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ON REVISED SZEGED SPECTRUM OF A GRAPH

NADER HABIBI AND ALI REZA ASHRAFI

Abstract. The revised Szeged index is a molecular structure descriptor equal to the sum
of products [nu (e)+ n0(e)

2 ][nv (e)+ n0(e)
2 ] over all edges e = uv of the molecular graph G,

where n0(e) is the number of vertices equidistant from u and v , nu (e) is the number of
vertices closer to u than v and nv (e) is defined analogously. The adjacency matrix of a
graph weighted in this way is called its revised Szeged matrix and the set of its eigenvalues
is the revised Szeged spectrum of G. In this paper some new results on the revised Szeged
spectrum of graphs are presented.

1. Introduction

A topological index is an applicable graph invariant in chemistry. Such numbers are stud-

ied in structure-property and structure-activity studies. To explain, we assume that Gr aph

denotes the set of all finite connected graphs. A map Top from Gr aph into real numbers is

called a topological index if G is isomorphic to H then Top(G) = Top(H ). The first of such

graph invariants is Wiener index [15] which is defined as the summation of all distances be-

tween vertices of the graph under consideration. Here, for two vertices x and y of the graph

G , the distance dG (x, y) is the length of a minimal path connecting them.

In [8], Ivan Gutman introduced a generalization of the original Wiener index which is

called “Szeged index". Suppose G is a connected graph. The Szeged index, Sz(G), is defined

as Sz(G) =
∑

e=uv∈E(G) nu(e)nv (e), where nu(e) is the number of vertices closer to u than v and

nv (e) is defined analogously. This topological index found applications in QSPR studies and

its mathematical properties have been extensively studied [6, 7, 11]. Milan Randić [14] intro-

duced a Wiener-Szeged type topological index as a modification of Szeged index. In recent

years, the authors prefer to use the name revised Szeged index for this topological index. The

revised Szeged index is defined by the following formula:

Sz⋆(G) =
∑

e=uv∈E(G)

(

nu(e)+
n0(e)

2

)(

nv (e)+
n0(e)

2

)

.
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where n0(e) is the number of vertices equidistant from both end-vertex of edge e = uv . Some

mathematical properties of this graph invariant are reported in [3, 12, 13, 16].

In this paper, we continue the lines [4] to define a new weighting of graphs and the eigen-

values of the associated adjacency and Laplacian matrices by using the revised Szeged index.

The functions w, w ′ : E (G) −→ R , where w (e)= nu(e)nv (e) and w ′(e)= [nu(e)+ 1
2 n0(v)][nv (e)+

1
2 n0(v)] for e = uv , are weight functions on the edge set E (G). We call these weight functions,

the Szeged and revised Szeged weighting, respectively. For terms and concepts not defined

here we refer the reader to [1, 2, 5, 9].

2. Definitions and examples

Let G be a connected graph with vertex and edge sets V (G) and E (G), respectively. The

adjacency matrix of G is denoted by A(G) and its eigenvalues are called eigenvalues of the

graph G . It is clear that the product (nu(e)+ n0(e)
2 )(nv (e)+ n0(e)

2 ) is always positive, and the

function Sz⋆ : E (G) → R
+ given by Sz⋆(e) = (nu(e)+ n0(e)

2 )(nv (e)+ n0(e)
2 ) is a weight function

on E (G). We call this weight function the revised Szeged weighting of G . The adjacency matrix

of a graph G weighted by the revised Szeged weighting is called the revised Szeged matrix of G

and denoted by Sz⋆M (G) = [si , j ]. The eigenvalues of this matrix are called the revised Szeged

eigenvalues of G and denoted by σr (G), for r = 1, . . . ,n. Obviously, the revised Szeged index of

a graph G can be expressed as one half of the sum of all entries of Sz∗M (G).

