THE (a, d)-ASCENDING SUBGRAPH DECOMPOSITION

A. NAGARAJAN AND S. NAVANEETHA KRISHNAN*

Abstract. Let G be a graph of size q and a, n, d be positive integers for which $\frac{n}{2}(2a+(n-1)d) \leq q < (\frac{n+1}{2})(2a+nd)$. Then G is said to have (a, d)- ascending subgraph decomposition into n parts ((a, d) - ASD) if the edge set of G can be partitioned into n-non-empty sets generating subgraphs $G_1, G_2, G_3, \ldots, G_n$ without isolated vertices such that each G_i is isomorphic to a proper subgraph of G_{i+1} for $1 \leq i \leq n-1$ and $|E(G_i)| = a + (i-1)d$. In this paper, we find (a, d) - ASD into n parts for W_m .

1. Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. A wheel on p vertices is denoted by W_p . A path of length t is denoted by P_{t+1} . Terms not defined here are used in the sense of Harary [4]. Throughout this paper $G \subset H$ means G is a subgraph of H. Let G = (V, E) be a simple graph of order p and size q. If G_1, G_2, \ldots, G_n are edge disjoint subgraphs of G such that $E(G) = E(G_1) \cup E(G_2) \cup \cdots \cup E(G_n)$, then $\{G_1, G_2, \ldots, G_n\}$ is said to be a decomposition of G.

The concept of ASD was introduced by Alavi et al. [1]. The graph G of size q where $\binom{n+1}{2} \leq q < \binom{n+2}{2}$, is said to have an ascending subgraph decomposition (ASD) if G can be decomposed into n-subgraphs G_1, G_2, \ldots, G_n without isolated vertices such that each G_i is isomorphic to a proper subgraph of G_{i+1} for $1 \leq i \leq n-1$ and $|E(G_i)| = i$. We generalize this concept into (a, d) - ASD as follows:

G is a simple graph of size q and a, n, d are positive integers for which $\frac{n}{2}(2a + (n - 1)d) \leq q < (\frac{n+1}{2})(2a+nd)$. Then (a, d)-ascending subgraph decomposition ((a, d) - ASD) of *G* is the edge disjoint decomposition of *G* into subgraphs G_1, G_2, \ldots, G_n without isolated vertices such that each G_i is isomorphic to a proper subgraph of G_{i+1} for $1 \leq i \leq n-1$ and $|E(G_i)| = a + (i-1)d$.

2. Main Results

Definition 2.1. Let G be a graph of size q and a, n, d be positive integers for which $\frac{n}{2}(2a + (n-1)d) \le q < (\frac{n+1}{2})(2a + nd)$. Then G is said to have (a, d)- ascending subgraph decomposition into n parts ((a, d) - ASD) if the edge set of G can be partitioned into n non-empty sets generating subgraphs G_1, G_2, \ldots, G_n without isolated vertices

Received August 3, 2005.

^{*}Corresponding author.

³⁷⁷

such that each G_i is isomorphic to a proper subgraph of G_{i+1} for $1 \le i \le n-1$ and $|E(G_i)| = a + (i-1)d$.

Remark 2.2. From the above definition, the usual ASD of G coincides with (1, 1) - ASD of G.

Example 2.3. Consider the Graph G.

Figure 2.1.

Clearly $\{G_1, G_2, G_3\}$ is a (1, 2) - ASD of G.

Theorem 2.4. Let G be a graph of size q, where $\frac{n}{2}(2a+(n-1)d) \le q < \left(\frac{n+1}{2}\right)(2a+nd)$ for some positive integer n, such that G has (a,d) - ASD into n parts, then G has an (a,d) - ASD into n parts G_1, G_2, \ldots, G_n such that each G_i has size a + (i-1)d for $1 \le i \le n-1$ and G_n has size $q - \left(\frac{n-1}{2}\right)(2a+(n-2)d)$.

Proof. If $q = \left(\frac{n}{2}\right) [2a + (n-1)d]$, then there is nothing to prove.

Now, suppse $(\frac{n}{2})[2a + (n-1)d] < q < (\frac{n+1}{2})[2a + nd]$. Suppose G has H_1, H_2, \ldots, H_n as (a, d) - ASD. If the size of H_{n-1} is a + (n-2)d, then this decomposition has the desired properties. Therefore assume that the size of H_{n-1} exceeds a + (n-1)d. The size of H_1 must exceed a. Select the edges $e_{11}, e_{12}, \ldots, e_{1a}$ from H_1 , inorder to

