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DEDEKIND ZETA FUNCTIONS OF CERTAIN REAL QUADRATIC

FIELDS

RONGZHENG JIAO AND HONGWEN LU

Abstract. Using analytic and modular transformation methods, we represent the value of the

product of two Dedekind zeta functions of certain real quadratic number fields at −3 by Dedekind

sums of high rank in this paper.

1. Introduction and Results

The values of Dedekind zeta function of a number field K at rational integers are
closely related with the algebraic character of the number field K itself. To represent
these values as clearly as possible is one of the important tasks of algebraic number
theory. In history many mathematicians had some work on this project. Hasse (see
ref.[1]) expressed Dedekind zeta function of a number field as product of Riemann zeta
function and usual Dirichlet L-functions. Siegel (see ref.[2]) got some properties of explicit
values of Dekind zeta functions of quadratic number fields at negative integers, and a
particular interesting case is at −1, using modular transformation method. Zagier (see
ref.[3]) also obtained another expression of the values of Dedekind zeta functions of real
quadratic fields at negative integers using Kronecker limit formula. Shintani (see ref.[4,
5]) using astonishing linear programming method expressed Dedekind zeta functions as
a sum of Dirichlet series of some real cones.

In reference [6], we represented the value of the product of two Dedekind zeta functions
of certain real quadratic number fields at −1 by Dedekind sums of high rank. Using the
reciprocity law of Dedekind sums (see ref.[7]) and software of Mathematica 4.0, we got

Theorem 1. If the class number of the real quadratic number field Q(
√

q) is 1, with
prime q = 4n2 + 1. Then

ζQ
√

5q(−1) =
1

45
(26n3 − 41n± 9), ifn ≡ ±2 (mod 5).
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The main result of this paper is the following Theorem 2.

Theorem 2. Let real quadratic fields K1 = Q(
√

p), K2 = Q(
√

q), where p ≡ q ≡ 1
(mod 4) be different primes. Let the class number of K2 be 1, and write c = 1−q

4 and
K3 = Q(

√
pq), then we have

14400jδK2ζK1(−3)ζK3(−3)

=
3q2p6

35840
(
64q3U3

3T
− 16q2 U

T
)(p − 1

p7
)B8

+
1

8!

4
∑

m=0

(−1)m+1

(

8

m

)

Sm,8−m(
T − U

2
,
U

p
) · (9qU2(m − 1)(m − 7) − 540 + 45T 2)

· 1

T 3−m

[ 4−m
2 ]
∑

f=0

(

4 − m

2f

)

25−m−2f (−U2q)f

+
90

8!

3
∑

m=0

(−1)m+1

(

8

m

)

Sm,8−m(
T − U

2
,
U

p
)
4 − m

T 3−m

[ 5−m
2 ]
∑

f=1

(

4 − m

2f − 1

)

26−m−2f(−U2q)f

+
T

576

(

S4,4(
T − U

2
,
U

p
) −

∑

l(mod p)

χ(l2 + l + c)S4,4(
T − U

2
− lU, pU)

)

·(−81qU2 − 540 + 45T 2)

+
p6

2 · 8!

∑

l(mod p)

χ(l2 + l + c)

3
∑

m=0

(−1)m+1

(

8

m

)

·
(

Sm,8−m(
T − U

2 − lU
, pU) + Sm,8−m(

T + U

2
+ lU, pU)

)

· 1

T 3−m

[ 4−m
2 ]
∑

f=0

(

4 − m

2f

)

25−m−2f (−U2q)f · (9qU2(m − 1)(m − 7) − 540 + 45T 2)

+
90p6

2 · 8!

