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ITERATED INTEGRAL TRANSFORMS OF CARATHEODORY

FUNCTIONS AND THEIR APPLICATIONS TO ANALYTIC

AND UNIVALENT FUNCTIONS

K. O. BABALOLA AND T. O. OPOOLA

Abstract. In this paper we develop and study some integral transforms of Caratheodory func-

tions. We apply the transforms to study certain other classes of analytic and univalent functions

both to obtain new results and provide new proofs of some known ones.

1. Introduction

Let C be the complex plane. Denote by P the class of functions:

p(z) = 1 + p1z + p2z
2 + · · · (1.1)

which are analytic in the unit disk E = {z : |z| < 1} and satisfy Re p(z) > 0, z ∈ E.
The family P , known as the Caratheodory functions, plays a vital role in geometric

function theory. That is so because many analytic and univalent functions have repre-
sentation in terms of functions in it. For instance, the normalized analytic function:

f(z) = z + a2z
2 + · · · (1.2)

is said to be starlike, convex, or belongs to the classes S0, R, and B1(α), provided the
geometric quantities zf ′(z)/f(z), 1+zf ′′(z)/f ′(z), f(z)/z, f ′(z) and f(z)α−1f ′(z)/zα−1,
(where α > 0 is real) respectively belong to the family P [4, 7, 8, 9, 10].

The object of the present paper is to identify certain iterated integral transforms of
functions in the class P , which have arisen from the study of the classes of functions
defined in [1, 6]. We relate the transforms with those classes and give some of their
applications in the latter sections. We begin with

Definition 1.1. Let p ∈ P and α > 0 be real. The nth iterated integral transform
of p(z), z ∈ E is defined as

pn(z) =
α

zα

∫ z

0

tα−1pn−1(t)dt, n ∈ N (1.3)
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with p0(z) = p(z).

Note that since p0(z) belongs to P , the transform pn(z), n ∈ N is analytic, and
pn(0) = 1 and pn(z) 6= 0 for z ∈ E.

We shall denote the family of the nth iterated integral transform of p ∈ P by Pn.

With the above definition, it is easy to see that if p(z) is given by (1.1), then

pn(z) = 1 +

∞
∑

k=1

pn,kz
k (1.4)

where

pn,k =
αn

(α+ k)n
pk, k = 1, 2, . . . (1.5)

and we remark here that an analogue of the well-known Caratheodory lemma for the
pn(z) is the inequality:

|pn,k| ≤
2αn

(α + k)n
, k = 1, 2, . . . (1.6)

By setting p0(z) = L0(z) = (1+z)/(1−z) we see easily that the nth iterated integral

transform of the Mobius function is:

Ln(z) =
α

zα

∫ z

0

tα−1Ln−1(t)dt, n ∈ N. (1.7)

The function Ln(z) plays a central role in the family Pn similar to role of the Mobius
function L0(z) in the family P .

Remark 1.2. Let us denote pn(z) by χ
(α)
n (p(z)). Then for any p ∈ P and m,n ∈ N0,

we have
χ(υ)

m (χ(α)
n (p(z))) = χ(α)

n (χ(υ)
m (p(z))) (1.8)

where υ > 0 is also real. This is easily seen using (1.4) and (1.5). Now for υ = α, (1.8)

gives
χ(α)

m (χ(α)
n (p(z))) = χ(α)

n (χ(α)
m (p(z))) = χn+m

(α)(p(z)). (1.9)

In Section 2 we provide a lemma, which we shall depend on in the study of functions

in the family Pn in Section 3. Some applications of the integral transforms in analytic
and univalent functions theory are mentioned in Section 4.

2. A Fundamental Lemma

In order to be able to adequately discuss the transformation pn(z), we require some
preliminary concepts.

Definition 2.1. Let u = u1 + u2i, v = v1 + v2i and γ 6= 1 be a nonnegative real
number. Define Ψγ as the set of functions ψ(u, v) : C × C → C satisfying:

(a) ψ(u, v) is continuous in a domain Ω of C × C.
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(b) (1, 0) ∈ Ω and Re ψ(1, 0) > 0.

(c) Re ψ(γ+ (1− γ)u2i, v1) ≤ γ when (γ+ (1− γ)u2i, v1) is a point of the domain

Ω and 2v1 ≤ −(1 − γ)(1 + u2
2) for 0 ≤ γ < 1.