Let G be a weighted graph with a weight function w : E (G) → R
+ and W (G) = [wi , j ] its

adjacency matrix. Here w (uv) = w (vu) and hence wi , j = w j ,i . The Laplacian matrix of a

weighted graph G is defined as LW (G) = [li , j ], where

li j =







∑n
k=1wi k i = j

−wi j i j ∈ E (G)

0 o.w

The Laplacian matrix of G is defined as L(G) = D(G)− A(G), where D(G) is a diagonal matrix

whose (i , i )-entry is deg(vi ), the degree of vertex vi . Similar to [4], we denote the Laplacian

matrix of a graph G weighted by the revised Szeged weighting by LSz⋆M (G) which is called

the Laplacian revised Szeged matrix of G . The eigenvalues of this matrix are the Laplacian

revised Szeged eigenvalues of G , denoted by µ
′
r (G), r = 1, . . . ,n, while the eigenvalues of the

Laplacian matrix of the underlying unweighted graph G are denoted by µr (G), r = 1, . . . ,n.

Example 2.1. Suppose that Kn denotes the complete graph with n vertices. Then for an edge

e = uv , nu(e) =nv (e)= 1 and n0(e)= n −2. So,

Sz⋆(e)= (nu(e)+
n0(e)

2
)(nv (e)+

n0(e)

2
)
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= (1+
n −2

2
)(1+

n −2

2
)=

n2

4
.

Thus Sz⋆M (Kn) = ( n
2 )2 A(G). So, σr (Kn) = ( n

2 )2λ(Kn) and revised Szeged eigenvalues of Kn

are n2(n−1)
4 and (−1)n2

4 with multiplicity 1 and n − 1, respectively. Hence, the revised Szeged

Laplacian eigenvalues of Kn are n2(n−1)
2 and 0 with multiplicity 1 and n −1, respectively.

Example 2.2. Let Cn be the cycle graph on n vertices. It is well−known that the spectrum

of Cn is given by λr (Cn) = 2cos( 2rπ
n ), see [2, p.72] for details. Since L(Cn ) = 2I − A(Cn), the

Laplacian eigenvalues are given by µr (Cn) = 4sin2( 2rπ
n ). It is easy to verify that for each edge

e = uv of Cn , the product

(nu(e)+
n0(e)

2
)(nv (e)+

n0(e)

2
) =

n2

4

does not depend to parity of n and that it is given by

Sz⋆M (Cn)= (
n2

4
)A(Cn ) and LSz⋆M (Cn) = (

n2

4
)L(Cn).

Thus

σr (Cn) =
n2

2
cos(

2rπ

n
) and µ′

r (Cn) =n2 sin2(
rπ

n
).

Example 2.3. Let Km,n be the complete bipartite graph. Since the revised Szeged weighting

of any edge is mn, we have

Sz∗M (Km,n) = mn A(Km,n) and LSz∗M (Km,n) = mnL(Km,n).

Therefore,

σr (Km,n) =mnλr (Km,n) and µ
′

r (Km,n) =mnµr (Km,n).

From the Laplacian spectrum of Km,n , one can see that the Laplacian revised Szeged eigen-

values of Km,n are 0 and mn(m+n) with multiplicity one, m2n with multiplicity n−1 and mn2

with multiplicity m −1. In particular, for m = n, one obtains 0, n3 and 2n3 as the Laplacian

revised Szeged eigenvalues of Kn , with given multiplicities.

3. Main result

A graph G in which for every edge e = uv , nu(e) = nv (e) is called distance-balanced [10].

Suppose G is connected and e = uv is an edge of G . Define:

Nu(e) = {w ∈V (G)|d (u, w )−d (v, w )=−1},

Nv (e) = {w ∈V (G)|d (u, w )−d (v, w )= 1},

N0(e) = {w ∈V (G)|d (u, w )−d (v, w )= 0}.
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It is easy to see that Nu(e), Nv (e) and N0(e) constitutes a partition for V (G) and nu(e)+
nv (e)+n0(e)= n. On the other hand, for any edge e = uv ,

Sz∗(e)= (nu(e)+
n0

2
)(nv +

n0

2
)

= (nu +
n −nu −nv

2
)(nv +

n −nu −nv

2
)

=
n +nu −nv

2
.
n − (nu −nv )

2

=
n2 − (nu −nv )2

4
. (*)

Lemma 3.1 ([16], Theorem 3.1). Suppose G is a connected graph with n vertices and m edges.

