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SINGULAR RIGHT FOCAL BOUNDARY VALUE PROBLEM

WITH GIVEN MAXIMAL VALUES

YU TIAN AND WEIGAO GE

Abstract. In this paper, we prove existence results for the singular problem (−1)n−p(Φmx(n−1))′

(t) = µf(t, x(t), . . . , x(n−1)(t)), for 0 < t < 1, x(i)(0) = 0, i = 0, 1, . . . , p− 1, x(i)(1) = 0, i = p,

p +1, . . . , n− 1, max{x(t) : t ∈ [0, 1]} = A. The paper presents conditions which guarantee that

for any A > 0 there exists µA > 0 such that the above problem with µ = µA has a solution

x ∈ Cn−1([0, 1]) with Φm(x(n−1)) ∈ AC([0, 1]) which is positive on (0, 1). Here the positive

Carathédory function f may be singular at the zero value of all its phase variables. Proofs are

based on the Leray-Schauder degree and Vitali’s convergence theorem.

1. Introduction

The right focal boundary value problems has been widely studied by a number of
authors in recent years. For details, see [1, 7, 8, 9, 10, 15] and the references therein.
However the boundary value problems treated in the above mentioned references are not
allowable to process singularity. For studies about higher-order singular boundary value
problem, we refer to [2, 3, 4, 5, 6, 17].

Agarwal, O’Regan and Lakshmikantham studied the existence of solutions for right
focal boundary value problem in [3]:






(−1)n−py(n) = φ(t)f(t, y, . . . , y(n−1)), n ≥ 2, t ∈ (0, 1),

y(i)(0) = 0, 0 ≤ i ≤ p− 1,

y(i)(1) = 0, p ≤ i ≤ n− 1,

(1.1)

where f ∈ C([0, 1] × (0,∞)p, (0,∞)), f(t, y0, . . . , yn−1) may be singular at yi = 0, 0 ≤
i ≤ p− 1, φ ∈ C(0, 1) with φ > 0 on (0, 1) and φ ∈ L1[0, 1], φ may be singular at t = 0
and/or 1. However, by assuming that f has the following increasing condition

p−1∑

i=0

hi(ui) ≤ f(t, u0, . . . , up−1) ≤

p−1∑

i=0

gi(ui) + r(u) (1.2)
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on [0, 1] × (0,∞)p with hi > 0 continuous and non-increasing on (0,∞) for each i =
0, . . . , p − 1, gi > 0 continuous and non-increasing on (0,∞) for each i = 0, . . . , p − 1,
and r ≥ 0 continuous, nondecreasing on [0,∞), here |u| = max{u0, u1, . . . , un−1}.

∫ 1

0

φ(s)gi(kis
p−i)ds <∞ for each i = 0, . . . , p− 1, (1.3)

here ki > 0(i = 0, . . . , p− 1) are constant, and

if z > 0 satisfies z ≤ a0 + b0r(z) for constants a0 ≥ 0 and b0 ≥ 0, (1.4)

then there exists a constant K (which may depend only on a0 and b0) with z ≤ K.
The authors obtain an existence result. In fact, condition (1.4) implies the degree of

variable u in the term r(u) must be smaller than 1.
In [6], the singular problem (−1)nx(2n)(t) = µf(t, x, . . . , x(2n−2)), x(2j)(0) = x(2j)(T )

= 0, (0 ≤ j ≤ n − 1), max{x(t) : 0 ≤ t ≤ T } = A depending on the parameter µ
is considered. The existence of at least one positive solution was obtained under the
assumption

f(t, x0, . . . , xn−2) ≤ φ(t) +

2n−2∑

j=0

qj(t)ωj(|xj |) +

2n−2∑

j=0

hj(t)|xj |
αj

for a.e. t ∈ J and for each (x0, . . . , x2n−2) ∈ D, where φ, hj ∈ L1(J) and qj ∈ L∞(J) are
nonnegative, ωj : R+ → R+ are non-increasing, αj ∈ (0, 1).

Motivated by the above results, we consider the right focal boundary value problem
in the following form

(−1)n−p(Φm(x(n−1)))′(t) = µf(t, x(t), . . . , x(n−1)(t)), 0 < t < 1, (1.5)

x(i)(0) = 0, i = 0, 1, . . . , p− 1, x(i)(1) = 0, i = p, p+ 1, . . . , n− 1. (1.6)

Together with the boundary conditions (1.6), we discuss the condition

max{x(t) : t ∈ J} = A, (1.7)

where Φmx := |x|m−2x,m > 1, Φm′ is the inverse operator of Φm, where 1
m + 1

m′
=

1, n ≥ 2.
Let J = [0, 1], R− = (−∞, 0), R+ = (0,∞), R0 = R\{0},

D =






R+ × · · · ×R+︸ ︷︷ ︸
p

×R+ ×R− × · · · ×R+︸ ︷︷ ︸
n−p

, n− p = 2k + 1,

R+ × · · · ×R+︸ ︷︷ ︸
p

×R+ ×R− × · · · ×R−︸ ︷︷ ︸
n−p

, n− p = 2k.

