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RECOVERING DIFFERENTIAL PENCILS ON GRAPHS

WITH A CYCLE FROM SPECTRA

V. YURKO

Abstract. We study boundary value problems on compact graphs with a cycle for second-

order ordinary differential equations with nonlinear dependence on the spectral parame-

ter. We establish properties of the spectral characteristics and investigate inverse spectral

problems of recovering coefficients of the differential equation from spectra. For these

inverse problems we prove uniqueness theorems and provide procedures for construct-

ing their solutions.

1. Introduction

In this paper we study inverse spectral problems for second-order differential pencils on

compact graphs with a cycle. Inverse spectral problems consist in recovering coefficients of

differential equations from their spectral characteristics. The main results on inverse spectral

problems for ordinary differential operators on an interval are presented in the monographs

[1]−[5]. Differential operators on graphs (spatial networks) often appear in mathematics, me-

chanics, physics, geophysics, physical chemistry, biology, electronics, nanoscale technology

and other branches of natural sciences and engineering (see [6-7] and the references therein).

Inverse spectral problems for Sturm-Liouville operators on compact graphs have been stud-

ied fairly completely in [8]−[14] and other works. Differential pencils (when differential equa-

tions depend nonlinearly on the spectral parameter) produce serious qualitative changes in

the spectral theory. In particular, there are only a few works on inverse spectral problems for

differential pencils on graphs. In [15] an inverse problem have been solved for differential

pencils on trees (graphs without cycles). Inverse problems for differential pencils on graphs

with cycles have not been studied yet.

In this paper we investigate inverse spectral problems for second-order differential pen-

cils on compact graphs having a cycle under generalized matching conditions in interior ver-

tices and boundary conditions in boundary vertices. For these inverse problems we prove

uniqueness theorems and provide procedures for constructing their solutions.
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The paper is organized as follows: Properties of spectral characteristics are established

in Section 2. In section 3 algorithms for the solutions of the inverse problems considered are

provided and the corresponding uniqueness theorems are proved.

Consider a compact graph T in Rm with the set of vertices V = {v0, . . . , vr }, r ≥ 1, and

the set of edges E = {e0, . . . ,er }, where v1, . . . , vr are the boundary vertices, v0 is the internal

vertex, e j = [v j , v0], j = 1,r ,
r
⋂

j=0

e j = {v0}, and e0 is a cycle. Thus, the graph T has one cycle

e0 and one internal vertex v0. Let T j , j = 0,r , be the length of the edge e j . Each edge e j ∈ E

is parameterized by the parameter x j ∈ [0,T j ]. It is convenient for us to choose the following

orientation: for j = 1,r , the vertex v j corresponds to x j = 0, and the vertex v0 corresponds to

x j = T j ; for j = 0, both ends x0 =+0 and x0 = T0 −0 corespond to v0.

An integrable function Y on T may be represented as Y = {y j } j=0,r , where the function

y j (x j ), x j ∈ [0,T j ], is defined on the edge e j . Let q = {q j } j=0,r and p = {p j } j=0,r be complex-

valued functions on T ; the pair (q, p) is called the potential. Assume that q j (x j ) ∈ L(0,T j ), and

p j (x j ) is absolutely continuous on [0,T j ]. Consider the following differential equation on T :

y ′′
j (x j )+ (ρ2 +ρp j (x j )+q j (x j ))y j (x j )= 0, x j ∈ (0,T j ), (1)

where ρ is the spectral parameter, j = 0,r , the functions y j (x j ), y ′
j
(x j ) are absolutely contin-

uous on [0,T j ] and satisfy the following matching conditions in the internal vertex v0:

y0(0) =α j y j (T j ), j = 0,r , y ′
0(0)− (iρh01 +h00)y0(0) =

r
∑

j=0

β j y ′
j (T j ), (2)

where α j and β j are complex numbers such that α jβ j 6= 0, 1+α0β0 6= 0. Matching conditions

