
TAMKANG JOURNAL OF MATHEMATICS
Volume 45, Number 4, 367-374, December 2014
doi:10.5556/j.tkjm.45.2014.1457

-
+

+

-

-
-

-
-

Available online at http://journals.math.tku.edu.tw/

SPIN REPRESENTATIONS WITH NEGATIVE INDICES

MADLINE AL-TAHAN, MOHAMMAD N. ABDULRAHIM AND SAMER S. HABRE

Abstract. We consider the spin representation of Artin’s braid group, which has a negative

index of one and was originally given by D. D. Long and explicitly computed by J.P.Tian.

In our work, we find sufficient conditions under which the complex specialization of that

representation, namely α : Bn → GLn2 (C), is unitary relative to a nonsingular hermitian

matrix.

1. Introduction

The braid group, Bn , has a well- known representation due to Artin in the group Aut(Fn)

of automorphisms of the free group Fn generated by x1,. . . , xn . The automorphism corre-

sponding to the braid generator σi takes xi to xi xi+1x−1
i

; xi+1 to xi , and fixes all other free

generators. Applying the Fox derivatives and Magnus representation, we get the classical Bu-

rau representation which is of degree n. Given a compact semisimple Lie group G and a free

group Fn of rank n, D. D. Long constructed a new representation of the braid group by letting

the automorphisms of the free group Fn act on the representation variety R = R(Fn,G) [3].

J.P.Tian has made explicit computations when G = SU (2,C), the group of unitary matrices of

determinant 1 [6]. It was shown that the Weyl group W (Gn ) is Z2
n and it is has a one-to-one

correspondence with the set of all spins (s1, s2, . . . , sn). These spins are the immediate result

of the action of the Weyl group W (G) on S1. For more details, see [6]. Generalizations to in-

clude subgroups of Bn were made by S.Bigelow and J. P. Tian [1]. Each of the components of

the maximal torus S1 ×S1 × . . .S1 of SU (2,C)n is given an orientation with a number si = ±1,

i = 1,2, . . . ,n. The set (s1, s2, . . . , sn) is called the spin S. The cardinality of the set {si | si = −1}

gives the negative index b(S). When b(S) = 0 or b(S) = n, the spin representations are simply

the classical Burau representation after we replace λ
2 by t and t−1 respectively. In our work,

we consider the case b(S)= 1, where its corresponding representation is of degree n2.

In Section 2, we define the complex specialization of the spin representation with the

negative index b(S) = 1, namely α(z) : Bn → GLn2 (C). Here, z is a complex number on the
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unit circle. It is well known that the problem of identifying the images of the different linear

representations of the braid group and its subgroups was always important in the theory of

braid group representations. The answer to such a problem would provide a tool to attack the

question of whether or not these representations are faithful. Examples of unitary represen-

tations include the Burau representation of the braid group and the Gassner repesentation

of the pure braid group, a nomal subgroup of the braid group. For more details, see [5]. In

section 3, we prove our main theorem, Theorem 5, which shows that the spin representation

of the braid group,Bn , with the spins of b(S)= 1, is unitary relative to a nonsingular hermitian

matrix if z =±1 or zn−1 6= 1.

2. Definitions

Definition 1 ([2]). The braid group on n strings, Bn , is the abstract group with presentation

Bn = 〈σ1, . . . ,σn−1 | σiσi+1σi =σi+1σiσi+1 for i = 1, . . . ,n −2,

σiσ j =σ jσi if |i − j | ≥ 2〉.

The generators σ1, . . . ,σn−1 are called the standard generators of Bn .

Applying the new derivative of the Burau representation adopted by D. D. Long in [3], J. P.

Tian has made explicit computations for such a representation [6]. Hence, we introduce the

following definition.

Definition 2 ([3, 6]). Given a non zero complex number on the unit circle, namely λ. The

complex specialization of the spin representation of the braid group α(λ) : Bn → GLn2 (C),

with the negative index of one, is defined as follows:

For 1 ≤ k ≤ n −1,

τk =Gk ⊕·· ·⊕Gk
︸ ︷︷ ︸

k−1

⊕

(

0 Fk

Ek 0

)

⊕Gk ⊕·· ·⊕Gk
︸ ︷︷ ︸

n−k−1

, where

Gk = Ik−1⊕

(

1−λ
2
λ

2

1 0

)

⊕ In−k−1,

Fk = Ik−1⊕

(

1−λ
−2

λ
2

1 0

)

⊕ In−k−1,

and

Ek = Ik−1⊕

(

1−λ
2
λ
−2

1 0

)

⊕ In−k−1.
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Here, we mean by τk the image of the braid generator under the spin representation with

the spins of b(S)= 1. For simplicity, we denote λ
2 by z.