Then

(n −1)m ≤ Sz⋆(G) ≤
n2

4
m,

with left equality if and only if G = Sn , and right equality if and only if G is distance-balanced.

Lemma 3.2. Suppose that G is a connected graph on n vertices. The graph G is distance-

balanced if and only if Sz∗M (G) = n2

4 A(G).

Proof. Suppose that G is a distance-balanced graph. Then for any edge e = uv , n0(e)= n−2nu .

So,

Sz∗(e)= (nu +
n0

2
)(nv +

n0

2
)= (nu +

n −2nu

2
)(nv +

n −2nv

2
) = (

n

2
)2.

Conversely, suppose that for any edge e =uv , Sz∗(e)= n2

4 . Then

(nu +
n0

2
)(nv +

n0

2
) =

n2

4

On the other hand, from the relation (∗),

(nu +
n0

2
)(nv +

n0

2
) =

n2 − (nu −nv )2

4
.

Thus, (nu −nv )2 = 0 which implies that nu = nv . Therefore, G is distance-balanced. ���

If G is vertex-transitive then G is distance-balanced and so by Lemma 3.2, Sz∗M (G) =
n2

4 A(G). Suppose e = uv ∈ E (G). Define Si (w ) = {v ∈ V (G)|d (v, w ) = i }, 1 ≤ i ≤ d , where d is

the diameter of G .

3.1. Circulant graphs

A square matrix S of order n is called circulant if si j = s1, j−i+1, where addition is per-

formed modulo n. From definition, it is clear that each circulant matrix can be determined

fully by its first row. A circulant matrix Z is said to be in canonical form if the first row is given
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by [0,1,0, . . . ,0]. It is well-known that if S is a circulant matrix with the first row [s1, . . . , sn]

then S =
∑n

j=1 s j Z j−1. Since the eigenvalues of Z are 1,ω,ω2, . . . ,ωn−1 where ω= exp( 2πi
n ), the

spectrum of S is:

λr (S)=
n∑

j=1
s jω

( j−1)r ,

for r = 1,2, . . . ,n.

A graph G is called circulant, if its adjacency matrix is circulant. By above discussion, the

eigenvalues of a circulant graph G is determined by

λr (G) =
n∑

j=1
a jω

( j−1)r ,

for r = 1,2, . . . ,n.

Clearly, the cycle graph Cn is circulant.

Proposition 3.3. Let G be a circulant graph on n vertices. Then Sz∗M (G) = n2

4 A(G). Further-

more, µ⋆

r (G) = n2k
4 −σr (G) for some k, where σr (G) is the r -th revised Szeged eigenvalue of

G.

Proof. The proof follows from vertex-transitivity of circulant graphs. ���

Figure 1: The Circulant Graph C12,3.

As an application of Proposition 3.3, we calculate the revised Szeged Laplacian eigenval-

ues of the circulant graph Cn,k , k ≤ [ n
2 ], see Figure 1. To do this, we notice that the first row of

A(Cn,k ) is [0,1,0. . . ,

(k+1)-th
︷︸︸︷

1 ,0, . . . ,0,

(n-(k-1))-th
︷︸︸︷

1 ,0, . . . ,0,1] and its eigenvalues are λr (Cn,k ) =
2[cos( 2rπ

n )+ cos( 2krπ
n )]. On the other hand, the Laplacian eigenvalues of Cn,k are µ(Cn,k ) =

4sin2( rπ
n )+4sin2( krπ

n ). It is easy to see that Sz∗M (Cn,k ) is a circulant matrix and its first row is:
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[0, n2