∑

l(mod p)

χ(l2 + l + c)

3
∑

l=0

(−1)m+1

(

8

m

)

(4 − m)
(

Sm,8−m(
T − U

2
− lU, pU)

+Sm,8−m(
T + U

2
+ lU, pU)

) 1

T 3−m

[ 5−m
2 ]
∑

f=0

(

4 − m

2f − 1

)

26−m−2f(−U2q)f

where Sk,l(u, m) =
∑

v (mod m) Bk({ v
m})Bl({uv

m }) be Dedekind sum; and Bn(x) be the
usual Bernoulli polynomial, with [x] and {x} denote the integral part and fractional part
of x respectively; δK2 = log ǫ+

log ǫ , with ǫ and ǫ+ denote the fundamental and totally positive

fundamental unit of K2 respectively; χ be the Kronecker symbol mod p; ǫ2j
+ =

T+U
√

q

2
with positive integer j such that p | U . From the define equation of Dedekind sums one
can see that Sk,l(u1, m) = Sk,l(u2, m), if u1 ≡ u2 (mod m); Sk,l(u, m) = Sl,k(u, m), if
uu ≡ 1 (mod m).
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Of course Theorem 2 is a effective computing formulae in the case of the the conditions

in Theorem 1.

2. Main Lemma

Let K = Q(
√

∆) be a real quadratic number field with basic discriminant ∆, and

let A = [a, −b+
√

∆
2 ] be a integral ideal of K. Set A∗ =

√
∆A, B = [a, b+

√
∆

2 ], where

a, b, c be rational integers with 0 ≤| a |≤ b, ∆ = b2 − 4ac and g.c.d(a, b, c) = 1. Let

FA(Z) = aZ2 − bZ + c and FB(Z) = aZ2 + bZ + c. Denote ω = b+
√

∆
2a , ω′ = b−

√
∆

2a ,

ω = −b+
√

∆
2a , ω′ = −b−

√
∆

2a . let ǫ+ be a totally positive fundamental unit of the number

field K, For positive rational integer j, set

ǫj
+ =

Tj + Uj

√
∆

2
, ρj =

ǫ−j
+ + iǫj

+

ǫ−j
+ − iǫj

+

,

ZA,j =
b

2a
+

√
∆

2a
ρj , ZB,j = − b

2a
+

√
∆

2a
ρj ,

∼
ZA,j=

b

2a
+

√
∆

2a
ρj ,

∼
ZB,j= − b

2a
+

√
∆

2a
ρj .

Let Γ denote the upper half circle with center b
2a and radius

√
∆

2a , and ΓA,j denote the

arc of Γ located between ZA,j and
∼
ZA,j .

We write Z = X + iY , where X and Y denote real and imaginary part of Z respec-

tively. Let χ be a real primitive Dirichlet character of mod k. Define

L(s, χ, A) =
∑

λ>>0

λ∈A/ǫ+

χ(N((λ))/N(A))

(N((λ))/N(A))s
, Re(s) > 1, (1)

where N denote the norm map of K/Q. Obviously, such defined L(s, χ, A) is a ideal
class function of A.

We got the following Lemma 1 in ref. [8]:

Lemma 1. With notations above, and let s be complex variable with Re(s) > 1, then

we have

j(L(s, χ, A) + χ(−1)L(s, χ, A∗)) = −Γ(s)∆− s−1
2

2Γ( s
2 )2

∫

ΓA,j

E(s, Z, χ, A)

FA(Z)
dZ, (2)

where the Eisenstein series

E(s, Z, χ, A) =

+∞
∑

(m,n)6=(0,0)

m,n=−∞

χ(am2 + bmn + cn2)Y s

| m + nZ |2s
.
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We got the Fourier expansion of E(s, Z, A, χ) in ref. [7], i.e.

E(s, Z, χ, A) = 2Y sχ(a)ζ(2s)
∏

p|k
(1 − p−2s) +

2
√

πΓ(s − 1
2 )Y 1−s

kΓ(s)

×
+∞
∑

n=1

n1−2s
∑

m mod k

χ(am2 + bmn + cn2) +
8πsk−s− 1

2 Y
1
2

Γ(s)

+∞
∑

u=1

us− 1
2 Ks− 1

2
(
2πuY

k
)

×
∑

1≤n|u
n1−2s

∑

m mod k

χ(am2 + bmn + cn2) cos
2πu(m

n + X)

k
, (3)

where Ks(z) be Bessel function, i.e.

Ks(z) =
1

2

∫ +∞

0

exp− 1
2 z(t+ 1

t
) ts−1 dt, z > 0.

It is easy to know that the Eisenstein series E(s, Z, A, χ) have the analytic continua-
tions to the whole complex plane by (3). It is well known that

L(∫ , χ,A) and Γ(s) could also have the analytic continuations to the whole complex
plane.

