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THE DEGREE OF APPROXIMATION OF FUNCTIONS, AND THEIR

CONJUGATES, BELONGING TO SEVERAL GENERAL LIPSCHITZ

CLASSES BY HAUSDORFF MATRIX MEANS OF THE FOURIER

SERIES AND CONJUGATE SERIES OF A FOURIER SERIES

B. E. RHOADES

Abstract. In this paper Hausdorff matrix approximations are obtained for a function and

its conjugate belonging to any one of several generalized Lipschitz classes.

1. Introduction

A number of papers have been written dealing with the degree of approximation of the

Fourier series representation of a function, or a conjugate function, by means of the matrix

product of (C ,1), the Cesáro matrix of order one, with (E , q), the Euler matrix of order q . (See,

e.g. [1] - [5], [7], and [8]. )

In [3] three degree of approximation results were obtained for the product of an Euler

matrix (E , q) with a Hausdorff matrix and the trigonometric approximation of the conjugate of

a function belonging to certain Lipschitz classes. Since the product of two Hausdorff matrices

is again a Hausdorff matrix, these theorems suggest that it is possible to prove these results

using a single Hausdorff matrix. The main purpose of this paper is to show that this conjecture

is true.

A function f ∈ Lip(α) if | f (x + t )− f (x))| = O(tα) for 0 < α ≤ 1. A function f ∈ Li p(α,r )

if {
∫2π

0 | f (x + t )− f (x)|r d x}1/r = O(ξ(t ))(r ≥ 1), where ξ is a modulus of continuity; i.e., ξ is a

nonnegative nondecreasing continuous function with the properties ξ(0) = 0 and ξ(t1 + t2) ≤

ξ(t1)+ ξ(t2). A function f ∈Lip(ξ,r ) if {
∫2π

0 | f (x + t )− f (x)|r d x}1/r = O(ξ(t ))(r ≥ 1), where ξ

is a modulus of continuity; i.e., ξ is nonnegative, nondecreasing, and continuous with the

properties ξ(0) = 0,ξ(t1 + t2) ≤ ξ(t1)+ξ(t2).
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Let f (x) be a 2π-periodic function, Lebesgue integrable on [0,2π] and belonging to any

of the Lipschitz classes defined above. The Fourier series for f (x) is given by

f (x) =
1

2
a0 +

∞
∑

n=1

(an cos nx +bn sinnx)=
1

2
a0 +

∞
∑

n=1

An(x), (1)

with nth partial sum sn( f ; x).

The series
∞
∑

n=1

(an cos nx −bn sinnx)=−

∞
∑

n=1

Bn(x) (2)

is called the conjugate series of series (1), with nth partial sum s̃n( f ; x).

A Hausdorff matrix is a lower triangular matrix with nonzero entires

hnk =

(

n

k

)

∆
n−kµk ,

where∆ is the forward difference operator defined by∆µk =µk−µk+1, and∆n+1µk =∆(∆nµk ).

A Hausdorff matrix is regular; i.e. is preserves the limit of each convergent sequence, if and

only if
∫1

0
|dχ(u)| <∞,

where the mass function χ ∈ BV [0,1],χ(0+) = χ(0) and χ(1) = 1. In this case the µn have the

representation

µn =

∫1

0
undχ(u).

For any sequence {sn},

tn :=
n
∑

k=0

hnk sk .

The norm Lr =‖‖r is defined by

‖ f ‖r =

{ 1

2π

∫2π

0
| f (x)|r dr

}1/r
, r ≥ 1,

and the degree of trigonometric approximation Hn( f ) will be denoted by

Hn( f )= min‖ f − tn‖r .

The norm ‖‖
ξ)
r on the class of functions Lr

(ξ)
is defined by

‖ f ‖
(ξ)
r = sup

t 6=0

‖ f (·+ t )− f (·)‖r

ξ(|t |)
.
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For any regular Hausdorff transform, and ψ(t , x) denoting one of the Lipschitz condi-

tions,

(H )n − f (x) =
1

π

∫π

0

ψ(x, t )

sin(t /2)

n
∑

k=0

hnk sin(k +
1

2
)t d t

= I1 + I2, say.

For 0 < t ≤ 1/(n +1), |sin t | ≤ 1, and sin(t /2) ≥ (t /π). Therefore

|I1| =

∣

∣

∣

1

2π

∫1/(n+1)

0
ψ(x, t )

n
∑

k=0

∫1

0

(

n

k

)

uk(1−u)n−k dχ(u)
sin(k +1/2)t

sin t /2
d t

∣

∣

∣

≤
1

2π

∫1/(n+1)

0
|ψ(x, t )|

n
∑

k=0

∫1

0

(

n

k

)

uk (1−u)n−k
|dχ(u)|

∣

∣

∣sin(k +1/2)t

sin t
2

∣

∣

∣d t

≤
1

2π

∫1/(n+1)

0
|ψ(x, t )|

n
∑

k=0

∫1

0

(

n

k

)

uk (1−u)n−k
|dχ(u)|

π

t
d t

=
1

2

∫1/(n+1)