(2) are a generalization of Kichhoff’s matching conditions [9]. Let us consider the boundary

value problem B0 := B0(q, p,h1,h0) on T for equation (1) with matching conditions (2) and

with the following boundary conditions at the boundary vertices v1, . . . , vr :

U j (Y ) = 0, j = 1,r . (3)

where U j (Y ) := y ′
j
(0)− (iρh j 1 +h j 0)y j (0), h j k are complex numbers, hk = {h j k } j=0,r , k = 0,1,

and h j 1 6= ±1 for j = 1,r . We also consider the boundary value problems Bk := Bk (q, p,h1,h0),

k = 1,r , for equation (1) with matching conditions (2) and with the boundary conditions

yk (0) = 0, U j (Y ) = 0, j = 1,r \ k .

We denote by Λk := {ρkn}n∈Z the eigenvalues (counting with multiplicities) of Bk , k = 0,r .

In contrast to the case of trees (see [9, 15]), here the specification of the spectra Λk , k =
0,r does not uniquely determine the potential, and we need an additional information. Let
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Λ−1 := {ρ−1,n}n∈Z be the spectrum of the boundary value problem B−1 for equation (1) under

boundary conditions (3) and matching conditions of the form (2), but with α−1 instead of α0

(α−1 6=α0).

Inverse problem 1. Given Λk , k = −1,r , construct the potential (q, p) on T and the coeffi-

cients h1, h0.

Let Λr+1 := {ρr+1,n}n∈Z be the spectrum of the boundary value problem Br+1 for equation

(1) under boundary conditions (3) and matching conditions of the form (2), but with β−1

instead of β0 (β−1 6=β0).

Inverse problem 2. Given Λk , k = 0,r +1, construct the potential (q, p) on T and the coeffi-

cients h1, h0.

For these inverse problems we provide constructive procedures for their solutions and

prove their uniqueness. We note that the coefficients α j ,β j from (2) are known a priori and

fixed. Denote

z±
0 =α0(1∓h01)+β0, z±

k+1
=αk+1z±

k
+βk+1

k
∏

j=0

α j , k = 0,r −1.

We assume that z±
0 z±

r 6= 0. This condition is called the regularity condition for matching. Dif-

ferential operators on T which do not satisfy the regularity condition, possess qualitatively

different properties for formulation and investigation of inverse problems, and are not con-

sidered in this paper; they require a separate investigation. We note that for classical Kirch-

hoff’s matching conditions we have α j =β j = 1, h0k = 0, and the regularity condition is satis-

fied obviously.

Let us formulate uniqueness theorems for the solution of Inverse problems 1 and 2. For

this purpose together with Bk we consider boundary value problems B̃k = Bk (q̃ , p̃ , h̃1, h̃0) of

the same form but with different coefficients. Everywhere below if a symbol α denotes an

object related to Bk , then α̃ will denote the analogous object related to B̃k .

Theorem 1.1. If Λk = Λ̃k , k =−1,r , then q = q̃ , p = p̃ , h1 = h̃1, h0 = h̃0. Thus, the specification

of the spectra Λk , k = −1,r uniquely determines the potential (q, p) on T and the coefficients

h1, h0.

Theorem 1.2. If Λk = Λ̃k , k = 0,r +1, then q = q̃ , p = p̃ , h1 = h̃1, h0 = h̃0. Thus, the spec-

ification of the spectra Λk , k = 0,r +1 uniquely determines the potential (q, p) on T and the

coefficients h1, h0.

These theorems will be proved below in Section 3. Moreover, we will give constructive

procedures for the solutions of Inverse problems 1 and 2 (see Algorithms 3 and 5). In Section
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2 properties of the spectra, characteristic functions and the Weyl functions are investigated

for boundary value problems on the graph.

2. Auxiliary propositions

Denote Ek (xk ) = 1
2

∫xk

0 pk (t )d t , ωk =T −1
k

Ek (Tk ), E±(ρ) =
∏r

j=0
exp(∓i (ρ+ω j )T j ),

Π
± = {ρ : ±Imρ ≥ 0}, Π+

δ
= {ρ : argρ ∈ [δ,π−δ]}, Π−

δ
= {ρ : argρ ∈ [π+δ,2π−δ]}. Fix k = 1,r .