It is clear that the matrices corresponding to τk ’s satisfy the relations among the braid

group generators.

3. Spin Representations with b(S)= 1 Are Unitary

Notation 3. Let (∗) : Mm(C[t±1]) be an involution defined as follows:

( fi j (t ))∗ = f j i (t−1), fi j (t )∈C[t±1].

Definition 4. Let H and U be elements of GLn2 (C). U is called unitary (relative to H ) if

U HU∗ = H .

Having z = λ
2, a non zero complex number on the unit circle, we determine sufficient

conditions for z under which the spin representation of the braid group, having the negative

index of one, is unitary.

Theorem 5. Let z be a complex number on the unit circle. The spin representation of the braid

groupα(z) : Bn →GLn2 (C), with the negative index b(S)= 1, is unitary relative to a nonsingular

hermitian matrix if z =±1 or zn−1 6= 1.

Proof. We distinguish between three cases.

Case 1. z = 1. It is clear that τkτ
∗
k
= In2 for every k = 1, . . . ,n −1.

Case 2. z =−1. We easily verify that τk Nτ
∗
k
= N , where N =⊕n

1 M and M is the n ×n nonsin-

gular matrix given by (ms,t ), where

ms,t =







1, if s = t ,

1− i , if s < t ,

1+ i , if s > t .

Here, i is the complex number given by i 2 =−1.

Case 3.zn−1 6= 1. If z =−1 then we return to Case 2. Otherwise, we assume that z 6= −1. Let N

be the matrix defined as N =⊕n
i=1

Mi , where Mi is the n ×n matrix given by
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−(1+z)2

z −
1+z

z . . . −
1+z

z 1+ z −
1+z

z . . . . . . −
1+z

z

−(1+ z)
. . .

...
...

...
...

...

−(1+ z) . . . −(1+z)2

z
−

1+z
z

1+ z −
1+z

z
. . . . . . −

1+z
z

−(1+ z) . . . −(1+ z) −(1+z)2

z 1+ z −
1+z

z . . . . . . −
1+z

z
1+z

z
. . . . . . 1+z

z
0

︸︷︷︸

(i ,i )th

1+z
z2 . . . . . . 1+z

z2

−(1+ z) . . . . . . −(1+ z) z(1+ z) −(1+z)2

z −
1+z

z . . . −
1+z

z

−(1+ z) −(1+ z)
. . .

...
...

...
. . . −

1+z
z

−(1+ z) . . . . . . −(1+ z) z(1+ z) −(1+ z) . . . −(1+ z) −(1+z)2

z






























,

i = 1, . . . ,n.

Alternatively, one may write the matrix Mi as









R S T

S∗ 0
︸︷︷︸

(i ,i )th

U

T ∗ U∗ R









, where R = (rs,t ) is the (i −1)×

(i −1) matrix given by

rst =







−(1+z)2

z , if s = t ,
−(1+z)

z , if s < t ,

−(1+ z), if s > t .

Also, the matrix S is the (i−1) column matrix with 1+z as its entries, T is the (i−1)×(n−i )

matrix with −(1+z)
z

as its entries and U is the n − i row matrix with 1+z
z2 as its entries.

Having that det(Mi ) = (−z−1)n−1 (1+ z)n (1− zn−1)

(1− z)
6= 0 by our hypothesis, we get that Mi is

an invertible hermitian matrix for every i = 1, . . . ,n. This implies that that N is also hermitian

and invertible. Under direct computations, we have that for 1 ≤ k ≤ n −1

τk Nτ
∗
k
=Gk M1G∗

k
⊕ . . .⊕Gk Mk−1G∗

k
⊕Fk Mk+1F∗

k
⊕Ek Mk E∗

k
⊕Gk Mk+2G∗

k
⊕ . . .⊕Gk MnG∗

k
.

We show that Gk MiG∗
k
= Mi for i ∈ [1,k −1]∪ [k +2,n]. We also show that Fk Mk+1F∗

k
=

Mk and Ek Mk E∗
k
= Mk+1.

