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ON WEAKLY PERIODIC-LIKE RINGS AND COMMUTATIVITY

THEOREMS

HAZAR ABU-KHUZAM, HOWARD E. BELL AND ADIL YAQUB

Abstract. A ring R is called periodic if, for every x in R, there exist distinct positive integers m

and n such that x
m = x

n. An element x of R is called potent if x
k = x for some integer k > 1.

A ring R is called weakly periodic if every x in R can be written in the form x = a + b for some

nilpotent element a and some potent element b in R. A ring R is called weakly periodic-like if

every element x in R which is not in the center C of R can be written in the form x = a + b,

with a nilpotent and b potent. Some structure and commutativity theorems are established for

weakly periodic-like rings R satisfying certain torsion-freeness hypotheses along with conditions

involving some elements being central.

Throughout, R is an associative ring, N is the set of nilpotent elements of R, C is

the center of R, C(R) is the commutator ideal of R, [x, y] denotes the usual commutator

xy − yx, and J denotes the Jacobson radical of R. We now state formally the definition

of a weakly periodic-like ring.

Definition 1. A ring R is called weakly periodic-like if every x in R\C can be written

in the form

x = a + b, a ∈ N, b potent (bk = b for some k > 1), x ∈ R \ C. (1)

In preparation for the proofs of the main theorems, we state the following known

lemmas.

Lemma 1.([3]) If [x, y] commutes with x, then [xk, y] = kxk−1[x, y] for all positive

integers k.

Lemma 2.([10]) Suppose R is a ring with identity 1. If xm[x, y] = 0 and (x +

1)m[x, y] = 0 for some x, y in R and some positive integer m, then [x, y] = 0. A similar

statement holds if we assume [x, y]xm = 0 and [x, y](x + 1)m = 0 instead.

Lemma 3.([4]) Let R be an n-torsion-free ring with identity such that [xn, yn] = 0

for all x, y in R. Let N denote the set of nilpotent elements of R. Then
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(i) a ∈ N , x ∈ R imply [a, xn] = 0.

(ii) a ∈ N , b ∈ N imply [a, b] = 0.

(iii) If N is contained in the center of R, then R is commutative.

Lemma 4.([1]) Suppose R is a ring with center C and N is the set of nilpotent

elements of R. Suppose that (a) N is commutative; (b) for all a in N and all x in R,

ax − xa commutes with x; (c) for all x ∈ R, we have x ∈ C or xn − x ∈ N for some

n = n(x) > 1. Then R is commutative.

Lemma 5.([6]) Suppose R is a ring such that for all x, y in R, [xn, yn] = 0, where

n is a fixed positive integer. Then the commutator ideal of R is nil, and hence N is an

ideal of R.

Lemma 6.([7]) Suppose R is a ring such that for every x in R, there exists an integer

n = n(x) > 1 such that x − xn is the center of R. Then R is commutative.

Lemma 7.([9]) Suppose R is a ring with identity and m and n are fixed positive

integers which are relatively prime. Suppose that, for all x, y in R,

[xn, yn] = 0 and [xm, ym] = 0.

Then R is commutative.

Lemma 8.([11]) Let R be a weakly periodic-like ring, J the Jacobson radical of R,

and C(R) the commutator ideal of R. IF C(R) ⊆ J , then the set N of nilpotents is an

ideal and R/N is commutative.

We are now in a position to prove our main theorems. In the first theorem, we do

not assume that the ground ring R is weakly periodic-like.

Theorem 1. Let R be a ring with identity 1 and let n > 1 be a fixed integer. Suppose

R is n-torsion-free and satisfies [xn, yn] = 0 for all x, y in R. Suppose, further, that for

all x, y in R, either (xy)n+1 − (yx)n+1 ∈ C or (xy)n−1 − yn−1xn−1 ∈ C, where C is the

center of R. Then R is commutative.

