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THE (a,d)-ASCENDING SUBGRAPH DECOMPOSITION

A. NAGARAJAN AND S. NAVANEETHA KRISHNAN*

Abstract. Let G be a graph of size q and a, n, d be positive integers for which % (2a+(n—1)d) <

q < (";1 )(2a + nd). Then G is said to have (a,d)- ascending subgraph decomposition into n
parts ((a,d) — ASD) if the edge set of G can be partitioned into n-non-empty sets generating
subgraphs Gi1, G2, G3, ..., G, without isolated vertices such that each G, is isomorphic to a
proper subgraph of G;41 for 1 < i < mn —1 and |E(G;)| = a + (4 — 1)d. In this paper, we find
(a,d) — ASD into n parts for W,,.

1. Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. A
wheel on p vertices is denoted by W),. A path of length ¢ is denoted by P,;,. Terms not
defined here are used in the sense of Harary [4]. Throughout this paper G C H means G
is a subgraph of H. Let G = (V, E) be a simple graph of order p and size ¢q. If G, Ga,
..., Gy, are edge disjoint subgraphs of G such that E(G) = E(G1)UE(G2)U---UE(G,),
then {G1,Ga,...,G,} is said to be a decomposition of G.

The concept of ASD was introduced by Alavi et al. [1]. The graph G of size ¢ where
(";rl) <qg< (";2), is said to have an ascending subgraph decomposition (ASD) if G
can be decomposed into n-subgraphs G1, Go, ..., G, without isolated vertices such that
each G; is isomorphic to a proper subgraph of G;41 for 1 <i <n —1 and |E(G;)| = i.

We generalize this concept into (a,d) — ASD as follows:

G is a simple graph of size ¢ and a, n, d are positive integers for which % (2a + (n —
1)d) < q < (251)(2a+nd). Then (a, d)-ascending subgraph decomposition ((a,d)—ASD)
of G is the edge disjoint decomposition of G into subgraphs G, Ga, ..., G, without
isolated vertices such that each G; is isomorphic to a proper subgraph of G;41 for 1 <
i<n-—1land|E(G;)|=a+ (i—1)d.

2. Main Results

Definition 2.1. Let G be a graph of size ¢ and a, n, d be positive integers for
which %(2a + (n — 1)d) < ¢ < (*1)(2a + nd). Then G is said to have (a,d)- ascending
subgraph decomposition into n parts ((a, d)—ASD) if the edge set of G can be partitioned
into n non-empty sets generating subgraphs Gi, G, ..., G, without isolated vertices
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such that each G; is isomorphic to a proper subgraph of G;41 for 1 < i < n —1 and
|E(G))| = a+ (i — 1)d.

Remark 2.2. From the above definition, the usual ASD of G coincides with (1,1) —
ASD of G.

Example 2.3. Consider the Graph G.

1% (%

A
Gy >vg
2

(% V.

U v s U
U Use UV,
Uy v, v, 0, 1,
Gl G2 GS
Figure 2.1.

Clearly {G1,G2,G3} is a (1,2) — ASD of G.

1
Theorem 2.4. Let G be a graph of size q, where g(2a+(n—1)d) <g< (%) (2a+

nd) for some positive integer n, such that G has (a,d) — ASD into n parts, then G has
an (a,d) — ASD into n parts G1, Ga, ..., Gy such that each G; has size a+ (i —1)d for

1
1<i<n-—1 and G, has size q¢ — (nT)(&er (n —2)d).
Proof. If ¢ = (g) [2a + (n — 1)d], then there is nothing to prove.