4 ,0 . . . ,

(k+1)-th
︷︸︸︷

n2

4
,0, . . . ,0,

(n-(k-1))-th
︷︸︸︷

n2

4
,0, . . . ,0, n2

4 ]. By our discussion given above, the eigen-

values of this matrix are σr (Cn,2) = n2

2 (cos( 2rπ
n )+ cos( 2krπ

n ). Finally, by applying Proposition

3.3 we obtain the following result:

Corollary 3.4. The Laplacian revised Szeged eigenvalues of Cn,k are given by

µ
′

r (Cn,k ) = n2(1+sin2(
rπ

n
)+sin2(

krπ

n
)),

for r = 1, . . . ,n.

As the second example, we now consider the Möbius ladder with n rungs Mn . It has 2n

vertices, see Figure 2. The eigenvalues of Mn are obtained in a similar way as circulant graphs.

We consider the first row [0,1,0, . . . ,0,

n+1 th
︷︸︸︷

1 ,0, . . . ,0,1] of the adjacency matrix of Mn .

λr (Mn) = 2cos(
rπ

n
)+ (−1)r r = 1, . . . ,2n.

Figure 2: The Möbius Ladder M12

Corollary 3.5. The Laplacian revised Szeged eigenvalues of the Möbius ladder Mn are given by

µ
′

r (Mn) = n2[3− (−1)r −2cos(
rπ

n
)],

for r = 1, . . . ,2n.

Proof. Apply Proposition 3.3. ���

Our third example of this section is about strongly regular graphs. A strongly regular

graph with parameters (n,k , a,c) is a simple n−vertex graph which is k−regular, k 6= 0,n −1,
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any two adjacent vertices have exactly a common neighbours and two non-djacent vertices

have exactly c common neighbours. A strongly regular graph is called primitive if both G and

its complement are connected. It is well-known in a primitive strongly regular graph c 6= 0

and c 6= k .

Proposition 3.6. Let G be a primitive strongly regular graph with parameters (n,k , a,c). Then

Sz∗M (G) = n2

4 A(G) and LSz∗M (G) = n2

4 L(G). Hence, σr (G) = n2

4 λr (G) and µ
′
r (G) = n2

4 µr (G).

Proof. The proof is similar to [4, Proposition 4] and so omitted. ���

3.2. Graph operations

Suppose that G1 and G2 are two graphs. Their Cartesian product G1�G2 is a graph on the

vertex set V (G1)×V (G2) and the vertices (u1,u2) and (v1, v2) are adjacent in V (G1)×V (G2) if

and only if either (u1 = v1 and u2v2 ∈ E (G2)) or (u1v1 ∈ E (G1) and u2 = v2). The adjacency

matrix of G1�G2 is given by

A(G1�G2)= In1 ⊗ A(G2)+ A(G1)⊗ In2 ,

where n1 and n2 are the number of vertices of G1 and G2, respectively, and A⊗B is the tensor

product of matrices A and B [2, p. 430]. The Laplacian matrix of G1�G2 is given by analogous

formula

L(G1�G2) = In1 ⊗L(G2)+L(G1)⊗ In2 .

Suppose the eigenvalues of G1 are denoted by λ1r , 1 ≤ r ≤ n1, and the eigenvalues of G2 by

λ2s , 1 ≤ s ≤ n2. Then the eigenvalues of G1�G2 are given by

λr,s (G1�G2) =λ1r (G1)+λ2s (G2),

where 1 ≤ r ≤ n1 and 1 ≤ s ≤ n2 [2, Chapter 2]. Therefore,

Proposition 3.7. Suppose that G1 and G2 are two connected graphs on n1 and n2 vertices,

respectively. Then

Sz∗M (G1�G2) = n2
2Sz∗M (G1)⊗ In2 +n2

1 In1 ⊗Sz∗M (G2).

Proof. A similar argument like as [4, Theorem 5] shows that each shortest path in G1�G2