Nonlinearity term f satisfies local Carathédory conditions on J ×D(f ∈ Car(J × D))
and may be singular at the zero value of all its phase variables. By using Leray-Schauder
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degree theory we get a new result on the existence of solutions to boundary value prob-
lem (1.5)-(1.7). The method of obtaining priori bound of solution is different from [3,
6] In addition, the maximum degree of some variables among x0, . . . , xn−1 in function
f(t, x0, . . . , xn−1) are allowable to be 1.

Let A ∈ R+. By a solution of BVP (1.5)-(1.7) we understand a function x ∈ ACn−1(J)
(i.e., x has an absolutely continuous (n− 1)st derivative on J) such that

(i) x(i)(t) > 0 on (0, 1] for i = 0, . . . , p − 1 and (−1)2n−p−ix(i)(t) > 0 on [0, 1) for
i = p, . . . , n− 1,

(ii) x satisfies boundary conditions (1.6)(1.7),
(iii) there exists µA ∈ R+ such that x fulfills (1.5) with µ = µA for a.e. t ∈ J .

By a solution of BVP (1.5), (1.6) we understand a function x ∈ AC2n−1(J) such
that x(i)(t) > 0 on (0, 1] for i = 0, . . . , p− 1 and (−1)n−i+1x(2n−p−i)(t) > 0 on [0, 1) for
i = p, . . . , n− 1, x satisfies boundary conditions (1.6) and (1.5) holds a.e. t ∈ J .

The purpose of this paper is to give conditions which guarantee the existence of a
solution to BVP (1.5)-(1.7) for each given A ∈ R+.

From now on, ‖x‖ = max{|x(t)| : t ∈ J}, ‖x‖1 =
∫ 1

0
|x(t)|dt and ‖x‖∞ = essmax{

|x(t)| : 0 ≤ t ≤ 1} stands for the norm in C0(J), L1(J), and L∞(J), respectively. For
any measurable set M ⊂ R, µ(M) denotes the Lebesgue measure of M.

The assumptions imposed upon the function f in (1.5) are listed as follows:
(H1) f ∈ Car(J × D) and there exists nonnegative functions φ ∈ L1(J), qi ∈ L∞(J),
and continuous functions gi : [0, 1] × Rn → R+(i = 0, . . . , n − 1) and non-increasing
nonnegative continuous function ωi : R+ → R+ such that for (t, x) ∈ J ×D,

f(t, x0, . . . , xn−1) = φ(t) +

n−1∑

i=0

qi(t)ωi(|xi|) +

n−1∑

i=0

gi(t, xi), (1.8)

where

lim
|xi|→∞

sup
t∈[0,1]

gi(t, xi)

(Φm(|xi|))ki
= αi ≥ 0, ki are any constants in (0, 1), i = 0, . . . , p− 1,

(1.9)
and

lim
|xi|→∞

sup
t∈[0,1]

gi(t, xi)

Φm(|xi|)
= βi ≥ 0, i = p, . . . , n− 1, (1.10)

and ωi satisfies

∫ 1

0

ωi(s
p−i)ds <∞, 0 ≤ i ≤ p− 1,

∫ 1

0

ωi(Pi(s))ds <∞, p ≤ i ≤ n− 1, (1.11)

where

Pi(t) =
1

(n− 2 − i)!

∫ 1

t

(θ − t)n−2−iΦm′

(∫ 1

θ

φ(r)dr

)
dθ,

and there exists λ > 0 such that

ωi(xy) ≤ λωi(x)ωi(y) for x, y ∈ (0,∞). (1.12)
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The paper is organized as follows. Section 2 presents the priori bound of BVP (1.5)-

(1.7). Besides, we prove that some sets of functions containing solutions of our auxiliary

regular BVPs are uniformly absolutely continuous on J . Section 3 deals with auxiliary

regular BVPs of problem (1.5), (1.6), (1.7). First we prove the existence of solution by

applying the Borsuk antipodal theorem and the Leray-Schauder degree (see, e.g. [12]).

Then we prove the existence of solution for problem (1.5), (1.6), (1.7). Proof is based on

the Arzelà-Ascoli theorem and the Vitali’s convergence theorem, see, e.g. [11, 12, 14].

2. Auxiliary Results

Lemma 2.1. If y is a solution of BVP (1.5), (1.6), then y(t) is a fixed point of the

operator

(Ty)(t) = (−1)n−p−1

∫ 1

0

G(t, s)Φm′

(∫ 1

s

f(θ, y(θ), . . . , y(n−1)(θ))dθ

)
ds, (2.1)

where G(t, s) is the Green’s function of the following BVP

{
x(n−1)(t) = 0, t ∈ (0, 1),

x(i)(0) = 0, i = 0, . . . , p− 1, x(i)(1) = 0, i = p, . . . , n− 2,

and G(t, s) can be expressed as

G(t, s) =
1

(n− 2)!






p−1∑
i=0

(
n− 2

i

)
ti(−s)n−i−2, 0 ≤ s ≤ t ≤ 1;

−
n−2∑
i=p

(
n− 2

i

)
ti(−s)n−i−2, 0 ≤ t ≤ s ≤ 1.

Furthermore,

(−1)n−p−1 ∂
i

∂ti
G(t, s) ≥ 0, i = 0, . . . , p− 1,

(2.2)

(−1)n−i−1 ∂
i

∂ti
G(t, s) ≥ 0, i = p, . . . , n− 2, (t, s) ∈ J × J.