(d) Re ψ(γ+ (1− γ)u2i, v1) ≥ γ when (γ+ (1− γ)u2i, v1) is a point of the domain

Ω and 2v1 ≥ (γ − 1)(1 + u2
2) for γ > 1.

The set Ψγ is nonempty. The following examples of such functions ψ(u, v) belong to

the set.

(i) ψ1(u, v) = u+ v/α, Re α > 0 and Ω = C × C.

(ii) ψ2(u, v) = u+ ξv/u, ξ > 0 is real and Ω = [C − {0}]× C.

(iii) ψ3(u, v) = u+ v/(ξ + u), ξ is real, ξ + γ > 0 and Ω = [C − {−ξ}]× C.

(iv) ψ4(u, v) = uev + v, with Ω = C × C.

The set Ψγ is closed under addition, and for any m > 0, mψ ∈ Ψγ if ψ ∈ Ψγ . If

γ = 0, we simply write Ψ in place of Ψ0. The set Ψ has been defined in several literatures

and is found to contain many more examples [3, 5]. Furthermore the inequalities 2v1 ≤

−(1 − γ)(1 + u2
2) and 2v1 ≥ (γ − 1)(1 + u2

2) may be replaced respectively by v1 ≤ 0 and

v1 ≥ 0. These weaker conditions are easier to work with algebraically although some

generality may be lost. For instance, ψ5 = u + 2v + (1 − u2)/2 requires the original

stronger condition in order to belong to the set Ψ.

Definition 2.2. Let ψ ∈ Ψγ with corresponding domain Ω. Define P (Ψγ) as the set

of functions p(z) given as (p(z)− γ)/(1− γ) = 1 + p1z + p2z
2 + · · · which are regular in

E and satisfy:

(i) (p(z), zp′(z)) ∈ Ω.

(ii) Re ψ(p(z), zp′(z)) > γ when z ∈ E and 0 ≤ γ < 1.

(iii) Re ψ(p(z), zp′(z)) < γ when z ∈ E and γ > 1.

The concepts (ii) and (iii) above are not vacuous since for sufficiently small |p1|

(depending on ψ), the function p(z) given by (p(z)−γ)/(1−γ) = 1+p1z satisfies them. In

particular, let ψ1(u, v) = u+v, then ψ(p(z), zp′(z)) = p(z)+zp′(z) = γ+(1−γ)[1+2p1z].

Thus if 0 ≤ γ < 1, then Re ψ(p(z), zp′(z)) ≥ γ+(1−γ)[1−2|p1||z|] > γ+(1−γ)[1−2|p1|]

so that for sufficiently small |p1|, Re ψ(p(z), zp′(z)) > γ whereas for γ > 1, we have Re

ψ(p(z), zp′(z)) = γ+(γ−1)[−2 Re p1z−1] ≤ γ+(γ−1)[2|p1||z|−1] < γ+(γ−1)[2|p1|−1]

hence for sufficiently small |p1|, Re ψ(p(z), zp′(z)) < γ.

Lemma 2.3. Let p ∈ P (Ψγ). Then

Re p(z)

{

> γ, if 0 ≤ γ < 1,
< γ, if γ > 1.

Proof. Since p ∈ P (Ψγ), p(z) given by (p(z) − γ)/(1 − γ) = 1 + p1z + p2z
2 + · · · is

analytic in E. If we set
p(z) − γ

1 − γ
=

1 + w(z)

1 − w(z)
, z ∈ E (2.1)
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then w(0) = 0, w(z) 6= 1 and w(z) is meromorphic in E. Suppose there exists a point

z0 ∈ E such that for |z| ≤ |z0|, max |w(z)| = |w(z0)| = 1. Then by Jack’s Lemma (see

[3]),

z0w
′(z0) = mw(z0), m ≥ 1. (2.2)

Since |w(z0)| = 1 and w(z0) 6= 1 we must have

1 + w(z0)

1 − w(z0)
= Ai, A real. (2.3)

Thus from (2.1) we get

p(z0) = γ + (1 − γ)Ai. (2.4)

Also from (2.1) we obtain

zp′(z) =
2(1 − γ)zw′(z)

(1 − w(z))2
. (2.5)

Using (2.2) and (2.3) in (2.5) we have

z0p
′(z0) = −

m(1 − γ)(1 +A2)

2
= d real. (2.6)