Proof. By Lemma 3, the set N of nilpotent elements of R is commutative and

[a, bn] = 0 for all a in N and all b in R. (2)

Moreover, by Lemma 5, N is an ideal of R and hence (since N is commutative)

N2 ⊆ C (C = center of R). (3)

Let a ∈ N , b ∈ R. We now consider the two possibilities in the hypothesis of the theorem.

CASE 1. (xy)n+1 − (yx)n+1 ∈ C.
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In this case,
(

(a + 1)b
)n+1

−
(

b(a + 1)
)n+1

∈ C. (4)

Since N is a commutative ideal of R and N2 ⊆ C, a close look at (4) shows that

[a, bn+1] ∈ C, (5)

and hence

[a, bn+1] = [a, b]bn + b[a, bn] ∈ C. (6)

But , by (2), [a, bn] = 0 and hence (6) implies that [a, b]bn ∈ C, which, in turn, implies
that [[a, b]bn, b] = 0 and hence

[

[a, b]b
]

bn = 0, (a ∈ N, b ∈ R). (7)

CASE 2. (xy)n−1 − yn−1xn−1 ∈ C.
As shown above, we have

N is a commutative ideal, N2 ⊆ C, [a, bn] = 0 for all a in N, b in R. (8)

We may assume ((a + 1)b)n+1 − (b(a + 1))n+1 is not in C, and hence (b(a + 1))n+1 −
((a + 1)b)n+1 is not in C. Therefore,

(

(a + 1)b
)n−1

− bn−1(a + 1)n−1 ∈ C, (9)

and
(

b(a + 1)
)n−1

− (a + 1)n−1bn−1 ∈ C. (10)

By subtracting the two expressions in (9) and (10), and using the facts in (8), it can be
seen that

[a, bn−1] − {−(n − 1)[a, bn−1]} ∈ C,

and hence (since R is n-torsion-free)

[a, bn−1] ∈ C for all a in N and all b in R. (11)

Moreover, since [a, bn] = 0 (see (8)), we have

0 = [a, bn] = [a, b]bn−1 + b[a, bn−1], (12)

and hence
[a, b]bn−1 = −b[a, bn−1]. (13)

By (11), the right side of (13) commutes with b, and hence, [a, b]bn−1 commutes with b.
Thus,

[

[a, b]bn−1, b
]

= 0,
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and hence

[a, b]bn − b[a, b]bn−1 = 0,

which implies

{[a, b]b − b[a, b]}bn−1 = 0.

Therefore, [[a, b], b]bn−1 = 0, and hence

[

[a, b], b
]

bn = 0, (a ∈ N, b ∈ R). (14)

In view of (7) and (14), we see that

[

[a, b]b
]

bn = 0 in both cases, (a ∈ N, b ∈ R). (15)

Replacing b by b + 1 in the aove argument shows that (see (15))

[

[a, b], b
]

(b + 1)n = 0. (16)

Combining (15), (16), and Lemma 2, we get

[

[a, b], b
]

= 0, (a ∈ N, b ∈ R). (17)

By (2), [a, bn] = 0, which when combined with (17) and Lemma 1 yields nbn−1[a, b] = 0.

Since R is n-torsion-free, it follows that

bn−1[a, b] = 0, (a ∈ N, b ∈ R). (18)

Replacing b by b + 1 in the above argument, we see that (see (18))

(b + 1)n−1[a, b] = 0, (a ∈ N, b ∈ R). (19)

Combining (18), (19), and Lemma 2, we otain

[a, b] = 0 for all a ∈ N and all b ∈ R. (20)

The theorem now follows from (20) and Lemma 3(iii).

We now turn our attention to weakly periodic-like rings. We begin with the following
main structure theorem.

Theorem 2. Let R be a weakly periodic-like ring (not necessarily with identity),
and let N be the set of nilpotent elements of R. Suppose P is a ring property which is

satisfied by every subring S of R and also by every homomorphic image of the subring S.

Suppose, further, that P is not satisfied by any complete matrix ring of n × n matrices

over any division ring, where n > 1. Then

(i) N is an ideal of R.
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(ii) R/N is commutative.