from vertex (u1, z) to (u1, v2) in G1 ×G2 must contain either the edge (u1,u2)(u1, v2), or any of

n1 edges parallel to it in G1�G2. Hence n(u1,u2)((u1,u2)(u1, v2)) = n1nu2 (u2, v2). In the same

way, we have n(u1,v2)((u1,u2)(u1, v2)) = n1nv2 (u2, v2). Finally, for the equal distance vertices to

both end vertices we have n0((u1,u2)(u1, v2)) = n1n0(u2, v2). Thus, the revised Szeged matrix

of G1�G2 is Sz∗M (G1�G2) = n2
2Sz∗M (G1)⊗ In2 +n2

1 In1 ⊗ Sz∗M (G2). The Laplacian revised

Szeged matrix of G1�G2 has the same form. This completes the proof. ���
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Proposition 3.8. The revised Szeged eigenvalues of G1�G2 are given by

σr,s (G1�G2) = n2
2σr (G1)+n2

1σs (G2)

and the Laplacian revised Szeged eigenvalues of G1�G2 are given by

µ
′

r,s (G1�G2)= n2
2µ

′

r (G1)+n2
1µ

′

s (G2)

for r = 1, . . . ,n1, s = 1, . . . ,n2.

As an application of Proposition 3.8, we can calculate the revised Szeged eigenvalues of

C4-nanotorus Cm�Cn . The revised Szeged and Laplacian revised Szeged eigenvalues are as

follows:

(i) σr,s (CmäCn) = n2m2

4 [cos( 2rπ
m )+cos( 2sπ

n )] ,

(ii) µ′
r,s (CmäCn) = n2m2

4 [2+sin2( rπ
m

)+sin2( sπ
n

)] ,

for r = 1, . . . ,m, s = 1, . . . ,n.

Using an inductive argument, we can generalize Proposition 3.8 to an arbitrary number

of graphs. Suppose G1, . . . ,Gs are graphs and ni = |V (Gi )|, 1 ≤ i ≤ s.

Proposition 3.9. The revised Szeged and the Laplacian revised Szeged eigenvalues of G =
s∏

i=1
Gi

are

σi1,...,is
(G) = (

s∏

i=1
n2

i )(
s∑

k=1

σik
(Gk )

n2
k

) 1 ≤ ik ≤nk

and

µ′
i1,...,is

(G) = (
s∏

i=1
n2

i )(
s∑

k=1

µ′
ik

(Gk )

n2
k

) 1 ≤ ik ≤ nk ,

respectively.

The above formulas can be simplified for Cartesian powers as follows:

Corollary 3.10. For a connected graph G,

(i) σi1,...,is
(G s ) =n2(s−1)(

s∑

k=1

σik
(G)) 1 ≤ ik ≤ nk ,

(ii) µ′
i1,...,is

(G s )= n2(s−1)(
s∑

k=1

µ′
ik

(G)) 1 ≤ ik ≤ nk .
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A hypercube Qn is defined as the Cartesian power of n copies of K2. By Corollary 3.7,

σr (Qn) = 4n−1(n −2r ) with multiplicity
(n

r

)

, where 0 ≤ r ≤ n and µ′
r (Qn) = 4n−1(2n −2r ) with

multiplicity
(n

r

)

for r = 0, . . . ,n.

We assume that G1 = (V1,E1) and G2 = (V2,E2) are two graphs. Then the lexicographic

product of G1 and G2, G1[G2], is a graph that V (G1[G2]) =V1×V2 and two vertices (u1, v1) and

(u2, v2) in G1[G2] are adjacent if and only if either u1u2 ∈ E (G1) or u1 = u2 and v1v2 ∈ E (H ).

Let A(G1) and A(G2) be adjacency matrices of G1 and G2, respectively. We also assume that

In1 denotes the identity matrix of order n1 and Jn2 be the all 1 matrix of order n2. Then the

adjacency matrix of A(G1[G2]) is equal to A(G1)⊗ Jn2 + In1 ⊗ A(G2).