Thus at the point z = z0 ∈ E we have Re ψ(p(z0), z0p
′(z0)) =Re ψ(γ+(1−γ)Ai, d), and

2d ≤ −(1− γ)(1 +A2) if 0 ≤ γ < 1 and 2d ≥ (γ − 1)(1 +A2) if γ > 1. Since ψ ∈ Ψγ the

conditions (c) and (d) of Definition 2.1 respectively imply that Re ψ(p(z0), z0p
′(z0)) ≤ γ

if 0 ≤ γ < 1 and Re ψ(p(z0), z0p
′(z0)) ≥ γ if γ > 1. These contradict the fact that

p ∈ P (Ψγ). Therefore we must have Re p(z) > γ if 0 ≤ γ < 1 and Re p(z) < γ if γ > 1

for all z ∈ E. This completes the proof.

We note here that the case γ = 0 of the above lemma has been proved in [3] and that

the class P (Ψγ), 0 ≤ γ < 1, are subclasses of the family of Caratheodory functions. Now

we are in a position to characterize functions in the family Pn.

3. Some Properties of the Family Pn

Theorem 3.1. Let γ 6= 1 be a nonnegative real number. Then for each n ∈ N ,

Re pn−1(z) > γ ⇒ Re pn(z) > γ for 0 ≤ γ < 1 and

Re pn−1(z) < γ ⇒ Re pn(z) < γ for γ > 1

Proof. From (1.3) we have

pn(z) +
zp′n(z)

α
= pn−1(z), n ∈ N. (3.1)
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Now let n ∈ N and suppose that the conditions of the theorem are satisfied. Then
applying Lemma 2.3 to ψ1 we have the implication:

Re (pn(z) + zp′n(z)/α) > γ ⇒ Re pn(z) > γ, 0 ≤ γ < 1 (3.2)

Re (pn(z) + zp′n(z)/α) < γ ⇒ Re pn(z) < γ, γ > 1. (3.3)

That is Re pn−1(z)>γ ⇒ Re pn(z)>γ for 0≤γ<1 and Re pn−1(z)<γ ⇒ Re pn(z) < γ
for γ > 1.

Corollary 3.2. Pn ⊂ P , n ∈ N .

Proof. Since p0 ∈ P , we have Re p0(z) > 0. Therefore by Theorem 3.1 we have Re
p1(z) > 0, and hence Re p2(z) > 0 and so on for each n ∈ N .

Theorem 3.3. Pn+1 ⊂ Pn

Proof. Let pn+1(z) belong to Pn+1. Then there exists p ∈ P such that

pn+1(z) = χn+1
(α)(p(z)) (3.4)

Then by Remark 1.2, pn+1(z) = χn
(α)(χ1

(α)(p(z))), thus by Corollary 3.2 χ1
(α)(p(z))

= p1(z) is a function in P , therefore pn+1(z) is the nth integral transform of a function
in P , that is, pn+1(z) belongs to Pn. This completes the proof.

Corollary 3.4.([1]) Let p ∈ P and γ + c > 0. Then

q(z) = 1 + (γ + c)

∞
∑

k=1

pkz
k

(γ + c+ k)
, z ∈ E (3.5)

is also in P .

The above corollary and its extension in [6] follow easily by taking α = γ + c > 0,
n = 0 in Theorem 3.3. The proofs in the two articles made use of a result of Miller and
Mocanu [5, Theorem 10], which as observed in MR96j:30018, may not be applied directly
except γ + c is an integer.

Theorem 3.5. The transformation (1.3) is starlikeness-preserving. In other words,
if p ∈ P is starlike in E, then its transform pn is also starlike in E.

Proof. From (1.3) we get

zp′(z)

pn(z)
+ α =

zαpn−1(z)
∫ z

0 t
α−1pn−1(t)dt

≡
M(z)

N(z)
. (3.6)

Assume pn−1(z) is starlike in E. Then N(z) is also starlike (in fact N(z) maps E onto
a convex domain) since

1 +
zN ′′(z)

N ′(z)
= α+

zp′n−1(z)

pn−1(z)
. (3.7)
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Now from (3.6) let

H(z) =
zp′n(z)

pn(z)
=
M(z)

N(z)
− α (3.8)

so that
M ′(z)

N ′(z)
− α = H(z) +

N(z)

N ′(z)
H ′(z) = H(z) +

zH ′(z)

η(z)
(3.9)

where η(z) = zN ′(z)/N(z). We write (3.9) as

M ′(z)

N ′(z)
− α = ψ(H(z), zH ′(z)) (3.10)

where ψ = ψ1(u, v) = u+v/η, Re η > 0 withD = C×C belongs to Ψ. ButM ′(z)/N ′(z)−

α = zpn−1
′(z)/pn−1(z). Thus we have Re ψ(H(z), zH ′(z)) > 0 which implies Re H(z) >

0. That is, Re zpn
′(z)/pn(z) > 0. Hence p0(z) is starlike in E ⇒ p1(z) is ⇒ · · · ⇒ pn(z)

is. This concludes the proof.