Proof. By integrating the equation in (1.5) from t ∈ [0, 1) to 1 and using x(n−1)(1) =

0, we obtain that

(−1)n−pΦm(y(n−1)(t)) = −

∫ 1

t

f(θ, y(θ), . . . , y(n−1)(θ))dθ,

i.e.

y(n−1)(t) = (−1)n−p−1Φm′

(∫ 1

t

f(θ, y(θ), . . . , y(n−1)(θ))dθ

)
.
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By [15] we have the result is true.

Remark 2.1. It follows from (2.1) (2.2) that

{
y(i)(t) > 0, i = 0, . . . , p− 1, t ∈ (0, 1]

(−1)i−py(i)(t) > 0, i = p, . . . , n− 1, t ∈ [0, 1).
(2.3)

As in [5], for each m ∈ N , define Xm, ϕm ∈ C0(R), Rm ⊂ R and fm ∈ Car(J × Rn)

by the formulas

Xm(u) =

{
u, for u ≥ 1

m ,
1
m , for u < 1

m ,
ϕm(u) =

{
− 1

m , for u > − 1
m ,

u, for u ≤ − 1
m ,

τm(u) =

{
Xm(u), for n− p = 2k + 1,

ϕm(u), for n− p = 2k,

and

fm(t, x0, . . . , xn−1)

= φ(t) +

p−1∑

i=0

qi(t)ωi(|Xm(xi)|) + qp(t)ωp(|Xm(xp)|) + qp+1(t)ωp+1(|ϕm(xp+1)|)

+ · · ·+ qn−1(t)ωn−1(|τm(xn−1)|) +

n−1∑

i=0

gi(t, xi)

for (t, x0, . . . , xn−1) ∈ J ×Rn. Hence

0 < φ(t) ≤ fm(t, x0, . . . , xn−1)

≤ φ(t) +

n−1∑

i=0

qi(t)ωi(|xi|) +

n−1∑

i=0

gi(t, xi) (2.4)

for a.e. t ∈ J and each (x0, . . . , xn−1) ∈ Rn
0 .

Consider auxiliary regular differential equation

(Φmx
(n−1))′(t) = µfm(t, x(t), . . . , x(n−1)(t)) (2.5)

depending on the parameters µ ∈ R and m ∈ N.

Lemma 2.2. Let m ∈ N , then

x(i)(t) ≥ tp−iΓ, i = 0, . . . , p− 1; (−1)2n−p−ix(i)(t) ≥ Pi(t), i = p, . . . , n− 1, (2.6)

on J for any solution x of BVP (2.6), (1.6), where Γ = (−1)n−p−1
∫ 1

0
G(1, s)Φm′(∫ 1

s
φ(θ)dθ

)
ds.



322 YU TIAN AND WEIGAO GE

Proof. By [2] we have

x(i)(t) ≥ tp−ix(i)(1) for t ∈ J, i = 0, . . . , p− 1. (2.7)

Applying the inequality ‖x(i)‖ ≥ ‖x‖, i = 0, . . . , n− 1, and (2.1), (2.2) to (2.7) we get

x(i)(t) ≥ tp−i‖x‖ = tp−ix(1) ≥ (−1)n−p−1tp−i

∫ 1

0

G(1, s)Φm′

(∫ 1

s

µφ(θ)dθ

)
ds

= Φm′(µ)tp−iΓ

for t ∈ J , i = 0, . . . , p− 1.
On the other hand, by (2.3) we have (−1)n−px(n)(t) ≥ φ(t), t ∈ J . Integrating the

above inequality from t to 1, we get step by step

(−1)2n−p−ix(i)(t) ≥

∫ 1

t

(θ − t)n−i−2

(n− i− 2)!
Φm′

(∫ 1

θ

φ(r)dr

)
dθ = Pi(t), i = p, . . . , n− 1.

Lemma 2.3. Suppose that assumption (H1) is satisfied, m ∈ N and A ∈ R+. Denote

µ∗ = Φm

(
A
Γ

)
. Then there is no solution in BVP (2.5), (1.6), (1.7) for µ > µ∗.

Proof. Suppose x(t) is a solution of BVP (2.5), (1.6), (1.7). By (2.1) and (2.4) we

have

x(t) = (−1)n−p−1

∫ 1

0

G(t, s)Φm′

(
µ

∫ 1

s

fm(r, x(r), . . . , xn−1(r))dr

)
ds

≥ (−1)n−p−1

∫ 1

0

G(t, s)Φm′

(
µ

∫ 1

s

φ(r)dr

)
ds,

i.e.

max{x(t) : t ∈ J} ≥ (−1)n−p−1Φm′(µ)max
t∈J

∫ 1

0

G(t, s)Φm′

(∫ 1

s

φ(r)dr

)
ds

> (−1)n−p−1Φm′(µ∗)

∫ 1

0

G(1, s)Φm′

(∫ 1

s

φ(r)dr

)
ds

= Φm′(µ∗)Γ = A,

which contradicts to (1.7).

Lemma 2.4. Suppose 0 < u ∈ L1[0, T ], 0 ≤ ψ ∈ L∞[0, T ] and

u(t) ≤ K +

∫ T

t

u(s)ψ(s)ds, t ∈ [0, T ],K > 0.

