f ′ ∈ Lp (I) , then we have

|f (b) − f (a)| =

∣∣∣∣∣

∫ b

a

f ′ (s) ds

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ b

a

|f ′ (s)| ds

∣∣∣∣∣

≤ |b − a|
1
q

∣∣∣∣∣

∫ b

a

|f ′ (s)|p ds

∣∣∣∣∣

1
p

≤ |b − a|1−
1
p ‖f ′‖I,p , p > 1,

1

p
+

1

q
= 1,

for a.e. a, b ∈ I.

Using Theorem 3 for ℓ = 1 − 1
p

and K = ‖f ′‖I,p , we deduce the desired result (4.6).

The following result may be proved as well.

Corollary 4. With the assumptions in Corollary 3, and if f ′ ∈ L1 (I) , then f ′ ∈
L∞ (I) and

‖f ′‖I,∞ ≤





r + 1

r
r

r+1
‖f ′‖

r
r+1

I,1 V
1

r+1

I if m (I) ≥ 2

(‖f ′‖I,1

rVI

) 1
r+1

,

2 ‖f ′‖I,1

m (I)
+

VI [m (I)]r

2r
if 0 < m (I) < 2

(‖f ′‖I,1

rVI

) 1
r+1

.

(4.7)
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