(iii) If x is in R, then either x ∈ C or x − xm ∈ N for some integer m > 1.

Proof. Let J be the Jacobson radical of R. Then

R/J ∼= a subdirect sum of primitive rings Ri, i ∈ Γ. (21)

In view of Jacobson’s density theorem [8; p.33], the ring property P hypothesis guarantees
that each primitive ring Ri in (21) nust be a division ring, and hence (21) yields

R/J ∼= a subdirect sum of division rings Ri, i ∈ Γ. (22)

Furthermore, since the homomorphic image of a weakly periodic-like ring is also weakly
periodic-like, each division ring Ri in (22) is weakly periodic-like. Hence (see Definition
1), for any xi in Ri, we have

xi ∈ Center of Ri or xi is potent (xk
i = xi for some k > 1). (23)

Hence, for any xi in Ri, xi − xk
i ∈ Center of Ri, where k > 1, and thus by Lemma 6, Ri

is commutative. Hence, by (22), R/J is commutative, and thus

C(R) ⊆ J (C(R) denotes the commutator ideal of R). (24)

Parts (i) and (ii) of the theorem now follow from (24) and Lemma 8.
To prove part (iii), suppose x ∈ R \ C. Then, by Definition 1,

x = a + b; a ∈ N, b potent satisfying bm = b, m > 1.

Hence,
x − a = b = bm = (x − a)m,

which implies that x − xm ∈ N , since N is an ideal (see part(i)). This proves part (iii),
and the theorem is proved.

The following lemma will be needed for the proofs of the remaining theorems.

Lemma 9. Let R be a weakly periodic-like ring with the set of nilpotents commutative

and with idempotents central. If R has a property which implies commutativity in weakly

periodic-like rings with identity and which is inherited by ideals, then R is commutative.

Proof. First, we prove that the set P0 of potent elements is central. Suppose

a ∈ P0 with an = a, n > 1. (25)

Let e = an−1. Then, since e is central idempotent, eR is a ring with identity. Indeed,
eR is weakly periodic-like which, in fact, is an ideal of R. The hypothesis of the lemma
(referring to the property inheritance) guarantees that

eR is commutative. (26)
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Therefore,

(ea)(ex) = (ex)(ea) for all x in R. (27)

Recall that e = an−1 is a central idempotent element of R, and hence (27) implies that

eax = exa = xae; that is, an−1ax = xaan−1, or anx = xan,

and thus, by (25), ax = xa for all x in R. This proves that

The set P0 of potent elements of R is central. (28)

To complete the proof, suppose x, y ∈ R. If x ∈ C or y ∈ C, then clearly [x, y] = 0.

So suppose x 6∈ C and y 6∈ C. Then, by Definition 1,

x = a + b, y = a′ + b′; a, a′ nilpotent and b, b′ potent. (29)

By (28), b and b′ are central, and hence

[x, y] = [a + b, a′ + b′] = [a, a′] = 0, (since N is commutative).

This proves the lemma.

Next, we prove

Theorem 3. Let R be a weakly periodic-like ring, and let n be a fixed positive integer.

Suppose R is n-torsion-free and, for all x, y in R, (xy)n − (yx)n ∈ C (the center of R).
Suppose, further, that the set N of nilpotents is commutative. Then, R is commutative.

Proof. Let P be the ring property “(xy)n − (yx)n is always central.” Clearly, this

property is satisfied by all subrings and all homomorphic images of any subring of R.
Moreover, this property P is not satisfied by any complete matrix ring Dn of n × n

matrices over any division ring D, where n > 1, as can be seen by taking x and y (in
Dn) to be

x = E11, y = E11 + E12, (E11, E12 ∈ Dn).