Taking the limit of both sides of (2) when s → −3, substituting (3) into (2), and
then write the R.H.S of (2) as three summands, i.e. I1 + I2 + I3, and let’s compute each
summand individually.

Firstly, by the well-known functional equation of ζ(s) and lims→−3 Γ( s
2 )2 = 16π

9 we
get

lim
s→−3

I1 = −135χ(a)∆2ζ(7)

(2π)7
(1 − p6)

∫

ΓA,j

Y −3

FA(Z)
dZ. (4)

It is not difficult to get Y dFA(Z)
dZ = −iFA(Z) for Z ∈ ΓA,j. Hence substituting it in (4)

we get

lim
s→−3

I1 = i
135χ(a)∆2ζ(7)

(2π)7

∏

p|k
(p6 − 1)(2aF−2

A (Z) +
∆

3
F−3

A (Z))
∣

∣

∣

∼

ZA,j

ZA,j

(5)

Secondly, let’s calculate lims→−3 I2. It is easy to get
∑+∞

n=1 n1−2s
∑

m mod k χ(am2 +
bmn+cn2) =

∑

1≤m,n≤k χ(am2+bmn+cn2)ζ(2s−1, n/k)k1−2s, where ζ(⋆, ⋆) be the Hur-

witz zeta function. We know that ζ(−7, n/k) = − 1
8B8(n/k) and Γ(−7/2) = 16

√
π/105,

so through a not difficult computation, we have

lim
s→−3

I2 =
3∆2k6

35840a4

∑

1≤m,n≤k

χ(am2 + bmn + cn2)B8(
n

k
)(

64∆3U3
2j

3T2j
− 16∆2 U2j

T2j
) (6)

Finally, we deal with lims→−3 I3. In ref.[9], we get Kn+ 1
2
(z) =

√

pi
2z exp(−z)

∑n
l=0

(n+l)!
l!(n−l)! (2z)−l. So applying the similar integral techniques as in ref.[6] though, through a



DEDEKIND ZETA FUNCTIONS OF CERTAIN REAL QUADRATIC FIELDS 371

long but not tough calculation we have:

lim
s→−3

I3 = −9∆2k3

16π4

+∞
∑

u=1

u−4
∑

1≤n|u
n7

∑

m (mod k)

χ(am2 + bmn + cn2)

·
(( k

2πiuFA(Z)
+

5k2F ′
A(Z)

4π2u2F 2
A(Z)

+
30ak2i

8π3u3F 2
A(Z)

+
5∆k3i

8π3u3F 3
A(Z)

)

· exp
(2πiu

k
(
m

n
+ Z)

)∣

∣

∣

∼

ZA,j

ZA,j

+
( k

2πiuFB(Z)
+

5k2F ′
B(Z)

4π2u2F 2
B(Z)

+
30ak2i

8π3u3F 2
B(Z)

+
5∆k3i

8π3u3F 3
B(Z)

)

· exp
(2πiu

k
(−m

n
+ Z)

)∣

∣

∣

∼

ZB,j

ZB,j

)

(7)

By (2), (3), (5), (6), and (7) we have:

Main Lemma. Notations as explained above,

lim
s→−3

j(L(∫ , χ,A) + χ(−∞)L(∫ , χ,A∗))

= i
135χ(a)∆2ζ(7)

(2π)7

∏

p|k
(p6 − 1)(2aF−2

A (Z) +
∆

3
F−3

A (Z))
∣

∣

∣

∼

ZA,j

ZA,j

+
3∆2k6

35840a4

∑

1≤m,n≤k

χ(am2 + bmn + cn2)B8(
n

k
)(

64∆3U3
2j

3T2j
− 16∆2 U2j

T2j
)

−9∆2k3

16π4

+∞
∑

u=1

u−4
∑

1≤n|u
n7

∑

m (mod k)

χ(am2 + bmn + cn2)

·
(( k

2πiuFA(Z)
+

5k2F ′
A(Z)

4π2u2F 2
A(Z)

+
30ak2i

8π3u3F 2
A(Z)

+
5∆k3i

8π3u3F 3
A(Z)

)

· exp(
2πiu

k
(
m

n
+ Z))