Corollary 3.6. The transformation Ln(z) of the Moebius function is starlike and

univalent in E.

Theorem 3.7. The transformation (1.3) is convexity-preserving. In other words, if

p ∈ P is convex in E, then its transform pn is also convex in E.

Proof. Observe from (1.3) that

zp′n(z) =
α

zα

∫ z

0

tα−1(tp′n−1(t))dt (3.11)

so that if pn−1(z) is convex in E, then zpn−1
′(z) is starlike in E. Hence from (3.11) we

conclude using Theorem 3.5 that zpn
′(z) is starlike in E and therefore pn(z) is convex in

E. That is, p0(z) is convex in E ⇒ p1(z) is ⇒ · · · ⇒ pn(z) is, and the proof is concluded.

Corollary 3.8. The transformation Ln(z) of the Moebius function is convex in E.

Theorem 3.9. Let pn ∈ Pn. Then

|pn(z)| ≤ 1 + 2

∞
∑

k=1

αn

(α + k)n
rk, |z| = r, (3.12)

Re pn(z) ≥ 1 + 2

∞
∑

k=1

αn

(α+ k)n
(−r)k, |z| = r. (3.13)

The results are sharp.

Proof. The transform pn(z) admits the representation (1.4). Thus by triangle in-

equality, using (1.6) we have the upper bound (3.12). Equality is realized for the function

pn(z) = Ln(z).
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For the lower bound we use (1.3) where

Re p1(z) = Re
α

zα

∫ z

0

tα−1p(t)dt. (3.14)

Let z = reiθ and t = ρeiθ, 0 < ρ ≤ r < 1. Then (3.14) gives

Re p1(re
iθ) = Re

α

rα

∫ r

0

ρα−1p(ρeiθ)dρ (3.15)

which gives

Re p1(re
iθ) =

α

rα

∫ r

0

ρα−1 Re p(ρeiθ)dρ. (3.16)

Since p ∈ P , Re p(reiθ) ≥ (1 − r)/(1 + r) so that (3.16) yields

Re p1(re
iθ) ≥ 1 + 2

∞
∑

k=1

α

α+ k
(−r)k. (3.17)

Next we assume that for 1 ≤ j ≤ n,

Re pj(re
iθ) ≥ 1 + 2

∞
∑

k=1

αj

(α+ k)j
(−r)k. (3.18)

Then by letting z = reiθ and t = ρeiθ, 0 < ρ ≤ r < 1, we would have

Re pj+1(re
iθ) = Re

α

rα

∫ r

0

ρα−1pj(ρe
iθ)dρ (3.19)

giving

Re pj+1(re
iθ) =

α

rα

∫ r

0

ρα−1 Re pj(ρe
iθ)dρ. (3.20)

Using (3.18) in (3.20) we get

Re pj+1(re
iθ) ≥ 1 + 2

∞
∑

k=1

αj+1

(α+ k)j+1
(−r)k. (3.21)

Therefore the inequality (3.13) follows by induction. Equality is attained for pn(z) =
Ln(−z).

It is well known that if an analytic function g(z) is univalent in E, then f(z) is
subordinate to g(z) (written as f ≺ g) if and only if f(E) ⊂ g(E) and f(0) = g(0) [7].
Therefore the following corollary follows from Corollary 3.6 and Theorem 3.9.

Corollary 3.10. pn ∈ Pn if and only if pn(z) ≺ Ln(z).

Remark 3.11. If we choose n = 0 in the corollary above we see that p ∈ P if and
only if p(z) ≺ L0(z) which is well known.
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Finally from Definition 1.1, Corollary 3.10 and other well-known facts about the class

P , we have the following equivalence:

Remark 3.12. For z ∈ E, the following are equivalent:

(i) p ≺ L0(z)

(ii) p ∈ P

(iii) pn ∈ Pn

(iv) pn ≺ Ln(z).