Hence, by Theorem 2(iii), we have

If x ∈ R \ C, then x − xm ∈ N for some integer m > 1. (30)

Moreover, by Theorem 2(i), N is an ideal which is commutative (by hypothesis). The
net result is:

N is a commutative ideal and hence N2 ⊆ C. (31)

We now distinguish two cases

CASE 1. 1 ∈ R. Suppose a ∈ N , b ∈ R. Then, by hypothesis,

(

(a + 1)b
)n

−
(

b(a + 1)
)n

∈ C. (32)
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In view of (31), an easy argument shows that (32) implies

[a, bn] ∈ C (a ∈ N, b ∈ R). (33)

Let S be the subring of R generated by the set of all elements xn, x ∈ R. By Theorem

2(ii), R/N is commutative, and hence

(x1 · · ·xk)n − xn
1 · · ·xn

k ∈ N for all x1, . . . , xk in R.

Since N is commutative (see (31)), therefore

[

a, (x1 . . . xk)n

]

= [a, xn
1 . . . xn

k ], (a ∈ N). (34)

Moreover, by (33), the commutator on the left side of (34) is central, and hence

[a, xn
1 . . . xn

k ] ∈ C for all x1, . . . , xk in R. (35)

Since the commutator is linear with respect to the second argument (in particular), (35)

readily implies that

[a, x] ∈ C(S) for all a ∈ N(S) and all x ∈ S, (36)

where N(S) and C(S) denote the set of nilpotents of S and the center of S, respectively.

Also, by Theorem 2(iii), we have:

If x ∈ S, then x ∈ C(S) or x − xm ∈ N(S) for some m > 1. (37)

Moreover, by (31),

N(S) is commutative. (38)

Combining (36), (37), (38), and Lemma 4, we conclude that S is commutative, and hence

[xn, yn] = 0 for all x, y in R. (39)

Since R is n-torsion-free and satisfies (39), therefore by Lemma 3(i),

[a, xn] = 0 for all a ∈ N, x ∈ R. (40)

Let a ∈ N , u = 1 + a. Then, by (40)

[u, xn] = 0, (u = 1 + a, a ∈ N). (41)

By hypothesis,
(

(xn−1u)x
)n

−
(

x(xn−1u)
)n

∈ C,

and hence

xn−1uxnuxn · · ·uxn(ux) − (xnu)n ∈ C. (42)
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Combining (41) and (42), we obtain

xn
2
−1unx − xn

2

un ∈ C,

and hence
xn

2
−1[un, x] ∈ C, (u = 1 + a, a ∈ N). (43)

By (31), N2 ⊆ C, and hence

[un, x] =
[

(1 + a)n, x
]

= [na, x] = n[a, x]. (44)

Combining (43), (44), we obtain

nxn
2
−1[a, x] ∈ C, (a ∈ N, x ∈ R).

Since R is n-torsion-free, this implies that xn
2
−1[a, x] ∈ C, and hence

[

xn
2
−1[a, x], x

]

= 0,

which implies

xn
2
−1

[

[a, x], x
]

= 0, (a ∈ N, x ∈ R). (45)

Replacing x by x + 1 in the above argument, we get

(x + 1)n
2
−1

[

[a, x], x
]

= 0, (a ∈ N, x ∈ R). (46)

Combining (45), (46), and Lemma 2, we conclude that

[

[a, x], x
]

= 0, (a ∈ N, x ∈ R). (47)

The theorem now follows from (30), (47), and the hypothesis that N is commutative (see
Lemma 4).

CASE 2. R does not have an identity. In this case, we first prove the following:

CLAIM. The idempotents of R are central. Let e2 = e ∈ R. By hypothesis,

(

e(e + er − ere)
)n

−
(

(e + er − ere)e
)n

∈ C,

and hence er − ere ∈ C. Therefore,

er − ere = e(er − ere) = (er − ere)e = 0,

and thus er = ere. Similarly, re = ere, and the claim follows.
Since the properties of torsion-freeness and “(xy)n − (yx)n is always central” are

inherited by any ideal of R, the theorem now follows from Case 1 and Lemma 9. This
completes the proof.
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The following result was proved by the authors in [2], and is a corollary of Theorem
3.