Then u(t) ≤ K exp
∫ T

t ψ(s)ds, ∀t ∈ [0, T ].
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Proof. Let G(t) = K +
∫ T

t
u(s)ψ(s)ds, then G′(t) = −u(t)ψ(t) ≥ −ψ(t)G(t), i.e.

G′(t)

G(t)
≥ −ψ(t).

Integrating the above inequality from t to T we have

lnK − lnG(t) ≥ −

∫ T

t

ψ(s)ds,

i.e. G(t) ≤ K exp
∫ T

t
ψ(s)ds. Then u(t) ≤ G(t) ≤ K exp

∫ T

t
ψ(s)ds.

Lemma 2.5. Let assumption (H1) be satisfied and A ∈ R+. Then there exists a

positive constant P depending only on A such that for any solution x of BVP (2.5), (1.6)

with a µ ∈ R+ satisfying

max{x(t) : t ∈ J} = λA, λ ∈ (0, 1], (2.8)

we have

µ ≤ µ∗ and ‖x(j)‖ ≤ P for 0 ≤ j ≤ n− 1, (2.9)

where µ∗ is defined in Lemma 2.3.

Proof. Let x be a solution of BVP (2.5), (1.6) with µ ∈ R+ satisfying (2.8) for some

λ ∈ (0, 1]. Then by Lemma 2.3, µ ≤ Φm(λ)µ∗ and so µ ≤ µ∗.

Following we will show ‖x(j)‖ ≤ P , j = 0, . . . , n − 1. We finish the proof by three

steps.

Step 1. It follows from boundary condition that

x(i)(t) =

∫ t

0

(t− s)p−i−1

(p− i− 1)!

(∫ 1

s

(θ − s)n−p−2

(n− p− 2)!
|x(n−1)(θ)|dθ

)
ds, i = 0, . . . , p−1. (2.10)

(−1)2n−p−ix(i)(t) =

∫ 1

t

(θ − t)n−i−2

(n− i− 2)!
|x(n−1)(θ)|dθ, i = p, . . . , n− 2. (2.11)

It follows from (2.11) that

|x(i)(t)| ≤
(1 − t)n−i−1

(n− i− 1)!
|x(n−1)(t)|, i = p, . . . , n− 1. (2.12)

From (2.10) we have

‖x(i)‖ ≤
1

(p− i− 1)!(n− p− 1)!
‖x(n−1)‖, i = 0, . . . , p− 1. (2.13)

Step 2. Prove |x(n−1)(t)| ≤ P, t ∈ [0, 1].
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For any small ε > 0, there is δ > 0 so that

|gi(t, xi)| < (αi + ε)(Φm(|xi|))
ki uniformly for t ∈ [0, 1], ki ∈ (0, 1) and |xi| > δ,

i = 0, . . . , p− 1,

and
|gi(t, xi)| < (βi + ε)Φm(|xi|) uniformly for t ∈ [0, 1], and |xi| > δ, i = p, . . . , n− 1.

Let, for i = 0, . . . , n− 1,

∆1,i = {t : t ∈ [0, 1], |xi(t)| ≤ δ},

∆2,i = {t : t ∈ [0, 1], |xi(t)| > δ},

gδ,i = max
t∈[0,1],|xi|≤δ

gi(t, xi).

For some m > 0, t ∈ [0, 1],

(−1)n−p(Φmx
(n−1))′(t) = µfm(t, x(t), . . . , xn−1(t)). (2.14)

Integrating the above equality from t to 1, noticing Lemma 2.2, (1.9), (1.10), (2.4) and
(2.12) (2.13) we have

Φm(|x(n−1)(t)|) ≤ µ∗

∫ 1

t



φ(s) +

p−1∑

i=0

qi(s)ωi

(
sp−iΓ

)
+

n−1∑

i=p

qi(s)ωi(Pi(s))



 ds

+

n−1∑

i=0

∫

δ1,i∩[t,1]

gi(s, x
(i)(s))ds+

n−1∑

i=0

∫

δ2,i∩[t,1]

gi(s, x
(i)(s))ds

≤ µ∗

(
Λ +

n−1∑

i=0

gδ,i +

n−1∑

i=0

∫

δ2,i∩[t,1]

gi(s, x
(i)(s))ds

)

≤ µ∗

[
Λ +

n−1∑

i=0

gδ,i +

p−1∑

i=0

(αi + ε)

(
Φm

(
|x(n−1)(0)|

(p− i− 1)!(n− p− 1)!

))ki

+

∫ 1

t

n−1∑

i=p

(βi + ε)Φm

(
(1 − s)n−i−1

(n− i− 1)!

)
Φm(|x(n−1)(s)|)ds



 ,

i.e.

|Φm(x(n−1)(t))| ≤

(
C +D

(
Φm(|x(n−1)(0)|)

)ki

)
+

∫ 1

t

E(s)Φm(|x(n−1)(s)|)ds.

where

Λ =

∫ 1

0



φ(s) +

p−1∑

i=0

‖qi‖∞λωi

(
sp−i

)
ωi(Γ) +

n−1∑

i=p

‖qi‖∞ωi(Pi(s))



 ds,
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C = 2µ∗

[
Λ +

n−1∑

i=0

gδ,i

]
,

D = 2µ∗

p−1∑

i=0

(αi + ε)

(
Φm

(
1

(p− i− 1)!(n− p− 1)!