Let Φk = {Φk j } j=0,r , be the solution of equation (1) satisfying (2) and the boundary conditions

U j (Φk )= δ j k , j = 1,r , (4)

where δ j k is the Kronecker symbol. Denote Mk (ρ) :=Φkk (0,ρ), k = 1,r . The function Mk (λ) is

called the Weyl function with respect to the boundary vertex vk . Clearly,

Φkk (xk ,ρ)= Sk(xk ,ρ)+Mk (ρ)ϕk (xk ,ρ), xk ∈ [0,Tk ], k = 1,r , (5)

where Sk (xk ,ρ), ϕk (xk ,ρ), k = 0,r are solutions of equation (1) on the edge ek with the ini-

tial conditions Sk (0,ρ) = 0, S ′
k

(0,ρ) = ϕk (0,ρ) = 1, ϕ′
k

(0,ρ) = iρhk1 +hk0. For each fixed xk ∈
[0,Tk ], the functions S(ν)

k
(xk ,ρ), ϕ(ν)

k
(xk ,ρ), ν = 0,1, are entire in ρ of exponential type, and

〈ϕk (xk ,ρ), Φkk (xk ,ρ)〉 ≡ 1, where 〈y, z〉 := y z ′− y ′z is the Wronskian of y and z. For k = 0,r ,

ν= 0,1, xk ∈ [0,Tk ], |ρ|→∞, one has (see [15]),

ϕ(ν)
k

(xk ,ρ) = (−iρ)ν
1−hk1

2
exp(−i (ρxk +Ek (xk )))[1]

+(iρ)ν
1+hk1

2
exp(i (ρxk +Ek (xk )))[1]. (6)

Similarly, for k = 1,r , ν= 0,1, xk ∈ [0,Tk ), ρ ∈Π
±
δ

, |ρ|→∞,

Φ
(ν)
kk

(xk ,ρ) =
1

(±iρ)1−ν(1∓hk1)
exp(±i (ρxk +Ek (xk )))[1], (7)

Mk (ρ) =
[1]

(±iρ)(1∓hk1)
, k = 1,r . (8)

Denote M 1
k j

(ρ) :=Φk j (0,ρ), M 0
k j

(ρ) :=Φ
′
k j

(0,ρ)− (iρh j 1+h j 0)Φk j (0,ρ). Then

Φk j (x j ,ρ)= M 0
k j (ρ)S j (x j ,ρ)+M 1

k j (ρ)ϕ j (x j ,ρ), x j ∈ [0,T j ], j = 0,r , k = 1,r . (9)

In particular, M 0
kk

(ρ) = 1, M 1
kk

(ρ)= Mk (ρ), and M 0
k j

(ρ) = 0 for j = 1,r \ k . Substituting (9) into

(2) and (4) we obtain a linear algebraic system sk with respect to Mν
k j

(ρ), ν= 0,1, j = 0,r . The

determinant ∆0(ρ) of sk does not depend on k and has the form

∆0(ρ) = d (ρ)
r

∏

j=1

(α jϕ j (T j ,ρ))+d0(ρ)
r

∑

i=1

(βiϕ
′
i (Ti ,ρ))

r
∏

j=1, j 6=i

(α jϕ j (T j ,ρ)), (10)



RECOVERING DIFFERENTIAL PENCILS ON GRAPHS WITH A CYCLE FROM SPECTRA 199

where

d (ρ) = α0ϕ0(T0,ρ)+β0S ′
0(T0,ρ)− (1+α0β0), d0(ρ) =α0S0(T0,ρ). (11)

The function ∆0(ρ) is entire in ρ of exponential type, and its zeros coincide with the eigen-

values of the boundary value problem B0. Solving the algebraic system sk we get by Cramer’s

rule: M s
k j

(ρ) =∆
s
k j

(ρ)/∆0(ρ), s = 0,1, j = 0,r , where the determinant ∆s
k j

(ρ) is obtained from

∆0(ρ) by the replacement of the column which corresponds to M s
k j

(ρ) with the column of free

terms. In particular,

Mk (ρ)=−
∆k (ρ)