∣

∣

∣

∼

ZA,j

ZA,j

+
( k

2πiuFB(Z)
+

5k2F ′
B(Z)

4π2u2F 2
B(Z)

+
30ak2i

8π3u3F 2
B(Z)

+
5∆k3i

8π3u3F 3
B(Z)

)

· exp(
2πiu

k
(−m

n
+ Z))

∣

∣

∣

∼

ZB,j

ZB,j

)

(8)

3. Proof of Theorem 2

L(s, χ, A) and χ as in the last section. We define L(s, χ) =
∑

A L(s, χ, A), where
A runs through representative set of the narrow ideal class group of the real quadratic
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number field K = Q(
√

∆) with basic discriminant ∆. Obviously, L(s, χ) is analytic for

Re(s) > 1, we also proved

Theorem 3. Symbols as explained above, we have

L(s, χ)L(s, χχ∆) = L(s, χ), (9)

where χ∆ is the Kronecker symbol (∆
⋆ ), and L(s, χ) together with L(s, χχ∆) is the usual

Dirichlet L-function.

To prove Theorem 2, we need to apply Theorem 3 to the Main Lemma.

In the Main Lemma, we may assume k to be a prime p with p ≡ 1(mod4) and

g.c.d(p, ∆) = 1, and take an integral ideal A described in the beginning of the second

section satisfying a = b = 1, c = 1−∆
4 . If the class number of the real quadratic number

field K is 1, and χ be a real primitive Dirichlet character of module p then using the

well-known fact that ζ(s)L(s, χ∆) = ζQ(
√

∆)(s) and ζ(s)L(s, χχ∆) = ζQ(
√

p∆)(s) with

ζ(−3) = 1/120, we can easily get as s → −3

L.H.S of (2) = 14400jδKζK(−3)ζQ(
√

p∆)(−3) (10)

To calculate the R.H.S of (2), we set

Qm(z) =
1

2
ζ(2m + 1) +

+∞
∑

n=1

σ2m+1(n)

n2m+1
exp(2πinz), Im(z) > 0, (11)

Using standard summation techniques in the R.H.S of (2), we have

lim
s→−3

I1+I3 =
9∆2p3

(2πi)7

(

1

FA(Z)
[p−1Q′′

3(pZ) + p
∑

m(modp)

χ(m2 + m + c)Q′′
3(

m + Z

p
)]
∣

∣

∣

∼

ZA,j

ZA,j

−5F ′
A(Z)

F 2
A(Z)

[p−2Q′
3(pZ) + p2

∑

m(mod p)

χ(m2 + m + c)Q′
3(

m + Z

p
)]
∣

∣

∣

∼

ZA,j

ZA,j

+
30

F 2
A(Z)

[p−3Q3(pZ) + p3
∑

m(mod p)

χ(m2 + m + c)Q3(
m + Z

p
)]
∣

∣

∣

∼

ZA,j

ZA,j

+
5∆

F 3
A(Z)

[p−3Q3(pZ) + p3
∑

m(mod p)

χ(m2 + m + c)Q3(
m + Z

p
)]
∣

∣

∣

∼

ZA,j

ZA,j
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+
1

FB(Z)
[p−1Q′′

3(pZ) + p
∑

m(mod p)

χ(m2 + m + c)Q′′
3(

m + Z

p
)]
∣

∣

∣

∼

ZB,j

ZB,j

−5F ′
B(Z)

F 2
B(Z)

[p−2Q′
3(pZ) + p2

∑

m(mod p)

χ(m2 + m + c)Q′
3(

m + Z

p
)]
∣

∣

∣

∼

ZB,j

ZB,j

+
30

F 2
B(Z)

[p−3Q3(pZ) + p3
∑

m(mod p)

χ(m2 + m + c)Q3(
m + Z

p
)]
∣

∣

∣

∼

ZB,j

ZB,j

+
5∆

F 3
B(Z)

[p−3Q3(pZ) + p3
∑

m(mod p)

χ(m2 + m + c)Q3(
m + Z

p
)]
∣

∣

∣

∼

ZB,j

ZB,j

)

(12)

To calculate the last equation above, we need some modular transformation formulae
for Q3(Z), Q′

3(Z), and Q′′
3(Z). Thanks for the work of Apostol (ref.[10]) and Carlitz

(ref.[11]).