define G_1 , a subgraph of G induced by the set of edges $\{e_{11}, e_{12}, \ldots, e_{1a}\}$. Now let G_2 be a graph induced by the edges $e_{21}, e_{22}, \ldots, e_{2(a+d)}$ from H_2 so that $G_1 \subset G_2$. Since H_2 is isomorphic to a subgraph H'_3 of H_3 , we can choose edges $e_{31}, e_{32}, \ldots, e_{3d}$ from $E(H_3) - E(H'_3)$ so as to define G_3 , a subgraph of G, induced by edges of $E(H'_3)$ and the edges $e_{31}, e_{32}, \ldots, e_{3d}$. Then it is clear that $|E(G_3)| = a + 2d$ and $G_2 \subset G_3$. Proceeding as before, we may define the graphs G_1, G_2, \ldots, G_k $(3 \le k \le n-2)$ such that $|E(G_k)| = a + (k-1)d$ and $G_{k-1} \subset G_k$. From the above construction, we observe that each G_k $(1 \le k \le n-2)$ is a subgraph of H_k . Now we construct G_{k+1} as follows: Since G_k is isomorphic to a sbugraph H'_k of H_k , we choose the edges $e_{k1}, e_{k2}, \ldots, e_{kd}$ from $E(H_k) - E(H'_k)$ such that the subgraph G_{k+1} is induced by the edges of $E(H'_k)$ and $\{e_{k1}, e_{k2}, \dots, e_{kd}\}$. Also note that $|E(G_{k+1})| = a + (k-1)d + d = a + kd$. Therefore there exist graphs $G_1, G_2, \ldots, G_{n-1}$ such that $|E(G_i)| = a + (i-1)d$ for $1 \le i \le n-1$ and $G_i \subset G_{i+1}$ for $1 \leq i \leq n-2$. Now define G_n , the subgraph of G induced by the edges of $E(G) - \bigcup_{i=1}^{n-1} E(G_i)$. Hence G has the required (a, d) - ASD into n parts namely G_1, G_2, \ldots, G_n . Clearly every graph does not posses (a, d) - ASD into n parts. Now we wish to identify those graphs which admit (a, d) - ASD into n parts.

The following number theoretical result will be useful for proving further results.

Lemma 2.5. Given that the numbers $a, a + d, a + 2d, \ldots, a + (n-1)d$ are in A.P $(a, d \in Z)$. Then their sum is

- i) $S_n = (a-d)n + d\binom{n+1}{2}$ if $d \le a$ and ii) $S_n = a\binom{n+1}{2} + (d-a)\binom{n}{2}$ if $d \ge a$.

Theorem 2.6. G admits (a,d) - ASD into n parts. Then a = q - k, $2 \le k \le q - 1$ if and only if $d = \frac{2(nk-(n-1)q)}{n(n-1)}$

Proof. Suppose a = q - k, $2 \le k \le q - 1$. As G adimts (a, d) - ASD into *n*-parts, we have

$$a + (a + d) + (a + 2d) + \dots + a + (n - 1)d = q$$

 $na + d\binom{n}{2} = q$

$$n(n-1)d = 2(q-na)$$

 $n(n-1)d = 2(q-n(q-k))$ as $a = (q-k)$
 $n(n-1)d = 2(nk - (n-1)q).$

Hence $d = \frac{2(nk - (n-1)q)}{n(n-1)}$.

Conversely, suppose $d = \frac{2(nk - (n-1)q)}{n(n-1)} \longrightarrow (1).$

As G admits (a, d) - ASD into n parts, we have

$$a + (a + d) + (a + 2d) + \dots + a + (n - 1)d = q$$
$$na + d\binom{n}{2} = q$$
$$na + [nk - (n - 1)q] = q \text{ by } (1)$$
$$n(q - a) = nk.$$
Hence $a = q - k$.

Corollary 2.7. If G admits (a,d) - ASD into n even number of parts and let $a = q - k, 2 \le k \le q - 1$, then $k \equiv 0 \pmod{n-1}$.

Proof. Given a = q - k, $2 \le k \le q - 1$.

By 2.6,
$$n(n-1)d = 2nk - 2(n-1)q$$

 $(n-1)[nd+2q] = 2nk$
 $nd+2q = \frac{2nk}{(n-1)}$ $(n > 3).$

As (n-1,n) = 1 and n is even, n-1 divides k. Therefore, $k \equiv 0 \pmod{n-1}$

Observation 2.8. If G admits (a,d) - ASD into n parts, then $1 \le a \le \frac{q-\binom{n}{2}}{n}$ and $1 \le d \le \frac{q-n}{\binom{n}{2}}$.