Now, suppse (%)[2a + (n — 1)d] < ¢ < (“41)[2a + nd]. Suppose G has H;, Ha, ...,
H, as (a,d) — ASD. If the size of H,_1 is a + (n — 2)d, then this decomposition has
the desired properties. Therefore assume that the size of H,,_; exceeds a + (n — 1)d.
The size of H; must exceed a. Select the edges ei1, e1a, ..., €1, from Hi, inorder to
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define Gy, a subgraph of G induced by the set of edges {e11,e12,...,€14}. Now let G
be a graph induced by the edges ez21, €22, ..., €3(q4q) from Hz so that G1 C G2. Since
H, is isomorphic to a subgraph Hj of Hs, we can choose edges es1, €32, ..., esq from
E(H3) — E(H}) so as to define Gs, a subgraph of G, induced by edges of E(H}) and
the edges es1, esa, ..., e3q. Then it is clear that |E(Gs)| = a + 2d and Gy C Gs.
Proceeding as before, we may define the graphs G, Ga, ..., Gx (3 < k < n —2) such
that |E(Gk)| = a+ (k — 1)d and Gx_1 C Gj. From the above construction, we observe
that each Gy (1 < k < n —2) is a subgraph of Hx. Now we construct Gg1 as follows:
Since Gy, is isomorphic to a sbugraph Hj, of Hy, we choose the edges eg1, exs, ..., €kd
from E(Hy) — E(H},) such that the subgraph G441 is induced by the edges of E(Hj)
and {eg1,€r2, ..., erqd}. Also note that |E(Gry1)| = a+ (k—1)d+d = a+ kd. Therefore
there exist graphs G1, Ga, ..., Gp—1 such that |[E(G;)|=a+ (i—1)dfor 1 <i<n-—1
and G; C Gi41 for 1 <4 < n —2. Now define GG,,, the subgraph of G induced by the

n—1
edges of E(G) — |J E(G;). Hence G has the required (a,d) — ASD into n parts namely
i=1

G1, G, ..., G,. _Clearly every graph does not posses (a,d) — ASD into n parts. Now
we wish to identify those graphs which admit (a,d) — ASD into n parts.
The following number theoretical result will be useful for proving further results.

Lemma 2.5. Given that the numbers a, a +d, a +2d, ..., a+ (n — 1)d are in
A.P (a,d € Z). Then their sum is
i) Sp=(a—dn+d("}") ifd<aand
ii) Sp=a("t") +(d—a)(}) ifd>a.
Theorem 2.6. G admits (a,d) — ASD into n parts. Thena=q—k,2<k<qg-1
if and only if d = W.
Proof. Supposea=q—k,2<k <q—1.
As G adimts (a,d) — ASD into n-parts, we have

a+(a+d)+(a+2d)+---+a+(n—-1)d=gq

na—i—d(n) =q

2
n(n —1)d = 2(qg — na)
nn—1)d=2(q—n(¢g—k)) as a=(qg—k)
n(n —1)d = 2(nk — (n — 1)q).

2(nk — (n—1)q)

Hence d =
n(n—1)

2(nk — (n—1)q)
n(n—1)

Conversely, suppose d = > (1).
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As G admits (a,d) — ASD into n parts, we have

at(a+d +(a+2d)+---+a+(n-1)d=gq

n
na+d(2> =q

na+ [nk — (n—1)q] = ¢ by (1)
n(q — a) = nk.
Hence a = q — k.

Corollary 2.7. If G admits (a,d) — ASD into n even number of parts and let
a=q—k,2<k<q-1, thenk=0 (modn—1).

Proof. Givena=q—k,2<k<q—1.
By 2.6, n(n—1)d=2nk—2(n—1)q
(n —1)[nd + 2q] = 2nk

nd + 2q = (n > 3).

nk
(n—1)
As (n—1,n) =1 and n is even, n — 1 divides k. Therefore, k =0 (modn — 1)

Observation 2.8. If G admits (a,d) — ASD into n parts, then 1 < a < q—Tg’;)
1<d< 2

()

Proof. Suppose G admits (a,) — ASD into n parts. Then we have,

and

a+(a+d)+(@+2d)+--+a+(n—1)d=gq
na—i—d(Z) =q— > (1)

n 7—(3)
na + (2) < qasd>1, therefore a < 2/
n

Alos from (1) and since a > 1, n+ (5)d < ¢, d < &3

()

Hencewehavelgagmandlgdg‘k”

n (3)
Corollary 2.9. If G admits (a,d) — ASD into two parts, then 1 < a < %1 and
1<d<q-2.