The above equivalence relation shows that the iterated integral transformations (1.3)

of functions in the family P of Caratheodory functions not only preserve starlikeness

and convexity but also subordination-preserving. Thus the resulting infinite sequence

{dk}
∞

1 =
αn

(α+ k)n
, n ∈ N0 (see equation (1.5)) has the property that it is preserving

of many geometric structures of the family P . The important role of such sequence in

geometric function theory has been studied by Bernardi in [2].

4. Applications

The family Pn actually arose from the study of classes Bn(α) and Tα
n (β) introduced

in [1, 6] and has proved very resourceful in dealing easily with certain problems of the

theory of analytic and univalent functions as will be demonstrated shortly. First, we

recall that a function f(z) defined by (1.2) is said to belong to Bn(α) if and only if Re

{Dnf(z)α/zα} > 0, α > 0 is real, Dn (n ∈ N0 = {0, 1, 2, . . .}) is the Salagean derivative

defined by the relations D0f(z) = f(z) and Dnf(z) = z[Dn−1f(z)]′ [1, 6, 8]. The class

Tα
n (β) was defined in [6] as an extension of Bn(α), however certain errors have been

pointed out in the work (see MR96j: 30018). We acknowledge those errors and assert

that they are due to a misstatement of the associated geometric condition. Thus we say:

Definition 4.1. A normalized analytic function given by (1.2) belongs to the class

Tα
n (β) if and only if

Re
Dnf(z)α

αnzα
> β

where 0 ≤ β < 1 and α and Dn are as already defined.

In this section we will present several different applications of the transformation Pn,

mainly in the study of functions in the class Tα
n (β), both to obtain new results and to

provide very simple proofs for some known ones. Several choices of the parameters n, α

and β lead to corresponding results in classes Bn(α), B1(α), R and S0 [1, 4, 9, 10].

The following lemma gives the basic relationship between the classes Pn and Tα
n (β).

Lemma 4.2. Let f(z) be given by (1.2), and α, β and Dn as defined above. Then

the following are equivalent:

(i) f ∈ Tα
n (β)
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(ii) (Dnf(z)α/αnzα − β)/(1 − β) ∈ P
(iii) (f(z)α/zα − β)/(1 − β) ∈ Pn.

Proof. That (i) ⇔ (ii) is clear from Definition 4.1. Now (ii) is true ⇔ there exist
p ∈ P such that

Dnf(z)α = αnzα(β + (1 − β)p(z)) (4.1)

We shall apply on (4.1) the integral operator, In, defined in [8] as

Inf(z) = I(In−1f(z)) =

∫ z

0

In−1f(t)

t
dt,

with I0f(z) = f(z) so that we have equation (4.1) ⇔

f(z)α = zα + (1 − β)
∞
∑

k=1

αn

(α+ k)n
pkz

α+k (4.2)

⇔
f(z)α/zα − β

1 − β
= 1 +

∞
∑

k=1

αn

(α + k)n
pkz

k (4.3)

which proves the lemma.

Now we are in position to give new proofs of some earlier results in [1, 6] and obtain
further characterization of the class Tn

α(β).

Theorem 4.3. Tn+1
α(β) ⊂ Tn

α(β).

Proof. Let f ∈ Tn+1
α(β). Then by Lemma 4.2 (f(z)α/zα − β)/(1 − β) ∈ Pn+1. By

Theorem 3.3 (f(z)α/zα − β)/(1 − β) ∈ Pn. That is f ∈ Tn
α(β).

Corollary 4.4. For n ≥ 1, Tn
α(β) ⊂ S (the class of functions f(z) given by (1.2)

which are univalent in E).

Theorem 4.5. Let f(z) given by (1.2) be in the class Tn
α(β). Then the function

F (z) defined by

F (z)α =
α+ c

zc

∫ z

0

tc−1f(t)αdt, α+ c > 0 (4.4)

is also in Tn
α(β).