))ki

,

E(t) = 2µ∗

n−1∑

i=p

(βi + ε)Φm

(
(1 − t)n−i−1

(n− i− 1)!

)
.

By Lemma 2.4 and keep in mind ki ∈ (0, 1), so there exists P (which does not independent
on λ) such that |x(n−1)(0)| = ‖x(n−1)‖ ≤ P .

Step 3. Prove ‖x(i)‖ ≤ P for i = 0, 1, . . . , n− 1.
By (2.12) (2.15) and Step 2, we have

‖x(i)‖ ≤
P

(n− i− 1)!
≤ P, for i = p, . . . , n− 2,

‖x(i)‖ ≤
P

(n− p− 1)!(p− i− 1)!
≤ P, for i = 0, . . . , p− 1.

Thus ‖x(i)‖ ≤ P for i = 0, 1, . . . , n− 1.

Lemma 2.6. Let assumption (H1) be satisfied and A ∈ R+. Let BVP (2.5), (1.6),
(1.7) has a solution xm for each m ∈ N with µ = µm in (2.5). Then the sequence

{µmfm(t, xm(t), . . . , x(n−1)
m (t))} ⊂ L1(J)

is uniformly absolutely continuous on J , that is for each ε > 0 there exists δ > 0 such

that

µm

∫

M

fm(t, xm(t), . . . , x(n−1)
m (t))dt < ε

for any measurable set M ⊂ J, µ(M) < δ.

Proof. With respect to (2.5) and properties of measurable sets, it is sufficient to
verify that for every ε > 0, there exists δ > 0 such that for any at most countable set
{(aj, bj)}j∈J of mutually disjoint intervals {(aj , bj)}j∈J with

∑
j∈J

(bj − aj) < δ, we have

for each m ∈ N ,

∑

j∈J

∫ bj

aj

[
φ(t) +

n−1∑

i=0

qi(t)ωi(|x
(i)
m |) +

n−1∑

i=0

gi(t, x
(i)(t))

]
dt < ε. (2.15)

By Lemma 2.2 we have

x(i)
m (t) ≥ tp−iΦ(t), i = 0, . . . , p− 1, t ∈ J,

(2.16)
|x(i)

m (t)| ≥ Pi(t), i = p, . . . , n− 1, t ∈ J.
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In addition by Lemma 2.4

‖x(i)
m ‖ ≤ P, i = 0, . . . , p− 1. (2.17)

From (1.12), (2.16), (2.17) we have

∑

j∈J

∫ bj

aj

[
φ(t)+

n−1∑

i=0

qi(t)ωi(|x
(i)
m |)+

n−1∑

i=0

gi(t, x
(i)(t))

]
dt

≤
∑

j∈J

∫ bj

aj



φ(t)+

p−1∑

i=0

qi(t)λωi(t
p−i)ωi(Γ)+

n−1∑

i=p

qi(t)ωi(Pi(t))+ sup
(t,x)∈[0,1]×[0,P ]

gi(t, xi)



dt.

By (H1), we know that φ, hi ∈ L1(J), qi ∈ L∞(J),
∫ 1

0 ωi(t
p−i)dt < ∞, i = 0, . . . , p −

1,
∫ 1

0 ωj(Pj(s))ds < ∞, j = p, . . . , n − 1. Consequently, for each ε > 0 there exists
δ > 0 such that for any at most countable set {(aj , bj)}j∈J of mutually disjoint intervals

(aj , bj) ⊂ J with
∑
j∈J

(bj − aj) < δ. So (2.17) holds.

3. Existence results

Theorem 3.1. Suppose that the assumption (H1) is satisfied and A ∈ R+. Then for

each m ∈ N there exists a solution xm of BVP (2.5), (1.6), (1.7) with µ = µm in (2.5),

and

‖x(j)
m ‖ ≤ P for m ∈ N, j = 0, . . . , n− 1 (3.1)

and

0 < µm ≤ µ∗. (3.2)

Proof. Fix m ∈ N . Set

Ω = {(x, µ) : (x, µ) ∈ Cn(J) ×R, ‖x(j)‖ < P + 1 for j = 0, . . . , n− 1, |µ| < µ∗ + 1}.

Then Ω is a bounded, open and symmetric with respect to (0, 0) subset of the Banach

space Cn(J)×R endowed with the norm ‖(x, µ)‖ =
n−1∑
i=0

‖x(j)‖+ |µ|. Define the operator

F1 : Ω → Cn(R) ×R by

F1(x, µ) =

(
(−1)n−p−1

∫ 1

0

G(t, s)Φm′

(
µ

∫ 1

s

fm(r, x(r), . . . , x(n−1)(r))dr

)
ds,

max{x(t) : t ∈ J} + min{x(t) : t ∈ J} + µ) ,

where G is defined in Lemma 2.1. We first show that

D(I − F1,Ω, 0) 6= 0, (3.3)
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where D stands for the Leray-Schauder degree and I is the identity operator on Cn(J)×

R. To prove (3.3) we define the operator H : [0, 1]× Ω → Cn−1(J) ×R,

H(λ, x, µ)=

(
(−1)n−p−1

∫ 1

0

G(t, s)Φm′

[
µ(1−λ)+µλ

∫ 1

s

fm(r, x(r), . . . , x(n−1)(r))dr

]
ds,

λ[max{x(t : t ∈ J)} + min{x(t) : t ∈ J}] + (1 − λ)x(1/2) + µ) .