. . . 1
Corollary 2.10. If G admits (a,d)— ASD into two parts and if a = %=, then d = 1.

Corollary 2.11. If G admits (a,d) — ASD into two parts and if d = q — 2, then
a=1.
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Corollary 2.12. If G admits (a,d) — ASD into two parts and let d = g — k where
2<k<q-—1, then k is even.

Proof. Since G admits (a,d) — ASD into 2 parts

a+(a+d)=q

2a+d=q

20+q—k=q, asd=q— k.
Therefore, k = 2a.

Corollary 2.13. If G admits (a,d) — ASD into three parts, then 1 < a < % and
1<d< 2

3. (a,d) — ASD on Wheel

In this section for proving W,, = Kj + Cy,,—1 (m > 4) admits (a,d) — ASD into n
parts, we need the following results.

Theorem 3.1. If W,, admits (a,d) — ASD into n-parts, then
a) Forn =0 (mod4),
i) either a>1 and d=1 (mod2) ora>1 and d =0 (mod2)
ii) m= %+ 1(mod §) when a > 1 and d =1 (mod 2) and
iii) m = 1(mod §) when a > 1 and d = 0 (mod 2).

b) Forn =1 (mod4),
i) m =1 (modn) and ii) a = 0 (mod 2).
¢) Forn =2 (mod4),
i) m=1 (mod %) and ii) d =0 (mod 2).
d) Forn =3 (mod4),
i) m =1 (modn) and ii) a is even (odd) if and only if d is even (odd).

Proof. Suppose W,,, admits (a,d) — ASD into n-parts. Then we have,

a+(a+d) +(a+2d)+---+a+(n—-1)d=q
5(2@-1-( —1)d)=2(m—1) asgq=2(m—1)
(2a+ (n—1)d)=4(m—-1) — > (1)

Case (a): Suppose n =0 (mod 4).
Let n = 4k, (k € zT).
Sub case (a)(i): Suppose k is odd, then by (i) (m — 1) is either odd or even.
Suppose (m — 1) is odd, then @ > 1 and d = 1 (mod 2).
Suppose (m — 1) is even, then ¢ > 1 and d = 0 (mod 2).
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Sub case (a)(i)(a): Suppose k is even.

Then (m — 1) must be even. Therefore d = 0 (mod2) or d =

1 (mod 2).

Hence either a > 1 and d =1 (mod2) or a > 1 and d =0 (mod 2).

Sub case a(ii): Suppose a > 1 and d =1 (mod 2).
Let d =2r+1 (r € z+ U{0}), By using (1) we have,

nl2a+ (n —1)d] =4(m — 1)
kE[2a + (4k — 1)(2r + 1)] = (m — 1) since n = 4k
k[2a+ (8kr —2r+4k—2)+1]=m—1
2kla+ (dkr —r+2k—1)]=m — (k+1).

Therefore m = k + 1 (mod 2k).
Hence m = 4 + 1 (mod %).
Sub case a(iii): Suppose a > 1 and d =0 (mod 2).
Let d =2r (r € z*), By using (1) we have,

n(2a+ (n —1)d) = 4(m — 1)
k(2a+ (n —1)2r) = (m — 1) since n = 4k
2k(a+(n—1)r)=m— 1.

Therefore m =1 (mod 2k).
Hence m =1 (mod %).
Case (b): Suppose n =1 (mod4).
Let n =4k +1 (k € z*), By using (1) we have,

nl2a+ (n—1)d] =4(m — 1)
n(2a + 4kd) = 4(m — 1)
n(a + 2kd) =2(m — 1).