∆0(ρ)
, k = 1,r , (12)

where

∆k (ρ) = d (ρ)(αk Sk (Tk ,ρ))
r

∏

j=1, j 6=k

(α jϕ j (T j ,ρ))+d0(ρ)
(

βk S ′
k(Tk ,ρ)

r
∏

j=1, j 6=k

(α jϕ j (T j ,ρ))

+(αk Sk (Tk ,ρ))
r

∑

i=1, i 6=k

(βiϕ
′
i (Ti ,ρ))

r
∏

j=1, j 6=i ,k

(α jϕ j (T j ,ρ))
)

, k = 1,2. (13)

We note that ∆k (ρ) in (13) is obtained from ∆0(ρ) by the replacement of ϕ(ν)
k

(Tk ,ρ), ν = 0,1,

with S(ν)
k

(Tk ,ρ), ν = 0,1. The function ∆k (ρ) is entire in ρ of exponential type, and its zeros

coincide with the eigenvalues of the boundary value problem Bk . The functions ∆k (ρ), k =
0,r , are called the characteristic functions for the boundary value problems Bk .

3. Solution of inverse problems 1-2

Fix k = 1,r , and consider the following auxiliary inverse problem on the edge ek , which is

called IP(k).

IP(k). Given the Weyl function Mk (ρ), construct qk (xk ), pk (xk ), xk ∈ [0,Tk ], hk1, hk0.

In I P(k) we construct the potential only on the edge ek , but the Weyl function brings a

global information from the whole graph. In other words, I P(k) is not a local inverse problem

related to the edge ek . Let us prove the uniqueness theorem for the solution of I P(k).

Theorem 3.3. Fix k = 1,r . If Mk (ρ) = M̃k (ρ), then qk (xk ) = q̃k(xk ), pk (xk ) = p̃k (xk ) a.e. on

[0,Tk ], and hkν = h̃kν, ν = 0,1. Thus, the specification of the Weyl function Mk (ρ) uniquely

determines the potential (qk , pk ) on the edge ek , and the coefficients hk1,hk0.

Proof. We introduce the functions

P k
1s (xk ,ρ)= (−1)s−1

(

ϕk (xk ,ρ)Φ̃(2−s)
kk

(xk ,ρ)− ϕ̃(2−s)
k

(xk ,ρ)Φkk (xk ,ρ)
)

, s = 1,2. (14)
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By direct calculations we get

ϕk (xk ,ρ)= P k
11(xk ,ρ)ϕ̃k (xk ,ρ)+P k

12(xk ,ρ)ϕ̃′
k (xk ,ρ). (15)

Denote Ωk (xk ) = cos Êk (xk ), where Êk (xk ) = Ek (xk )− Ẽk (xk ). Since Mk (ρ) = M̃k (ρ), it follows

from (8) that

hk1 = h̃k1 . (16)

Taking (6), (7), (14) and (16) into account we obtain

P k
1s(xk ,ρ)= δ1sΩk (xk )+O(ρ−1), ρ ∈Π

±
δ

, |ρ|→∞, xk ∈ (0,Tk ), s = 1,2. (17)

According to (5) and (14),

P k
1s(xk ,ρ) = (−1)s−1

((

ϕk (xk ,ρ)S̃(2−s)
k

(xk ,ρ)−Sk(xk ,ρ)ϕ̃(2−s)
k

(xk ,ρ)
)

+(M̃k (ρ)−Mk (ρ))ϕk (xk ,ρ)ϕ̃(2−s)
k

(xk ,ρ)
)

.