Proposition 3.11. Suppose that G1 is a graph with n1 vertices and G2 is a k-regular graph with

n2 vertices. Then Sz∗M (G1[G2])= n2
2Sz∗M (G1)⊗ Jn2 +

n2
1n2

2
4 In1 ⊗ A(G2).

Proof. Let e1 = ((a, x)(b, y)) ∈ E (G1[G2]) such that ab ∈ E (G1). So, n1(e1) = (n1(ab)−1)|G2| +
|G2| −degG2

(y)− 1 and n2(e1) = (n2(ab)− 1)|G2| + |G2| −degG2
(x)− 1 and n0(e1) = (n0(ab)−

1)|G2|+degG2
(x)+degG2

(y)+2. Since G2 is k-regular then Sz∗(e1)= (n1(e1)+n0(e1)/2)(n2(e1)+
n0(e1)/2) and by a simple calculation we have Sz∗(e1) = |G2|2Sz∗(ab). Let e1 = ((a, x)(a, y)) ∈
E (G1[G2]) such that x y ∈ E (G2). Then we get n1(e2) = degG2

(x)−N (x y), n2(e2) = degG2
(y)−

N (x y) and n0(e2) = (|G| − 1)|G2 | + |G2| − 2(k − N (x y)), where N (x y) = {w ∈ V (G2)|d (x, w ) =
d (w, y)= 1}. Thus, Sz∗(e2) = (|G1||G2|)2

4 and so

Sz∗M (G1[G2])= n2
2Sz∗M (G1)⊗ Jn2 +

n2
1n2

2

4
In1 ⊗ A(G2).

Hence the result. ���

Corollary 3.12. Suppose G1 is a graph with n1 vertices and G2 is a k-regular distance-balanced

graph with n2 vertices. Then

Sz∗M (G1[G2]) = n2
2Sz∗M (G1)⊗ Jn2 +n2

1 In1 ⊗Sz∗M (G2).

The corona product or simply corona of G1 and G2 is defined as the disjoint union of one

copy of G1 and |V1| copies of G2 in such a way that the i − t h vertex of G1 is connected to all

vertices of the i − t h copy of G2. This graph is denoted by G1◦G2. One can see that G1◦G2 has

n1(n2 +1) vertices and m1 +n1(n2 +m2) edges, where ni = |V (Gi )| and mi = |E (Gi )|, i = 1,2.

Proposition 3.13. Suppose that G1 and G2 are two graphs, ni = |V (Gi )| and mi = |E (Gi )|,
i = 1,2. Then

Sz∗(G1 ◦G2) = (n2 +1)Sz∗(G1)+n3
1(n2 +1)− (n1(n2 +1)−2)m2

−
n1

4

∑

v∈V (G2)
deg2(v)+

n2
1(n2 +1)2m2

4
−

∑

e=vw∈E(G2)
(deg v −deg w )2.
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Proof. We have three types of edges in G1 ◦G2, the edges of G1, the edges between vertices of

G1 and vertices of the corresponding copy of G2 and the edges of copies of G2. We first assume

that uv = e1 ∈G1. Then,

n0(e1|G1 ◦G2) =n0(e1|G1)(|V (G2)|+1) = (n2 +1)n0(e1|G1),

nu(e1|G1 ◦G2) =nu(e1|G1)(|V (G2)|+1) = (n2 +1)nu(e1|G1),

nv (e1|G1 ◦G2) =nv (e1|G1)(|V (G2)|+1) = (n2 +1)nv (e1|G1).

So, Sz∗(e1|G1 ◦G2)= (|V (G2)+1)Sz∗(e1|G1) = (n2 +1)Sz∗(e1|G1). Notice that the number

of these edges is m1. Next we assume that e2 = uv such that u ∈ V (G1) and v ∈ V (G2). Then

n0(e2|G1 ◦G2) = deg(v |G2), nu(e2|G1 ◦G2) = (|V (G1)| −1)(|V (G2)| +1) + |V (G2)| −deg(v |G2) =
n1n2 +n1 −1−deg(v |G2) and nv (e1|G1 ◦G2) = 1. So,

Sz∗(e2|G1 ◦G2)= n1n2 +n1 −1−1/2(n1n2 +n1 −2)deg(v |G2)−1/4deg2(v |G2)).