Proof. From (4.4) we have

F (z)α/zα − β

1 − β
=

υ

zυ

∫ z

0

tυ−1
(f(t)α/tα − β

1 − β

)

dt (4.5)

where υ = a+ c. Since f ∈ Tn
α(β), using Remark 1.2 and Lemma 4.2, we write (4.5) as

F (z)α/zα − β

1 − β
= χ1

(υ)(χn
(α)(p(z))) = χn

(α)(χ1
(υ)(p(z))). (4.6)
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Equation (4.6) implies that (F (z)α/zα −β)/(1−β) belong to the class Pn. Therefore by

Lemma 4.2, F ∈ Tn
α(β).

Theorem 4.6. A function F (z) defined by F (z)α+υ = zυf(z)α (where f(z) is given
by (1.2)) is in the class Tn

α+υ(β) if and only if f(z) is in Tn
α(β).

Proof. By definition of F (z)

F (z)α+υ

zα+υ
≡
f(z)α

zα
(4.7)

and the result follows (cf. [9]).

Theorem 4.7. Let f ∈ Tn
α(β) and define

MT (n, α, β, r) = r
{

1 + 2(1 − β)αn

∞
∑

k=1

rk

(α+ k)n

}
1

α

and

mT (n, α, β, r) = r
{

1 + 2(1 − β)αn

∞
∑

k=1

(−r)k

(α+ k)n

}
1

α

.

Then mT (n, α, β, r) ≤ |f(z)| ≤MT (n, α, β, r). The inequalities are sharp.

Proof. The result follows by taking pn(z) = (f(z)α/zα − β)/(1− β) in Theorem 3.9.
Equality in the upper bound is realized for the functions f(z) given by

Dnf(z)α

αnzα
=

1 + (1 − 2β)z

1 − z
(4.8)

while equality in the lower bound is attained by the functions f(z) given by

Dnf(z)α

αnzα
=

1 − (1 − 2β)z

1 − z
. (4.9)

This completes the proof.

Theorem 4.8. Each function f(z) in the class Tn
α(β) maps the unit disk onto a

domain which covers the disk |ξ| < mT (n, α, β, 1). The result is sharp.

Proof. From Theorem 4.7, we have |f(z)| ≥ mT (n, α, β, r). This implies that range of

every function f(z) in the class covers the disk |w| < mT (n, α, β, 1) = inf
r→1

mT (n, α, β, r).

The functions f(z) given by (4.9) show that the result is sharp.

Theorem 4.9. Let f ∈ Tn
α(β) and define

M∗

T (n, α, β, r) = rα−1
{

1 + 2(1 − β)

∞
∑

k=1

αn−1

(α+ k)n−1
rk

}
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and

m∗

T (n, α, β, r) = rα−1
{

1 + 2(1 − β)

∞
∑

k=1

αn−1

(α+ k)n−1
(−r)k

}

.

Then m∗

T (n, α, β, r) ≤ |f(z)α−1f ′(z)| ≤M∗

T (n, α, β, r). The inequalities are sharp.

Proof. Since f ∈ Tn
α(β), by Lemma 4.2, there exists pn ∈ Pn such that

f(z)α = zα[β + (1 − β)pn(z)]. (4.10)

Hence we have
f(z)α−1f ′(z)

zα−1
= β + (1 − β)[pn(z) + zp′n(z)/α]. (4.11)

From (1.3) we find that pn(z) + zp′n(z)/α = pn−1(z) so that (4.11) becomes

f(z)α−1f ′(z)

zα−1
= β + (1 − β)pn−1(z). (4.12)

Using Theorem 3.9 we get

∣

∣

∣

f(z)α−1f ′(z)

zα−1

∣

∣

∣
≤ 1 + 2(1 − β)

∞
∑

k=1

αn−1

(α+ k)n−1
rk (4.13)

and

Re
f(z)α−1f ′(z)

zα−1
≥ 1 + 2(1 − β)

∞
∑

k=1

αn−1

(α+ k)n−1
(−r)k. (4.14)

The inequalities now follow from (4.13) and (4.14). Upper bound equality is realized for

the functions f(z) given by (4.8) while in the lower bound equality is attained by the
functions f(z) defined by (4.9).

Finally we note that the integral of Abdulhalim [1, Theorem 3.5] can be written as

Im(z) = χm
(υ)(χn

(α)(p(z))) where α > 0, υ = α + 1 > 0, m,n ∈ N0 and χn
(α)(p(z)) =

I0(z) = f(z)α/zα so that his result follows by Remark 1.2 and Theorem 3.9. Extension
to Tn

α(β) follows by taking χn
(α)(p(z)) = (f(z)α/zα − β)/(1 − β).
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