Since Mk (ρ) = M̃k (ρ), it follows that for each fixed xk , the functions P k
1s (xk ,ρ) are entire in ρ

of exponential type. Together with (17) this yields P k
11(xk ,ρ) ≡Ωk (xk ), P k

12(xk ,ρ) ≡ 0. Substi-

tuting these relations into (14) and (15) we get

(ϕ̃k (xk ,ρ))−1ϕk (xk ,ρ) = (Φ̃kk (xk ,ρ))−1
Φkk (xk ,ρ),

(18)
ϕk (xk ,ρ) = Ωk (xk )ϕ̃k (xk ,ρ),

for all xk and ρ. Using the asymptotical formulae (6) and (7) we obtain for |ρ|→∞, ρ ∈Π
±
δ

,

(ϕ̃k (xk ,ρ))−1ϕk (xk ,ρ)= exp(∓Êk (xk ))[1], (Φ̃kk (xk ,ρ))−1
Φkk (xk ,ρ)= exp(±Êk (xk ))[1].

From this and from (18) we infer exp(2Êk (xk )) ≡ 1. Since Êk (0) = 0, it follows that Êk (xk ) ≡ 0,

i.e. P11(xk ,ρ) ≡ 1, ϕk (xk ,ρ) ≡ ϕ̃k (xk ,ρ), Φkk (xk ,ρ) ≡ Φ̃kk (xk ,ρ), and consequently, qk (xk ) =
q̃k (xk ), pk (xk )= p̃k (xk ) a.e. on [0,Tk ], and hk0 = h̃k0. ���

Using the method of spectral mappings [5] for equation (1) on the edge ek one can get a

constructive procedure for the solution of the local inverse problem I P(k) of recovering the

coefficients qk (xk ), pk (xk ) and hks (for details see [5], [15]).

Let the spectra Λk , k = 0,r , be given. The characteristic functions ∆k (ρ), k = 0,r , are

entire in ρ of exponential type. By Hadamard’s factorization theorem,

∆k (ρ) = Bk exp(Akρ)δk (ρ), k = 0,r , (19)

δk (ρ) = ρξk
∏

n∈Λ′
k

(

1−
ρ

ρkn

)

exp(ρ/ρkn), k = 0,r , (20)
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where Λ
′
k
= {n : ρkn 6= 0}, and ξk ≥ 0 is the multiplicity of the zero eigenvalue. In view of (12),

we deduce

Mk (ρ)=−bk exp(akρ)
δk (ρ)

δ0(ρ)
, k = 1,r , (21)

where bk = Bk /B0, ak = Ak − A0. Using (8) we calculate for ρ ∈Π
±
δ

, |ρ|→∞:

bk exp(akρ)=
δ0(ρ)[1]

δk (ρ)(∓iρ)(1∓hk1)
,

and consequently,

ak = lim
|ρ|→∞

1

ρ
ln

(δ0(ρ)

δk (ρ)

)

, ρ ∈Π
±
δ , k = 1,r . (22)

Here and below we agree that if z = |z|e iξ, ξ ∈ [0,2π), then ln z = ln |z|+iξ, and
p

z := |z|1/2e iξ/2.

Denote

µ±
k = lim

|ρ|→∞

δ0(ρ)exp(−akρ)

δk (ρ)(∓iρ)
, ρ ∈Π

±
δ , k = 1,r .

Then bk (1∓hk1)=µ±
k

, hence

bk =
µ−

k
+µ+

k

2
, hk1 =

µ−
k
−µ+

k

µ−
k
+µ+

k

, k = 1,r . (23)

Thus, we have uniquely constructed Mk (ρ) and hk1 by (20)−(23). Solving auxiliary inverse

problems I P(k) for each k = 1,r , we find qk (xk ), pk (xk ),hk1 and hk0 for k = 1,r . In particular,

this means that the functions ϕ(ν)
k

(Tk ,ρ) and S(ν)
k

(Tk ,ρ), k = 1,r , ν = 0,1, are known. Denote

χ := exp(2iω0T0). Using (19)−(20), one can uniquely construct the functions d0(ρ), d (ρ) and

∆0(ρ) by the following algorithm (see [18] for details).

Algorithm 1.

(1) Calculate Ak , k = 0,1, by

Ak =−κ±
k ∓ i

r
∑

j=0

T j , κ±
k := lim

|ρ|→∞

lnδk (ρ)

ρ
, ρ ∈Π

±
δ ,

where δk (ρ) is constructed by (20).