We note that the number of such edges is n1n2. Finally, we assume that e3 = v w ∈ E (G2).

Then,

nv (v w |G1 ◦G2) =deg(v |G2)−1,

nw (v w |G1 ◦G2) =deg(w |G2)−1,

n0(v w |G1 ◦G2) = |V (G1)||V (G2)|+ |V (G1)|−deg(v |G2)−deg(w |G2)+2,

=n1n2 +n1 +2− (deg(v |G2)+deg(w |G2)).

So, Sz∗(e3) = 1
4 ((n1n2 + n1)2 − (deg(v |G2)− deg(w |G2))2) and the number of these edges is

n1m2. Therefore,

Sz∗(G1 ◦G2) =
∑

e1

Sz∗(e1)+
∑

e2

Sz∗(e2)+
∑

e3

Sz∗(e3)

+n1

∑

v∈V (G2)
(n1n2 +n1 −

1

2
(n1n2 +n1 −2)deg(v |G2)−

1

4
deg2(v |G2))

+
∑

e3=vw∈G2

[1/4(n1n2 +n1)2 − (deg(v |G2)−deg(w |G2))2]

= (n2 +1)Sz∗(G1)+n3
1(n2 +1)− (n1(n2 +1)−2)m2 + (n2 +1)Sz∗(G1)

−
n1

4

∑

v∈V (G2)
deg2(v)+

n2
1(n2 +1)2m2

4
−

∑

e=vw∈E(G2 )
(deg v −deg w )2.

This completes the proof. ���
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3.3. Bounds on the revised szeged spectrum

We are now analyzing the revised Szeged spectra of general graphs. Our first result in

this section depends on well-known result in algebraic graph theory which states that if G

is a connected graph with n vertices, m edges, t triangles, q qaudrangles and χ(G , x) = xn +
c1xn−1+c2xn−2+c3xn−3+c4xn−4+·· ·+cn is its characteristic polynomial, then c1 = 0, −c2 = m,

−c3 = 2t and c4 = 2q [1, Corollary 2.3].

Lemma 3.14. Suppose G is a connected graph. Then, t r (A4) = 8q + M1(G)− t r (A2), where

t r (X ) denotes the trace of a matrix X , M1(G) is the first Zagreb index of G and Sq the number

of quadrangles in G.

Using those interpretations we can deduce bounds on the second, third and fourth re-

vised Szeged spectral moment of a graph G .

Proposition 3.15. Let G be a connected graph on n vertices and σi ,1 ≤ i ≤ n, be its revised

Szeged eigenvalues. Then

1. 2(n −1)2m ≤
n∑

i=1
σ2

i ≤
n4

8
m,

2. 6(n −1)3t ≤
n∑

i=1
σ3

i ≤ 6(
n2

4
)3t ,

3. (n −1)4[8q +M1(G)−2(n −1)2m] ≤
n∑

i=1
σ4

i ≤ (
n2

4
)4[8q +M1(G)−2(n −1)2m].

The left inequality in (1) holds if and only if G = Sn , the n−vertex star graph, and the right

equality satisfies if and only if G is distance−balanced.

Proof. To prove (1) we denote the elements of the k-th power of Sz∗M (G) by s(k)(i , j ). Since

(n −1)k a(k)
i j

≤ s(k)
i j

≤ ( n2

4 )k a(k)
i j

and σ2
1 + . . .+σ2

n = t r (Sz∗M (G)2),

2(n −1)2m =
n∑

i=1
(n −1)2a(2)

i i
≤

n∑

i=1
σ2

i =
n∑

i=1
s(2)

i i
≤

n∑

i=1
(

n2

4
)2a(2)

i i
=

n4

16
×2m = m

n4

8
.