0

|ψ(x, t )|

t

∫1

0

n
∑

k=0

(

n

k

)

uk (1−u)n−k
|dχ(u)|d t

≤
‖H‖

2

∫1/(n+1)

0

|ψ(x, t )|

t
|d t =O

(

∫1/(n+1)

0

|ψ(x, t )|

t
|d t

)

(3)

I2 =
1

2π

∫π

1/(n+1)

ψ(x, t )

sin(t /2)

n
∑

k=0

∫1

0

(

n

k

)

uk (1−u)n−k dχ(u)Im(e i (k+1/2)t d t

=
1

2π

∫π

1/(n+1)

ψ(x, t )

sin(t /2)

∫1

0
Im

[ n
∑

k=0

(

n

k

)

uk (1−u)n−k e i (k+1/2)t
]

dχ(u)d t .

n
∑

k=0

(

n

k

)

uk (1−u)n−k e i (k+1/2)t
= (1−u)ne i t /2

n
∑

k=0

(

n

k

)

( ue i t

1−u

)n

= (1−u)ne i t /2
(

1+
ue i t

1−u

)n

= e i t /2(1−u +ue i t )n .

Define

|g (u, t )| = |Im[e i t /2(1−u +ue i t )n
| ≤ r n(u, t ), (4)

where

r 2(u, t )= (1−u +u cos t )2
+ (u sin t )2

= 1−2u +2u(1−u)cos t +2u2
= 1−2u(1−u)+2u(1−u)cos t

= 1−2u(1−u)(1−cos t )= 1−4u(1−u)/sin2(t /2)
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= (1−4u(1−u))sin2(t /2)+cos2(t /2)

= (1−2u)2 sin2(t /2)+cos2(t /2)

≤ (sin(t /2))2
+cos(t /2))2

= 1. (5)

Using (4) and (5),

|I2| =O(1)

∫π

1/(n+1)

|ψ(x, t )|h(t )

t 2
d t ,

where h(t )= sin(t /2) =O(1). Hence h(t )=O(n +1), and it then follows that

|I2| =O
( 1

n +1

)

∫π

1/(n+1)
tα−2d t

=O
( 1

n +1

) 1

α−1
tα−1

∣

∣

∣

π

1/(n+1)

=O
( 1

n +1

)

O
( 1

n +1

)α−1
=O((n +1)−α).

Theorem 1. The degree of approximation of a function f belonging to the class Li p(ξ,r ) by

means of the Fourier series (1) satisfies

‖(H )n − f (x)‖(u)
r =O

( 1

n +1

∫π

1/(n+1)

ξ(t )

t 2u(t )
d t

)

,

where ξ(t ) and u(t ) are the modulus of continuity such that
∫ν

0

ξ(t )

t u(t )
d t =O

( ξ(ν)

u(ν)

)

, 0 <ν<π.

Proof. From properties of the class Li p(ξ,r ) established in [3], (3) becomes

|I1| =O
(

u(|y |))
ξ(1/(n +1)

u(1/(n +1))

)

,

and (6) becomes

|I2| =O
( 1

n +1

∫π

1/(n+1)
u(|y |)

ξ(t )

t 2u(t )
d t

)

.

Thus

‖(H )n − f (x)‖=O
(

u(|y |))
ξ(1/(n +1)

u(1/(n +1))

)

+O
( 1

n +1

∫π

1/(n+1)
u(|y |)

ξ(t )

t 2u(t )
d t

)

,

and

sup
u 6=0

‖(H )n − f (x)‖

u(|y |)
=O

( ξ(1/(n +1)

u(1/(n +1))

)

+O
( 1

n +1

∫π

1/(n+1)

ξ(t )

t 2u(t )
d t

)

.

Since ξ and u are moduli of continuity such that ξ(t )/u(t ) is positive and nondecreasing,

1

n +1

∫π

1/(n+1)

ξ(t )

t 2u(t )
d t ≥

ξ(1/(n +1))

u(1/(n +1))

( 1

n +1

)

∫π

1/(n+1)

d t

t 2
≥

ξ(1/(n +1))

2u(1/(n +1))
.

Then
ξ(1/(n +1))

u(1/(n +1))
=O

( 1

n +1

∫π

1/(n+1)

ξ(t )

t 2u(t )
d t

)

,

and the conclusion follows. ���
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Theorem 2. Let ξ(t ) be a modulus of continuity such that

∫ν

0

ξ(t )

t
d t =O(ξ(ν)), 0 < ν<π. (6)

If f : [0,2π] → R is 2π-periodic, Lebesgue integrable on [0,2π] and belongs to the class

L(ξ,r )(r ≥ 1), then the degree of approximation of f by the Hausdorff means of its Fourier series

(1) is given by

‖(H )n − f (x)‖r =O
( 1

n +1

∫π

1/(n+1)

ξ(t )

t 2
d t

)

for n = 0,1,2, . . . .