For simplicity, we set g =
1+z

z . Throughout the following work, we will only write the en-

tries of the k t h and the (k +1)t h rows in the matrices Mi , and all other entries from different

rows will be denoted by ∗ since they remain unchanged after performing the matrix multipli-

cation.
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We now prove that Gk MiG∗
k
= Mi for 1 ≤ i ≤ k −1. The matrices Gk and Mi are given by

Gk =









Ik−1

1− z z

1 0

In−k−1









and

Mi =
























∗ . . . ∗

... . . .
...

∗ . . . ∗

−g z . . .−g z
︸ ︷︷ ︸

i−1

g z2

︸︷︷︸

(k ,i )th

−g z . . .−g z
︸ ︷︷ ︸

k−i−1

−g (1+ z)
︸ ︷︷ ︸

(k ,k)th

−g −g . . .−g
︸ ︷︷ ︸

n−k−1

−g z . . .−g z g z2 −g z . . .− g z −g z −g (1+ z) −g . . .−g

∗ . . . ∗

... . . .
...

∗ . . . ∗
























.

Direct computations show that

Gk Mi =
























∗ . . . ∗

... . . .
...

∗ . . . ∗

−g z . . .−g z
︸ ︷︷ ︸

i−1

g z2

︸︷︷︸

(k ,i )th

−g z . . .−g z
︸ ︷︷ ︸

k−i−1

−g
︸︷︷︸

(k ,k)th

−g (1+ z2) −g . . .−g
︸ ︷︷ ︸

n−k−1

−g z . . .−g z g z2 −g z . . .− g z −g (1+ z) −g −g . . .−g

∗ . . . ∗

... . . .
...

∗ . . . ∗
























.

Using simple computations, it is easy to see that Gk MiG∗
k
= Mi for 1 ≤ i ≤ k−1. Likewise,

we show that the equality also holds true for k +2≤ i ≤ n.

On the other hand, the matrices Fk and Mk+1 are given by

Fk =









Ik−1

1− z−1 z

1 0

In−k−1
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and

Mk+1 =
























∗ . . . ∗

...
...

∗ . . . ∗

−g z . . .−g z
︸ ︷︷ ︸

k−1

−g (1+ z)
︸ ︷︷ ︸

(k ,k)th

g z −g . . .−g
︸ ︷︷ ︸

n−k−1

g . . . g g 0 g z−1 . . . g z−1

∗ . . . ∗

...
...

∗ . . . ∗
























.

Direct computations show that

Fk Mk+1 =
























∗ . . . ∗

...
...

∗ . . . ∗

g . . . g
︸ ︷︷ ︸

k−1

g z−1

︸ ︷︷ ︸

(k ,k)th

g z − g g z−1 . . . g z−1

︸ ︷︷ ︸

n−k−1

−g z . . .−g z −g (1+ z) g z −g . . .−g

∗ . . . ∗

...
...

∗ . . . ∗
























.

Using simple computations, it is now easy to verify that Fk Mk+1F∗
k
= Mk .

Finally, the matrices Ek and Mk are given by

Ek =









Ik−1

1− z z−1

1 0

In−k−1
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and

Mk =























∗ . . . ∗

...
...

∗ . . . ∗

g . . . g
︸ ︷︷ ︸

k−1

0
︸︷︷︸

(k ,k)th

g z−1 g z−1 . . . g z−1

︸ ︷︷ ︸

n−k−1

−g z . . .−g z g z2 −g (1+ z) −g . . .− g

∗ . . . ∗

...
...

∗ . . . ∗























.

Thus, we get that

Ek Mk =
























∗ . . . ∗

...
...

∗ . . . ∗

−g z . . .−g z
︸ ︷︷ ︸

k−1

g z
︸︷︷︸

(k ,k)th

−2g −g . . .−g
︸ ︷︷ ︸

n−k−1

g . . . g 0 g z−1 g z−1 . . . g z−1

∗ . . . ∗

...
...

∗ . . . ∗
























.

Again, it is easy to verify that Ek Mk E∗
k
= Mk+1.

We then conclude thatτk N τk
∗ = N and so the proof is completed.

Remark 6. It is easy to see, by Theorem 5, that for n = 2 and n = 3 ,α(z) : Bn → GLn2 (C)

is unitary relative to a nonsingular hermitian matrix for all complex numbers z on the unit

circle.
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