Proof. Suppose G admits (a,) - ASD into n parts. Then we have,

$$+ (a+d) + (a+2d) + \dots + a + (n-1)d = q$$
$$na + d\binom{n}{2} = q - \dots > (1)$$
$$na + \binom{n}{2} \le q \text{ as } d \ge 1, \text{ therefore } a \le \frac{q - \binom{n}{2}}{n}.$$

Alos from (1) and since $a \ge 1$, $n + \binom{n}{2}d \le q$, $d \le \frac{q-n}{\binom{n}{2}}$. Hence we have $1 \le a \le \frac{q-\binom{n}{2}}{n}$ and $1 \le d \le \frac{q-n}{\binom{n}{2}}$.

a

Corollary 2.9. If G admits (a,d) - ASD into two parts, then $1 \le a \le \frac{q-1}{2}$ and $1 \le d \le q-2$.

Corollary 2.10. If G admits (a, d) - ASD into two parts and if $a = \frac{q-1}{2}$, then d = 1.

Corollary 2.11. If G admits (a, d) - ASD into two parts and if d = q - 2, then a = 1.

Corollary 2.12. If G admits (a, d) - ASD into two parts and let d = q - k where $2 \le k \le q - 1$, then k is even.

Proof. Since G admits (a, d) - ASD into 2 parts

$$a + (a + d) = q$$

$$2a + d = q$$

$$2a + q - k = q, \text{ as } d = q - k.$$

Therefore, $k = 2a.$

Corollary 2.13. If G admits (a, d) - ASD into three parts, then $1 \le a \le \frac{q-3}{3}$ and $1 \le d \le \frac{q-3}{3}$.

3. (a, d) - ASD on Wheel

In this section for proving $W_m = K_1 + C_{m-1}$ $(m \ge 4)$ admits (a, d) - ASD into n parts, we need the following results.

Theorem 3.1. If W_m admits (a, d) - ASD into n-parts, then a) For $n \equiv 0 \pmod{4}$, i) either $a \ge 1$ and $d \equiv 1 \pmod{2}$ or $a \ge 1$ and $d \equiv 0 \pmod{2}$ ii) $m \equiv \frac{n}{4} + 1 \pmod{\frac{n}{2}}$ when $a \ge 1$ and $d \equiv 1 \pmod{2}$ and

- iii) $m \equiv 1 \pmod{\frac{n}{2}}$ when $a \ge 1$ and $d \equiv 0 \pmod{2}$.
- b) For $n \equiv 1 \pmod{4}$,

i) $m \equiv 1 \pmod{n}$ and ii) $a \equiv 0 \pmod{2}$.

c) For $n \equiv 2 \pmod{4}$,

i) $m \equiv 1 \pmod{\frac{n}{2}}$ and ii) $d \equiv 0 \pmod{2}$.

d) For n ≡ 3 (mod 4),
i) m ≡ 1 (mod n) and ii) a is even (odd) if and only if d is even (odd).

Proof. Suppose W_m admits (a, d) - ASD into *n*-parts. Then we have,

$$a + (a + d) + (a + 2d) + \dots + a + (n - 1)d = q$$
$$\frac{n}{2}(2a + (n - 1)d) = 2(m - 1) \text{ as } q = 2(m - 1)$$
$$n(2a + (n - 1)d) = 4(m - 1) \longrightarrow (1)$$

Case (a): Suppose $n \equiv 0 \pmod{4}$.

Let n = 4k, $(k \in z^+)$.

Sub case (a)(i): Suppose k is odd, then by (i) (m-1) is either odd or even. Suppose (m-1) is odd, then $a \ge 1$ and $d \equiv 1 \pmod{2}$. Suppose (m-1) is even, then $a \ge 1$ and $d \equiv 0 \pmod{2}$. Sub case (a)(i)(a): Suppose k is even.

Then (m-1) must be even. Therefore $d \equiv 0 \pmod{2}$ or $d \equiv 1 \pmod{2}$.

Hence either $a \ge 1$ and $d \equiv 1 \pmod{2}$ or $a \ge 1$ and $d \equiv 0 \pmod{2}$. Sub case a(ii): Suppose $a \ge 1$ and $d \equiv 1 \pmod{2}$. Let d = 2r + 1 $(r \in z^+ \cup \{0\})$, By using (1) we have,

> n[2a + (n-1)d] = 4(m-1) k[2a + (4k-1)(2r+1)] = (m-1) since n = 4k k[2a + (8kr - 2r + 4k - 2) + 1] = m - 12k[a + (4kr - r + 2k - 1)] = m - (k+1).

Therefore $m \equiv k + 1 \pmod{2k}$. Hence $m \equiv \frac{n}{4} + 1 \pmod{\frac{n}{2}}$. Sub case a(iii): Suppose a > 1 and $d \equiv 0 \pmod{2}$. Let $d = 2r \ (r \in z^+)$, By using (1) we have,

> n(2a + (n - 1)d) = 4(m - 1) k(2a + (n - 1)2r) = (m - 1) since n = 4k2k(a + (n - 1)r) = m - 1.