(2) Find σ±
k

, k = 0,1, via

σ±
0 =

1

2r+1

r
∏

j=1

(1∓h j 1)
r

∏

j=1

exp(∓iω j T j ) lim
|ρ|→∞

exp(κ±
0 ρ)

δ0(ρ)
, ρ ∈Π

±
δ

,

σ±
1 =

1

2r+1

r
∏

j=2

(1∓h j 1)
r

∏

j=1

exp(∓iω j T j ) lim
|ρ|→∞

exp(κ±
1 ρ)

δ1(ρ)(∓iρ)
, ρ ∈Π

±
δ

.

(3) Construct ∆±
k

(ρ) =σ±
k

exp(Akρ)δk (ρ), k = 0,1.
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(4) Calculate

d±
0 (ρ)=

1

β1

( r
∏

j=2

(α jϕ j (T j ,ρ))
)−1(

ϕ1(T1,ρ)∆±
1 (ρ)−S1(T1,ρ)∆±

0 (ρ)
)

.

(5) Find

z±
r =

α0

2
lim

|ρ|→∞

exp(∓iρT0)

d±
0 (ρ)(∓iρ)

, ρ ∈Π
±
δ

.

(6) Calculate χ= (z+
r σ

+
k

)/(z−
r σ

−
k

), k = 0,1.

(7) Construct ∆∗
k

(ρ) = z±
r χ

∓1/2
∆
±
k

(ρ), k = 0,1.

(8) Find F∗
s (ρ), s = 1,2:

F∗
1 (ρ) =

1

α1

(

∆
∗
0 (ρ)S ′

1(T1,ρ)−∆
∗
1 (ρ)ϕ′

1(T1,ρ)
)

,

F∗
2 (ρ) =

1

β1

(

ϕ1(T1,ρ)∆∗
1 (ρ)−S1(T1,ρ)∆∗

0 (ρ)
)

.

(9) Calculate d∗
0 (ρ) and d∗(ρ) by

d∗
0 (ρ) =

( r
∏

j=2

(α jϕ j (T j ,ρ))
)−1

F∗
2 (ρ),

d∗(ρ) =
( r
∏

j=2

(α jϕ j (T j ,ρ))
)−1

×
(

F∗
1 (ρ)−d∗

0 (ρ)
r

∑

i=2

(βiϕ
′
i (Ti ,ρ))

r
∏

j=2, j 6=i

(α jϕ j (T j ,ρ))
)

.

(10) Find ε:

ε=
1

1+α0β0
lim

|ρ|→∞

( z−
0

p
χ

2
exp(iρT0)+

z+
0

2
p
χ

exp(−iρT0)−d∗(ρ)
)

.

(11) Construct d (ρ)= εd∗(ρ), d0(ρ)= εd∗
0 (ρ), ∆0(ρ)= ε∆∗

0 (ρ).

Let ∆−1(ρ) be the characteristic function of the boundary value problem B−1. Similarly

to (10) we calculate

∆−1(ρ) = d−1(ρ)
r

∏

j=1

(α jϕ j (T j ,ρ))+d0(ρ)
α−1

α0

r
∑

i=1

(βiϕ
′
i (Ti ,ρ))

r
∏

j=1, j 6=i

(α jϕ j (T j ,ρ)), (24)

where

d−1(ρ)=α−1ϕ0(T0,ρ)+β0S ′
0(T0,ρ)− (1+α−1β0). (25)

Since exp(iω0T0) and h01 are already found, it follows that the function∆−1(ρ) can be uniquely

reconstructed from its zeros by the following algorithm.



RECOVERING DIFFERENTIAL PENCILS ON GRAPHS WITH A CYCLE FROM SPECTRA 203

Algorithm 2.