Proof. Applying condition (7) to (3), I1 takes the form

I1 =

(

∫1/(n+1)

0

ξ(t )

t
d t

)

=O
(

ξ
( 1

n +1

))

,

and, using (6), I2 becomes

I2 =O
( 1

n +1

∫1/(n+1)

0

ξ(t )

t 2
d t

)

.

Note that

1

n +1

∫π

1/(n+1)

ξ(t )

t 2
d t ≥

1

(n +1)
ξ
( 1

(n +1)

)

∫π

1/(n+1)

1

t 2
d t

= ξ
( 1

n +1

){

1−
1

(n +1)π

}

≥
1

2
ξ
( 1

(n +1)

)

.

It then follows that

ξ
( 1

(n +1)

)

=O
( 1

(n +1)

∫π

1/(n+1)

ξ(t )

t 2
d t

)

,

and the conclusion follows. ���

Theorem 3. If f : [0,2π] → R is 2π-periodic, Lebesgue integrable on [0,2π] and belongs to the

class Li p α, then the degree of approximation of f by a regular Hausdorff mean of its Fourier

series (1) satisfies, for n = 0,1,2, . . .,

‖t̃n − f̃ ‖∞ = ess sup
0≤x≤2π

{t̃n(x)− f̃ (x)} =







O((n +1)−α),0 <α< 1,

O
(

log(n+1)π
(n+1)

)

,α= 1.

Proof.

In this case, ψ(x, t ) = tα. Therefore, from (3),

I1 =O
(

∫1/(n+1)

0
tα−1d t

)

=O((n +1)−α).
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Using (6),

I2 =O
( 1

n +1

)

∫π

1/(n+1)
tα−2d t =O(n +1)−α).

If α= 1, then one obtains the result that

‖(H )n − f (x)‖∞ =O
( log(n +1)π

(n +1)

)

. �

Theorem 3 is Theorem 1 of [6]. However, the proof in [6] contains computational errors.

We now consider the corresponding results for the conjugate series (2).

|I1| =

∣

∣

∣

1

2π

∫1/(n+1)

0
ψ(x, t )

n
∑

k=0

(

n

k

)

uk (1−u)n−k cos(k +1/2)t

sin(t /2)

∣

∣

∣dχ(u)d t .

Since |cos(k +1/2)| ≤ 1, and sin(t /2) ≥ t /π, (3) is unchanged.

For the conjugate series (2), I2 takes the form

I2 =
1

2π

∫π

1/(n+1)
ψ(x, t )

n
∑

k=0

∫1

0

(

n

k

)

uk (1−u)n−k dχ(u)
cos(k +1/2)t

sin t /2
d t

=
1

2π

∫π

1/(n+1)

ψ(x, t )

sin t /2

∫1

)

n
∑

k=0

(

n

k

)

uk(1−u)n−k dχ(u)Re(e (k+1/2)t )d t

=
1

2π

∫π

1/(n+1)

ψ(x, t )

sin t /2

∫1

0
Re{

n
∑

k=0

(

n

k

)

uk (1−u)n−k (e (k+1/2)t )}|dχ(u)d t

≤
‖H‖

2

∫π

1/(n+1)

∣

∣

∣

ψ(x, t )

t

∣

∣

∣

∫1

0
Re

[

e i t /2(1−u)n
n
∑

k=0

(

n

k

)

( ue i kt

(1−u)

)k]

d t

and one obtains the same expressions as (4) and (5). Therefore |I2| takes the same form as

(6). Consequently the analogues of Theorems 1 - 3 for the conjugate series take the following

form.

Theorem 4. The degree of approximation of a function ( f̃ ) , belonging to the the Li p(ξ,r ) class

by the Hausdorff means of the conjugate series (2) is given by

‖H̃n − f̃ ‖ =O
( 1

n +1

∫π

1/(n+1)

ξ(t )

t 2u(t )
d t

)

,

where ξ(t ) and u(t ) are the moduli of continuity such that

∫ν

0

ξ(t )

t u(t )
d t =O

( ξ(ν)

u(ν)

)

, 0 <ν<π.
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Theorem 5. Let ξ(t ) be a modulus of continuity such that

∫ν

0

ξ(t )

t
=O(ξ(ν)), 0 <ν<π.

If f belongs to the class Li p(ξ,r )(r ≥ 1), then the degree of approximation of f̃ by the Haus-

dorff means of the conjugate series (2) is given by

‖(H̃)n − f̃ ‖r =O
( 1

n +1

∫π

1/(n+1)

ξ(t )

t 2
d t

)

, n = 0,1,2, . . . .

Theorem 6. If f : [0,2π] → R is 2π periodic, Lebesgue integrable on [0,2π] and belongs to the

class Li p α, then the degree of approximation of f̃ by the Hausdorff means of the conjugate

series (2) satisfies, for n = 0,1,2, . . .,

‖(H̃n)− f̃ ‖∞ = ess sup
0≤x≤2π

|(H̃n)− f̃ | =







O(n +1)−α, 0 <α< 1,

O
(

log(n+1α
(n+1)

)

, α= 1.

Theorems 4 - 6 are generalizations of Theorems 1 - 3 of [3].
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