Then

H(0,−x,−µ) =

(
−(−1)n−p−1

∫ 1

0

G(t, s)Φm′(µ)ds,−x(1/2) − µ

)
= −H(0, x, µ)

for (x, µ) ∈ Ω and so H is an odd operator. Due to the fact that fm ∈ Car(J ×Rn−1),

H is a compact operator. Assume that H(λ0, x0, µ0) = (x0, µ0) for some λ0 ∈ [0, 1] and

(x0, µ0) ∈ ∂Ω. Then

x0(t) = (−1)n−p−1

∫ 1

0

G(t, s)Φm′

[
µ(1 − λ0) + µλ0

∫ 1

s

fm(r, x0(r), . . . , x
(n−1)
0 (r))dr

]
ds

(3.4)

for t ∈ J and

λ0[max{x0(t) : t ∈ J} + min{x0(t) : t ∈ J}] + (1 − λ0)x0(1/2) = 0. (3.5)

Also from (2.3) it follows that

x0(0) = 0, x
′

0(t) ≥ 0, t ∈ J.

So x0(t) > 0 for t ∈ (0, 1) and min{x0(t) : t ∈ J} = 0. Therefore

λ0[max{x0(t) : t ∈ J} + min{x0(t) : t ∈ J}] + (1 − λ0)x0(1/2)

= λ0 max{x0(t) : t ∈ J} + (1 − λ0)x0(1/2) > 0,

contrary to (3.5). If µ0 < 0, then x0(t) < 0 for t ∈ (0, 1). By (2.3) x0(0) = 0, x
′

0(0) ≤

0, t ∈ J , so max{x0(t) : t ∈ J} = 0. Hence

λ0[max{x0(t) : t ∈ J} + min{x0(t) : t ∈ J}] + (1 − λ0)x0(1/2)

= λ0 min{x0(t) : t ∈ J} + (1 − λ0)x0(1/2) < 0,

contrary to (3.5). If µ0 = 0 and then (3.4) gives x0 = 0. Consequently, (x0, µ0) = (0, 0),

contrary to (x0, µ0) ∈ ∂Ω. The Borsuk antipodal theorem and the Leray-Schauder degree

theory lead to D(I −H(0, ·, ·),Ω, 0) 6= 0 and

D(I − F1,Ω, 0) = D(I −H(1, ·, ·),Ω, 0) = D(I −H(0, ·, ·),Ω, 0)

which implies (3.3).
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Finally, let F : Ω → Cn(J) ×R be defined by the formula

F(x, µ) =

(
(−1)n−p−1

∫ 1

0

G(t, s)Φm′

[
µ

∫ 1

s

fm(r, x(r), . . . , x(n−1)(r))dr

]
ds,

max{x(t) : t ∈ J} + min{x(t) : t ∈ J} −A+ µ) .

We claim that to prove our theorem it is sufficient to verify:

D(I − F ,Ω, 0) 6= 0. (3.6)

In fact, if (3.6) is true, then there exists a fixed point (x̂, µ̂) ∈ Ω of the operator F . Hence

x̂(t) = (−1)n−p−1

∫ 1

0

G(t, s)Φm′

[
µ̂

∫ 1

s

fm(r, x̂(r), . . . , x(n−1)(r))dr

]
ds (3.7)

for t ∈ J and
max{x̂(t) : t ∈ J} + min{x̂(t) : t ∈ J} = A. (3.8)

Moreover, µ̂ > 0 since in the case of µ̂ ≤ 0 (3.7) and Lemma 2.1 gives for x̂(t) ≤ 0 for
t ∈ J , so max{x̂(t) : t ∈ J} = 0, contrary to (3.8). Therefore (see (3.7)) x̂ is a solution
of BVP (2.4), (1.6) with µ = µ̂ in (2.4), and for t ∈ (0, 1). So min{x̂(t) : t ∈ J} = 0.
Then, by (3.8), max{x̂(t) : t ∈ J} = A, and we see that x̂ is a solution of BVP (2.4),
(1.6), (1.7).

In order to prove (3.6) we consider the operator H : [0, 1]× Ω → Cn(J) ×R,

H(λ, x, µ) =

(
(−1)n−p−1

∫ 1

0

G(t, s)Φm′

[
µ

∫ 1

s

fm(r, x(r), . . . , x(n−1)(r))dr

]
ds,

max{x(t) : t ∈ J} + min{x(t) : t ∈ J} − λA+ µ)

Then, H(1, ·, ·) = F ,H(0, ·, ·) = F1 and, by (3.3),

D(I −H(0, ·, ·),Ω, 0) 6= 0. (3.9)