(1) Calculate A−1 by

A−1 = −κ±
−1 ∓ i

r
∑

j=0

T j , κ±
−1 := lim

|ρ|→∞

lnδ−1(ρ)

ρ
, ρ ∈Π

±
δ ,

δ−1(ρ) = ρξ−1
∏

n∈Λ′
−1

(

1−
ρ

ρ−1,n

)

exp(ρ/ρ−1,n),

where Λ′
−1 = {n : ρ−1,n 6= 0}, and ξ−1 ≥ 0 is the multiplicity of the zero eigenvalue.

(2) Find σ±
−1 via

σ±
−1 =

1

2r+1

r
∏

j=1

(1∓h j 1)
r

∏

j=1

exp(∓iω j T j ) lim
|ρ|→∞

exp(κ±
−1ρ)

δ−1(ρ)
, ρ ∈Π

±
δ

,

(3) Calculate B−1 =σ±
−1z±

r,−1 exp(∓iω0T0), where z±
r,−1 is obtained from z±

r by the replacement

of α0 with α−1.

(4) Construct ∆−1(ρ)= B−1 exp(A−1ρ)δ−1(ρ).

Using (24) we find the function d−1(ρ). Denote

µ0(ρ) :=ϕ0(T0,ρ), µ1(ρ) := S0(T0,ρ).

Taking (11) and (25) into account, one can calculate µ0(ρ) and µ1(ρ) by the formulae

µ0(ρ)=
d (ρ)−d−1(ρ)

α0 −α−1
+β0, µ1(ρ) =

d0(ρ)

α0
. (26)

The functions µ0(ρ) and µ1(ρ) are the characteristic functions for the boundary value prob-

lems

−y ′′
0 (x0)+(ρ2+ρp0(x0)+q0(x0))y0(x0) = 0, x0 ∈ (0,T0), y ′

0(0)−(iρh01+h00)y0(0) = y(T0)= 0,

and

−y ′′
0 (x0)+ (ρ2 +ρp0(x0)+q0(x0))y0(x0) = 0, x0 ∈ (0,T0), y0(0) = y(T0) = 0,

respectively. It was shown in [16] that the specification of µ0(ρ) and µ1(ρ) uniquely deter-

mines the potential (q0, p0) on the edge e0, and the coefficients of boundary conditions. More-

over, a constructive procedure for this inverse problem is given in [16]. Thus, we have ob-

tained a procedure for the solution of Inverse problem 1 and proved its uniqueness. In other

words, Theorem 1 is proved, and the solution of Inverse problem 1 can be found by the fol-

lowing algorithm.
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Algorithm 3. Let Λk , k =−1,r be given.

(1) Construct δk (ρ), k =−1,r by (20).

(2) Calculate Mk (ρ) and hk1, k = 1,r via (21)−(23).

(3) For each fixed k = 1,r , solve the inverse problem I P(k) and find the functions qk (xk ),

pk (xk ), xk ∈ (0,Tk ) on the edge ek , and the coefficient hk0.

(4) For each fixed k = 1,r , calculate the functions ϕ(ν)
k

(Tk ,ρ), S(ν)
k

(Tk ,ρ), ν= 0,1.

(5) Construct the functions d (ρ), d0(ρ) and ∆0(ρ) by Algorithm 1.

(6) Find the function ∆−1(ρ) by Algorithm 2.

(7) Calculate the function d−1(ρ) using (24).

(8) Construct the functions µ0(ρ) and µ1(ρ) via (26).

(9) Find q0(x0), p0(x0), x0 ∈ (0,Tk ) and h00, h01 from µ1(ρ) and µ2(ρ), using results from [16] .

By similar arguments one can solve Inverse problem 2. Indeed, let ∆r+1(ρ) be the char-

acteristic function of the boundary value problem Br+1. Then

∆r+1(ρ)= dr+1(ρ)
r

∏

j=1

(α jϕ j (T j ,ρ))+d0(ρ)
r

∑

i=1

(βiϕ
′
i (Ti ,ρ))

r
∏

j=1, j 6=i

(α jϕ j (T j ,ρ)), (27)

where

dr+1(ρ)=α0ϕ0(T0,ρ)+β−1S ′
0(T0,ρ)− (1+α0β−1). (28)

The function ∆r+1(ρ) can be uniquely reconstructed from its zeros by the following algorithm.