As a,d are integers and n is odd, (b)(i) follows clearly.
As n is odd, (b)(ii) follows clearly.

Case (c): Suppose n =2 (mod4).
Let n =4k +2 (k € 27), By using (1) we have,

n(2a+ (n —1)d) =4(m —1)
(4k+2)(2a+ (n—1)d) =4(m — 1)

2(m — 1) = (2k + 1)¢ where £ = 2a + (n — 1)d.

The above equation is true only when ¢ is even. Then (c)(i) follows. Further,

since £ is even and n is even, then (c)(ii) follows.
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Case (d): Suppose n =3 (mod4).
Let n =4k + 3 (k € z* U {0}), By using (1) we have,

n(2a+ (n —1)d) = 4(m —1)
n(2a + (4k + 2)d) = 4(m — 1)
n(a+ (2k 4+ 1)d) = 2(m — 1).

As a,d are integers and n is odd, then (d)(i) follows clearly.
As n is odd, (d)(ii) follows clearly.

Theorem 3.2. If W,,, admits (a,d) — ASD into n-parts, then 1 < a < 1 <2)
qa—"n "
(2)

Proof. Suppose W,, admits (a,d) — ASD into n-parts. Then by 2.8, we have

n

and

1<d<

1§a§wand1§d§¥.
n (2)
Theorem 3.3. W,,, adimts (a,d) — ASD into n-parts if and only if
a) Forn =0 (mod4),
i) either a>1 and d=1 (mod2) ora > 1 and d =0 (mod 2).
ii) a) m =% + 1(mod §) and b) m > % +1 whena>1 and d =1 (mod2).

iii) a) m = 1(mod %) and b) m > "72 + 1 when a > 1 and d =0 (mod 2).
b) Forn =1 (mod4),

i)m=1 (modn), ii) a =0 (mod2) and iii) m > w + 1.
¢) Forn =2 (mod4),

i)m=1 (mod %), ii) d =0 (mod?2) and iii) m > %2 +1.
d) Formn =3 (mod4),

i) m=1 (modn), i) a and d are both even or both odd and iii) m > @ + 1.
Proof. The proof of the necessary part follows from 3.1. Conversely,
Let V(Wy,) = {v1,v2,...,0n} and

EWyn) = {(vi,vit1)|1 <i<m—1} U{(vm,v)]1 <i<m—1}.
Define L; = (vi, vi41) U (U, v;), 1<i<m-—1.

Case (a): Let n =0 (mod4).

Subcase (a)(i): Suppose a and d are even.
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a=4,d=2

________ G2

—_———— G3

Wi,

Figure 3.1.
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|
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(a+ kd)
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DeﬁneG1:ULi and for 2<j <n, G; = U L,

i=1

N =

a

=
Il

1=

g

(a+kd)+1

1i
2
k=0

Clearly G; C Gjq41 for 1 <j<n—1.
Therefore Gy, Ga, ..., Gy is an (a,d) — ASD into n-parts of W,,.

Subcase(a)(ii): Suppose a and d are odd.
Define when a =1, d =1, G1 = (v, v1) and Gz = (v1,v2) U (U, U2).
Define when a =1, d > 1, G1 = (v, v1)

P

Go=(vet1,Vet2) U U L; U (v, py1) where £ = {%J and p = {%J +{

i=0+42
Define when a > 1 and d > 1

14
GI{U Li} U (’Um,’l)prl)
1=1
a a+

p
a
Go=(ve1, vp32)U U L;U(Vp,, Vpt1) where E:bJ and p:bJth 5
=042

Let m; = {_a+2de + LiJ

|
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Figure 3.2.