Assume that H(λ1, x1, µ1) = (x1, µ1) for some λ1 ∈ [0, 1] and (x1, µ1) ∈ ∂Ω. If µ1 = 0
then from the equality

x1(t) = (−1)n−p−1

∫ 1

0

G(t, s)Φm′

[
µ1

∫ 1

s

fm(r, x1(r), . . . , x
(n−1)
1 (r))dr

]
ds, (3.10)

for t ∈ J , we get x1 = 0, contrary to (x1, µ1) = (0, 0) ∈ ∂Ω. let µ1 < 0. Then (see
(3.10)) x1(t) < 0 on (0, 1) and max{x1(t) : t ∈ J} = 0, contrary to max{x1(t) : t ∈
J} + min{x1(t) : t ∈ J} = λ1A. hence µ1 > 0 and then x1 is a solution of BVP

(2.5), (1.6) with max{x(t) : t ∈ J} = λA. Moreover, by Lemma 2.5, ‖x
(j)
1 ‖ ≤ P for

0 ≤ j ≤ n − 1 and 0 < µ ≤ µ∗. Consequently, (x1, µ1) 6∈ ∂Ω, a contradiction. we have
proved F(λ, x, µ) 6= (x, µ) for each λ ∈ [0, 1] and (x, µ) ∈ ∂Ω, and since H is a compact
homotopy,

D(I − F ,Ω, 0) = D(I −H(1, ·, ·),Ω, 0) = D(I −H(0, ·, ·),Ω, 0)
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and then (3.9) gives (3.6), which finishes our proof.

Theorem 3.2. Suppose the assumptions(H1) be satisfied and A ∈ R+. Then there

exists a solution of BVP (1.5), (1.6), (1.7) for each A ∈ R+.

Proof. For each m ∈ N , there exists a solution xm of BVP (2.5), (1.6), (1.7) with
a µ = µm by Theorem 3.1. Consider the sequence {xm}, {µm}. By Lemma 2.2, Lemma

2.5, {x
(i)
m }, {µm} are bounded for i = 0, . . . , n− 1.

For t1, t2 ∈ J, t2 < t1,

|x(n−1)
m (t1) − x(n−1)

m (t2)|

= Φm′

(∣∣∣
∫ t1

0

µmfm(t, xm(t), . . . , x(n−1)
m (t))dt

∣∣∣
)

−Φm′

(∣∣∣
∫ t2

0

µmfm(t, xm(t), . . . , x(n−1)
m (t))dt

∣∣∣
)
.

We can use Lemma 2.6 and obtain that the sequence µmfm(t, xm(t), . . . , x
(n−1)
m (t)) is

uniformly absolutely continuous on J . Moreover by the continuity of Φm′ we have
{x

(n−1)
m }∞n0

is equi-continuous on J . The Arzalà-Ascoli theorem guarantees the existence
of a subsequence, such that {xmk

}, {µmk
} is convergent in Cn(J) and R respectively.

Let lim
k→∞

xmk
= x, lim

k→∞
µmk

= µ̂, then x ∈ Cn−1(J), x satisfies boundary condition (1.6),

(1.7) and 0 ≤ µ̂ ≤ µ∗.
We now prove (−1)n−p−1x(n−1)(t) > 0, t ∈ [0, 1). If not, there exists t1 ∈ (0, 1) such

that

(−1)n−p−1x(n−1)(t) > 0, t ∈ [t1, 1), (−1)n−p−1x(n−1)(t) = 0, t ∈ (0, t1] (3.11)

From (2.3) we obtain x(i) has at most one zero ξj on [0, t1] for i = 0, . . . , p − 1. Now
from the construction of fmk

∈ Car(J × Rn−1) it follows that there exists a set M ∈
J, µ(M) = 0 such that fmk

(t, ·, . . . , ·) are continuous on Rn−1 for each t ∈ J \M which
implies that

lim
k→∞

µmk
fmk

(t, xmk
(t), . . . , x(n−1)

mk
(t)) = µ̂f(t, x(t), . . . , x(n−1)(t))

for t ∈ [0, t1]\M. By Lemma 2.6 {µmk
fmk

(t, xmk
(t), . . . , x

(n−1)
mk (t))} is uniformly abso-

lutely continuous on [0, t1]. Then µ̂f(t, x(t), . . . , x(n−1)(t)) ∈ L1[0, t1] and

lim
k→∞

µmk

∫ t1

t

fmk
(s, xmk

(s), . . . , x(n−1)
mk

(s))ds = µ̂

∫ t1

t

f(s, x(s), . . . , x(n−1)(s))ds

for t ∈ [0, t1] by Vitali’s convergence theorem. Noticing x
(n−1)
mk (t1) is bounded, we assume

it is convergent, and let lim
k→∞

x
(n−1)
mk (t1) = d. Taking the limit as k → ∞ in the equality

x(n−1)
mk

(t) = x(n−1)
mk

(t1) − (−1)n−kΦm′

(
µmk

∫ t1

t

fmk
(τ, xmk

(τ), . . . , x(n−1)
mk

(τ))dτ

)
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we get

x(n−1)(t) = d− (−1)n−kΦm′

(
µ̂

∫ t1

t

f(τ, x(τ), . . . , x(n−1)(τ))dτ

)