Algorithm 4.

(1) Calculate Ar+1 by

Ar+1 =−κ±
r+1 ∓ i

r
∑

j=0

T j , κ±
r+1 := lim

|ρ|→∞

lnδr+1(ρ)

ρ
, ρ ∈Π

±
δ

,

δr+1(ρ)= ρξr+1
∏

n∈Λ′
r+1

(

1−
ρ

ρr+1,n

)

exp(ρ/ρr+1,n),

where Λ′
r+1 = {n : ρr+1,n 6= 0}, and ξr+1 ≥ 0 is the multiplicity of the zero eigenvalue.

(2) Find σ±
r+1 via

σ±
r+1 =

1

2r+1

r
∏

j=1

(1∓h j 1)
r

∏

j=1

exp(∓iω j T j ) lim
|ρ|→∞

exp(κ±
r+1ρ)

δr+1(ρ)
, ρ ∈Π

±
δ ,

(3) Calculate Br+1 = σ±
r+1z±

r,r+1 exp(∓iω0T0), where z±
r,r+1 is obtained from z±

r by the replace-

ment of β0 with β−1.

(4) Construct ∆r+1(ρ)= Br+1 exp(Ar+1ρ)δr+1(ρ).
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Using (27) we find the function dr+1(ρ). Denote µ2(ρ) := S ′
0(T0,ρ). Taking (11) and (28)

into account, one can calculate µ1(ρ) and µ2(ρ) by the formulae

µ2(ρ)=
d (ρ)−dr+1(ρ)

β0 −β−1
+α0, µ1(ρ)=

d0(ρ)

α0
. (29)

The function µ2(ρ) is the characteristic functions for the boundary value problems

−y ′′
0 (x0)+ (ρ2 +ρp0(x0)+q0(x0))y0(x0) = 0, x0 ∈ (0,T0), y0(0) = y ′(T0)= 0.

It was shown in [16] that the specification of µ1(ρ) and µ2(ρ) uniquely determines the poten-

tial (q0, p0) on the edge e0, and the coefficients of boundary conditions. Moreover, a construc-

tive procedure for this inverse problem is given in [16]. Thus, we have obtained a procedure

for the solution of Inverse problem 2 and proved its uniqueness. In other words, Theorem 2 is

proved, and the solution of Inverse problem 2 can be found by the following algorithm.

Algorithm 5. Let Λk , k = 0,r +1 be given.

(1) Construct δk (ρ), k = 0,r +1 by (20).

(2) Calculate Mk (ρ) and hk1, k = 1,r via (21)-(23).

(3) For each fixed k = 1,r , solve the inverse problem I P(k) and find the functions qk (xk ),

pk (xk ), xk ∈ (0,Tk ) on the edge ek , and the coefficient hk0.

(4) For each fixed k = 1,r , calculate the functions ϕ(ν)
k

(Tk ,ρ), S(ν)
k

(Tk ,ρ), ν= 0,1.

(5) Construct the functions d (ρ), d0(ρ) and ∆0(ρ) by Algorithm 1.

(6) Find the function ∆r+1(ρ) by Algorithm 4.

(7) Calculate the function dr+1(ρ) using (27).

(8) Construct the functions µ1(ρ) and µ2(ρ) via (29).

(9) Find q0(x0), p0(x0), x0 ∈ (0,Tk ) and h00, h01 from µ1(ρ) and µ2(ρ), using results from [16] .

Denote by B the boundary value problem on the edge e0 for equation (1) with j = 0,

under the conditions y0(0) = α0 y0(T0), U0(y0) = β0 y ′
0(T0). Let Ω = {ωn } be the Ω– sequence

for B (see [16] ).

Inverse problem 3. Given Λk , k = 0,r , and Ω, construct the potential (q, p) on T and the

coefficients h1, h0.

By similar arguments as above one can prove the uniqueness theorem for Inverse prob-

lem 3, and provide an algorithm for its solution (see [18] for details).
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