When j = 3 (mod4), define

Gj = (Vet1,ve42) U

j—1
ij +1
k=0
U o

j—2
i= ij + 2
k=0

j—1
> m
k=0

When j =0 (mod4), define G; = U

When j =1 (mod4), (j > 1), define

j—1

> m
k=0
G;= U

j—2
i= ij +1
k=0

j—2
i= ij +1
k=0

j—2
where €=E m;.
k=0
L
j-1

L; $ U(Vp,, Vpt1) where p = ij.

k=0

385
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When j =2 (mod4), (j > 2), define

j—1

> m

k=0

G; = (Uerl; ’UerQ) U U L; 3 U (U, ve41)

ji—2
i= ij +2
k=0

Jj—2 Jj—1
where p = g m; and £ = E my.
k=0 k=0

In the above construction addition of indices being taken modulo (m — 1) with
residues 1,2,...,m — 1.

Clearly G; C Gjq41 for 1 <j<n-—1.

Therefore, G1, Ga, ..., G, is an (a,d) — ASD of W,,.

Subcase (a)(iii) Suppose a is even and d is odd.

=1
P
a a a+d
GQZlU LiU(Um,vp+1)Where€:§andpza—i—{ 5 J
i=0+1
a=4,d=1

Wiy

Figure 3.3.
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Let m; = LaJ;de + {ﬂ
When j =3 (mod4), define

Gj = (vet1,v042) U

Jj—2 Jj—1
where ¢ = ij and p = ij.

U

k=0

k=0

When j =0 (mod4), define

Gj = (ve,ve41) U

j—1
> m

k=0

U

j—2
i= ij +1
k=0

When j =1 (mod4), (j > 1), define

k=0

U

k=0

When j =2 (mod4), (j > 2), define

j—1
> m
k=0
Gj= | U

j—2
i= ij +1
k=0

L; p U (U, veq1) where £ = ij.

j—1
> m

j—1
> m;
k=0

L

j—2
i= ij +2

k=0

L; » where £ = Z m;.

L

j—2
i= ij +1

U (vma varl)

j—2

k=0

Jj—1

k=0

387

In the above construction addition of indices being taken modulo (m — 1) with

residues 1,2,...,m — 1.
Clearly G; C G4 for 1 <j<n—
Therefore, G1, G, ..

1.

., Gy is an (a,d) — ASD into n parts of Wy,.
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Subcase (a)(iv): Suppose a is odd and d is even.
Define G1 = (v, v1) whena=1,d > 2

¢
G = { U Li} U (Um,ve41) when a > 1, d > 2

=1

p
a a a+ d
Gy = (W+17Ue+2)U4U L; where £ = bJ and p = bJ { 2 J—H'
i=0+2
{”de 3]
5
When = 3 (mod 4), define
j—1
> _m;
k=0 i1
Gy = U L; p U (Um,ve41) where £ = ij
) k=0
—_— G Ga Gy Gy
--== Gy Gy GroGy

Figure 3.4.



Case (b):
Case (c):

Case (d):
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When j =0 (mod4), define
j—1
S,
k=0 j—2
Gj = (ve, ve41) U U L; WhereK:ij.
]—2 k=0
i= Z mj + 1
k=0
When j =1 (mod4), (j > 1), define
j—1
S,
k=0 j—1
G; = U L; 3 U (U, vpt1) where p = ij.
‘772 k=0
i= Z m; + 1
k=0
When j =2 (mod4), (j > 2), define
j—1
m;
k=0 j—2
Gj = (vp, Ups1) U L; Wherep:ij.
j—2 k=0
i= m; + 1
k=0
In the above construction addition of indices beinig taken modulo (m —1) with
residues 1,2,...,m — 1.
Clearly G; C Gjy1 for 1 < j < n — 1. Therefore, G1, Gg, ..., G, is an

(a,d) — ASD into n parts of Wi,.

Let n =1 (mod4).

The proof of this case is anologus to subcases a(i) and a(iii).
Let n =2 (mod4).

The proof of this case is anologus to subcases a(i) and a(iv).
Let n =3 (mod4).

The proof of this case is anologus to subcases a(i) and a(ii).
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