Lemma 1. Qk(Z) as in (10), for M =

(

A B

C D

)

be an element in modular group,

with C > 0, we have

(CZ + D)2kQk(M < Z >) = Qk(Z)

+
(−1)k+1(2π)2k+1i

2(2k + 1)!

2k+2
∑

m=0

(

2k+2

m

)

(CZ+D)m−1Sm,2k+2−m(D, C), Im(Z)>0. (13)

For M as in the condition of Lemma 1, Fixing k = 3 and taking derivations of Z on
both sides of (13) we get

Q′
3(M <Z >) =

Q′
3(Z)

(CZ + D)4
− 6CQ3(Z)

(CZ + D)5

+
(2π)7i

2 · 8!

8
∑

m=0

(−1)m

(

8

m

)

(m − 7)C(CZ + D)m−6Sm,8−m(D, C), (14)

and

Q′′
3(M <Z >) =

Q′′
3(Z)

(CZ + D)2
− 10CQ′

3(Z)

(CZ + D)3
+

30C2Q3(Z)

(CZ + D)4

+
(2π)7i

2 · 8!

8
∑

m=0

(−1)m

(

8

m

)

(m−7)(m−6)C2(CZ+D)m−5Sm,8−m(D, C),(15)

It is easy to prove the following two lemmas:

Lemma 2. Let FA(Z), ω, and ω′ as explained in the beginning of Section 2. Matrix
M as in Lemma 1 above, in addition that ω and ω′ are fixed by M , then

(CZ + D)2FA(M < Z >) = FA(Z), Im(Z) > 0. (16)
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Lemma 3. Let FB(Z), ω, and ω′ as explained in the beginning of Section 2. Matrix

M as in Lemma 1 above, in addition that ω and ω′ are fixed by M , then

(CZ + D)2FB(M < Z >) = FB(Z), Im(Z) > 0. (17)

Finally, we have already found the modular matrix translate the variables in (12);

ǫ+ = T1+U1

√
∆

2 denote the fundamental and totally positive fundamental unit of K,

set ǫl
+ = Tl+Ul

√
∆

2 and matrix M =
(

T1+bU1

2 −cU1

aU1
T1−bU1

2

)

. For any integer l, set matrix

Ml = M l =
(

Tl+bUl

2 −cUl

aUl
Tl−bUl

2

)

.

Let’s choose an positive integer j such that p|Uj, then all the following matrixes are

in the modular group:

M2j , M
(p)
2j =

(

T2j+bU2j

2 −cpU2j

a
U2j

p
T2j−bU2j

2

)

, M
(p,m)
2j

(

T2j+bU2j

2 +maU2j − (am2+bm+c)
U2j

p

apU2j
T2j−bU2j

2 − maU2j

)

,

M2j =

(

T2j−bU2j

2 −cU2j

aU2j
T2j+bU2j

2

)

,

M
(p)

2j =

(

T2j−bU2j

2 −cpU2j

a
U2j

p
T2j+bU2j

2

)

, M
(p,m)

2j

(

T2j−bU2j

2 −maU2j − (am2+bm+c)
U2j

p

apU2j
T2j+bU2j

2 + maU2j

)

.

And it is not difficult to check that these matrixes transfer ZA,j, pZA,j,
m+ZA,j

p , ZB,j ,

pZB,j,
m+ZB,j

p to
∼
ZA,j, p

∼
ZA,j ,

m+
∼

ZA,j

p ,
∼
ZB,j , p

∼
ZB,j,

m+
∼

ZB,j

p respectively. And it is

also easy to check that these matrixes satisfy the conditions in Lemma 1, and Lemma 2

or Lemma 3. So by a long and tedious calculation,using corresponding modular transfor-

mation (13)-(17) in (12), and we feel at ease at the end, for the irrational part disappears.

Comparing (10) and (12), and the R.H.S of (2) equal I1 + I2 + I3, further more let the

fundamental discriminant ∆ be a prime q ≡ 1 (mod 4) we get the proof of Theorem 2.

At the end of this paper, we would add a remark, though the methods are a little

similar to Siegel’s [2], our start point is different from his, and the results obviously are

different from his.
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