There are two cases to consider:
Case(i) If µ̂ = 0.x(n−1)(t) = 0 for t ∈ [0, t1], and the equality x(n−1)(t1) = 0 yields

d = 0. Hence x(n−1)(t) = 0 for t ∈ J , contrary to (3.10).
Case(ii) If µ̂ > 0. By (2.4), we have

|x(n−1)
mk

(t)| ≥ Φm′

(
µmk

∫ 1

t

φ(θ)dθ

)
, k ∈ N (3.12)

Letting k → ∞ in (3.11) we have

|x(n−1)(t)| ≥ Φm′

(
µ̂

∫ 1

t

φ(θ)dθ

)
, t ∈ J

Hence |x(n−1)(t)| > 0 for t ∈ [0, 1), contrary to (3.11). Thus |x(n−1)(t)| > 0 for
t ∈ [0, 1). So x(i)(t) > 0, 0 ≤ i ≤ p − 1 on (0, 1], (−1)2n−p−ix(i)(t) > 0, p ≤ i ≤

n − 1 on [0, 1). Noticing {x
(n−1)
mk (0)} is convergent. Let lim

k→∞
x

(n−1)
mk (0) = d̂. Since

{µmk
fmk

(t, xmk
(t), . . . , x

(n−1)
mk )} is uniformly absolutely continuous on J and

lim
k→∞

µmk
fmk

(t, xmk
(t), . . . , x(n−1)

mk
(t)) = µf(t, x(t), . . . , x(n−1)(t)).

By the Vitali’s Convergence theorem to get µ̂f(t, x(t), . . . , x(n−1)(t)) ∈ L1(J) and letting
k → ∞ in the equality

x(n−1)
mk

(t) = x(n−1)
mk

(0) + (−1)n−kΦm′

(
µmk

∫ t

0

fmk
(s, xmk

(s), . . . , xn−1
mk

(s))ds

)
, t ∈ J

we get

x(n−1)(t) = d̂+ (−1)n−kΦm′

(
µ̂

∫ t

0

f(s, x(s), . . . , xn−1(s))ds

)
, t ∈ J. (3.13)

If µ̂ = 0. x(n−1)(t) = d̂ for t ∈ J and condition x(n−1)(1) = 0 gives d̂ = 0. So x(n−1)(t) = 0
for t ∈ J . Without loss of generality, we suppose ‖x(i)‖ = x(ζi).

‖x(i)‖ >

∣∣∣∣
x(i−1)(ζi−1) − x(i−1)(0)

ζi−1

∣∣∣∣ > ‖x(i−1)‖, 0 ≤ i ≤ p− 1

and

‖x(i)‖ >

∣∣∣∣
x(i−1)(1) − x(i−1)(ζi−1)

1 − ζi−1

∣∣∣∣ > ‖x(i−1)‖, p ≤ i ≤ n− 1

Thus ‖x(i)‖ > ‖x(i−1)‖ > · · · > ‖x‖ = A, 0 ≤ i ≤ n− 1. The fact x(n−1)(t) = 0 for t ∈ J
contradicts ‖x(n−1)‖ > A.
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If µ̂ > 0 and from (3.13) we see that x ∈ ACn−1(J) and x satisfies (1.5) a.e. on J .

We have proved that x is a solution of BVP (1.5)-(1.7) with µ = µ̂ in (1.5).

4. Example

Example 4.1. Let us consider the following fourth-order boundary value problem






(Φm(y(3)(t)))′ = µ

[
1 − t+

3∑
i=0

qi(t)y
− 1

5

i +g0(t) sin(Φ3(y0))
1
2 +

3∑
i=1

gi(t)Φ3(yi)

]
,

t ∈ (0, 1),

y(0) = 0, y′(1) = y′′(1) = y(3)(1) = 0,

(4.1)

with max{y(t) : t ∈ [0, 1]} = A, qi ∈ L∞([0, 1]), gi ∈ C[0, 1],m = 3, p = 1 for i = 0, 1, 2, 3.

Corresponding to BVP (1.5)-(1.7) we have

f(t, y0, y1, y2, y3) = 1 − t+

3∑

i=0

qi(t)y
− 1

5
i + g0(t) sin(Φ3(y0))

1
2 +

3∑

i=1

gi(t)Φ3(yi)

where φ(t) = 1−t, ωi(|yi|) = |yi|
− 1

5 , i = 0, 1, 2, 3, g0(t, y0) = g0(t) sin(Φ3(y0))
1
2 , gi(t, yi) =

gi(t)Φ3(yi), i = 1, 2, 3.

Then for any A > 0, there exists µA < µ∗ = Φ3

(
A
Γ

)
such that BVP (4.1) has a

solution y ∈ AC3([0, 1]).
To see (4.1) has a solution y ∈ AC3([0, 1]), we apply theorem 3.2, It is easy to verify

(H1)

lim
|y0|→∞

sup
t∈[0,1]

g0(t, y0)

(Φ3(|y0|))1/2
= 0,

lim
|yi|→∞

sup
t∈[0,1]

gi(t, yi)

Φ3(|yi|)
= sup

t∈[0,1]

gi(t) ≥ 0,

∫ 1

0

ω0(s)ds <∞,

∫ 1

0

ωi(Pi(s))ds <∞, i = 1, 2, 3

hold. So applying Theorem 3.2, for any A > 0, there exists µA such that BVP (4.1) has
a solution y ∈ AC3([0, 1]).
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