Corollary 1. Let n be a fixed positive integer and let R be an n-torsion-free periodic

ring such that (xy)n − (yx)n is central for all x, y in R. If the set N of nilpotents of R
is commutative, then R is commutative.

This follows from Theorem 3, since a periodic ring is weakly periodic [5], and hence
is also weakly periodic-like.

Theorem 4. Suppose R is a weakly periodic-like ring, and suppose m and n are

positive integers which are relatively prime. Suppose that

(xy)n − (yx)n ∈ C and (xy)m − (yx)m ∈ C (C is center of R).

Suppose, further, that the set N of nilpotents is commutative, Then R is commutative.

Proof. A careful examination of the proof of Theorem 3 shows that the hypothesis
that R is n-torsion−free was not used in the proof of (31), and thus

N is a commutative ideal of R and N2 ⊆ C. (48)

CASE 1. 1 ∈ R. Again, the proof of (39) did not use the hypopthesis that R is
n-torsion-free, and hence

[xn, yn] = 0 for all x, y in R. (49)

Similarly, by making use of the hypothesis “(xy)m − (yx)m is central”, we see that (see
(49))

[xm, ym] = 0 for all x, y in R. (50)

Hence, by (49), (50), and Lemma 7, we conclude that R is commutative (recall that
1 ∈ R).

CASE 2. 1 6∈ R. Using the argument in the proof of the Claim of Theorem 3, we see
that

The idempotents of R are central. (51)

As indicated in the proof of Case 2 of Theorem 3, the theorem now follows from Case 1
and Lemma 9. This completes the proof.

Recalling that a periodic ring is weakly periodic-like [5], and taking m = 1, n = 1 in
Theorem 4, we obtain the following

Corollary 2. A periodic ring with commuting nilpotents and central commutators is

commutative.

Theorem 5. Suppose R is a weakly periodic-like ring, and suppose m and n are

positive integers which are relatively prime. Suppose that R is mn-torsion-free, and

[xn, yn] ∈ C and [xm, ym] ∈ C for all x, y in R.
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Suppose, further, that the set N of nilpotents is commutative. Then R is commutative.

Proof. Let P be the ring property “[xn, yn] ∈ C for all x, y in R.” Clearly, this
property is satisfied by all subrings and all homomorphic images of any subring of R.
Moreover, this property P is not satisfied by any complete matrix ring Dn of n × n
matrices over any division ring D, where n > 1, as can be seen by taking

x = E11, y = E11 + E12, (E11, E12 ∈ Dn).

Hence, by Theorem 2(i),

N is an ideal of R, (N is the set of nilpotents). (52)

Moreover,
N is commutative, and hence N2 ⊆ C (see (52)). (53)

We now distinguish two cases.

CASE 1. 1 ∈ R. Let a ∈ N , b ∈ R. Then, [(1 + a)n, bn] ∈ C, which when combined
with (52) and (53) yields n[a, bn] ∈ C. Since R is mn-torsion-free,

[a, bn] ∈ C for all a ∈ N, b ∈ R. (54)

This is precisely (33) above. By repeating the argument used in (33) through (39) above,
we conclude that

[xn, yn] = 0 for all x, y in R. (55)

Similarly, using the hypothesis [xm, ym] ∈ C, the above argument yields

[xm, ym] = 0 for all x, y in R. (56)

Hence, by (55), (56), and Lemma 7, we conclude that R is commutative (recall that
1 ∈ R).

CASE 2. 1 6∈ R. First, note that the idempotents are central. To see this, let
e2 = e ∈ R, r ∈ R. By hypothesis,

[

en, (e + er − ere)n

]

∈ C,

and hence er − ere ∈ C. Thus,

er − ere = e(er − ere) = (er − ere)e = 0,

and hence er = ere. Similarly, re = ere, and hence

All idempotents of R are central. (57)

Arguing as we did in the proof of Case 2 of Theorem 3, the theorem now follows from
Case 1 and Lemma 9. This completes the proof.
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