The left equality holds if and only if for each e =uv ∈ E (G), {nu(e),nv (e)}= {n−1,1}, n0(e)= 0.

But this can be happened when G ∼= Sn.

Let us assume that ti denotes the number of triangles containing the vertex vi . Since

t r (Sz∗M (G)3) =
∑n

i=1σ
3
i

, (n −1)3ti = a(3)
i ,i ≤ s(3)

i , j
≤ ( n2

4 )3a(3)
i ,i . This implies that

(n −1)3
n∑

i=1
ti ≤

n∑

i=1
s(3)

i , j
≤

n∑

i=1
σ(3)

i
≤ (

n2

4
)3

n∑

i=1
a(3)

i ,i = (
n2

4
)3 ×6t .
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Thus, 6t (n − 1)3 ≤
∑n

i=1σ
(3)
i

≤ 6( n2

4 )3t . The last part is similar to parts 1 and 2 and so

omitted. ���

The spectral radius of a square matrix A is the supremum among the absolute values of

the elements in the spectrum of A, which is denoted by ρ(A) [5, p. 177]. The revised Szeged

spectral radius ρ∗(G) is defined as the spectral radius of matrix Sz∗M (G).

Proposition 3.16. Let G be a connected graph on n vertices. Then ρ∗(G) ≤ n2

4 ∆(G), where ∆(G)

denotes the maximum degree of all vertices in G. Moreover, equality holds if and only if G is

regular and distance balanced.

Proof. Let x = [x1, . . . , xn]T be the eigenvector of Sz∗M (G) corresponding to the eigenvalue

σ. If |xm | = max{|x1|, . . . , |xn |}, then
∑n

j=1 sm, j x j = σxm . Therefore, |σ||xm | ≤
∑n

j=1 sm, j |x j | ≤
n2

4 ∆(G)|xm | and hence |σ| ≤ n2

4 ∆(G). Clearly, the equality holds if and only if G is regular and

distance balanced. ���

Proposition 3.17. Let G be a connected graph on n vertices and m edges. Then

2

m
Sz∗(G)2 ≤

n∑

i=1
σ2

i ≤min{
n2

2
Sz∗(G),2Sz∗(G)2 −2m(m −1)(n −1)2}

The left(right) equality holds if and only if G = K2.

Proof. Suppose that S =
∑n

i=1σ
2
i

. It is enough to prove that S ≤ n2

2 Sz∗(G), S ≤ 2Sz∗(G)2 −

2m(m −1)(n −1)2 and
p

S ≥
√

2
m Sz∗(G). Clearly, S = (

∑n
i=1σi )2 −2

∑

i< j σiσ j and then C2 =
∑

i< j σiσ j . Furthermore, S=2
∑

i< j (nvi
+n0/2)2(nv j

+n0/2)2 and since (n−1) ≤ (nvi
+n0/2)(nv j

+n0/2) ≤ n2

4 ,

S = 2
∑

i< j

((nvi
+

n0(e)

2
)(nv j

+
n0(e)

2
))2

= 2
[ ∑

i< j

((nvi
+

n0(e)

2
)(nv j

+
n0(e)

2
))2

−2
∑

uv 6=x y

(nu +
n0(uv)

2
)(nv +

n0(uv)

2
)(nx +

n0(x y)

2
)(ny +

n0(x y)

2
)
]

≤ 2Sz∗(G)2 −2m(m −1)(n −1)2.

Now, the equality holds if and only if G = Sn . The second inequality follows from the Cauchy-

Schwarz inequality as:

Sz∗(G) =
∑

e=uv∈E(G)
(nu +

n0(uv)

2
)(nv +

n0(uv)

2
)

≤
√

m
∑

e=uv∈E(G)
((nu +

n0(uv)

2
)(nv +

n0(uv)

2
))2 =

√
m

2
S.
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Hence the result. ���
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