Therefore $m \equiv 1 \pmod{2k}$.

Hence $m \equiv 1 \pmod{\frac{n}{2}}$.

Case (b): Suppose $n \equiv 1 \pmod{4}$. Let $n = 4k + 1 \ (k \in z^+)$, By using (1) we have,

n[2a + (n-1)d] = 4(m-1)n(2a + 4kd) = 4(m-1)n(a + 2kd) = 2(m-1).

As a, d are integers and n is odd, (b)(i) follows clearly. As n is odd, (b)(ii) follows clearly.

Case (c): Suppose $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 $(k \in z^+)$, By using (1) we have,

$$n(2a + (n - 1)d) = 4(m - 1)$$

(4k + 2)(2a + (n - 1)d) = 4(m - 1)
2(m - 1) = (2k + 1)\ell where $\ell = 2a + (n - 1)d$.

The above equation is true only when ℓ is even. Then (c)(i) follows. Further, since ℓ is even and n is even, then (c)(ii) follows.

Case (d): Suppose $n \equiv 3 \pmod{4}$. Let n = 4k + 3 $(k \in z^+ \cup \{0\})$, By using (1) we have,

> n(2a + (n-1)d) = 4(m-1)n(2a + (4k + 2)d) = 4(m - 1)n(a + (2k + 1)d) = 2(m - 1).

As a, d are integers and n is odd, then (d)(i) follows clearly. As n is odd, (d)(ii) follows clearly.

Theorem 3.2. If W_m admits (a,d) - ASD into *n*-parts, then $1 \le a \le \frac{q - {n \choose 2}}{n}$ and $1 \le d \le \frac{q-n}{\binom{n}{2}}.$

Proof. Suppose W_m admits (a, d) - ASD into *n*-parts. Then by 2.8, we have $1 \le a \le \frac{q - \binom{n}{2}}{n}$ and $1 \le d \le \frac{q - n}{\binom{n}{2}}$.

Theorem 3.3. W_m adimts (a, d) - ASD into n-parts if and only if a) For $n \equiv 0 \pmod{4}$,

i) either $a \ge 1$ and $d \equiv 1 \pmod{2}$ or $a \ge 1$ and $d \equiv 0 \pmod{2}$. ii) a) $m \equiv \frac{n}{4} + 1 \pmod{\frac{n}{2}}$ and b) $m \ge \frac{n(n+1)}{4} + 1$ when $a \ge 1$ and $d \equiv 1 \pmod{2}$. iii) a) $m \equiv 1 \pmod{\frac{n}{2}}$ and b) $m \ge \frac{n^2}{2} + 1$ when $a \ge 1$ and $d \equiv 0 \pmod{2}$.

b) For $n \equiv 1 \pmod{4}$,

i) $m \equiv 1 \pmod{n}$, ii) $a \equiv 0 \pmod{2}$ and iii) $m \ge \frac{n(n+3)}{4} + 1$.

c) For $n \equiv 2 \pmod{4}$,

i) $m \equiv 1 \pmod{\frac{n}{2}}$, ii) $d \equiv 0 \pmod{2}$ and iii) $m \ge \frac{n^2}{2} + 1$.

d) For $n \equiv 3 \pmod{4}$,

i) $m \equiv 1 \pmod{n}$, ii) a and d are both even or both odd and iii) $m \geq \frac{n(n+1)}{4} + 1$.

Proof. The proof of the necessary part follows from 3.1. Conversely,

Let $V(W_m) = \{v_1, v_2, \dots, v_m\}$ and $E(W_m) = \{(v_i, v_{i+1}) | 1 \le i \le m - 1\} \cup \{(v_m, v_i) | 1 \le i \le m - 1\}.$ Define $L_i = (v_i, v_{i+1}) \cup (v_m, v_i), \quad 1 \le i \le m - 1.$

Case (a): Let $n \equiv 0 \pmod{4}$.

Subcase (a)(i): Suppose a and d are even.

a = 4, d = 2

Define
$$G_1 = \bigcup_{i=1}^{\frac{a}{2}} L_i$$
 and for $2 \le j \le n$, $G_j = \begin{cases} \frac{1}{2} \sum_{k=0}^{j-1} (a+kd) \\ \bigcup \\ i = \frac{1}{2} \sum_{k=0}^{j-2} (a+kd) + 1 \end{cases}$.

Clearly $G_j \subset G_{j+1}$ for $1 \leq j \leq n-1$. Therefore G_1, G_2, \ldots, G_n is an (a, d) - ASD into *n*-parts of W_m .

Subcase(a)(ii): Suppose a and d are odd. Define when a = 1, d = 1, $G_1 = (v_m, v_1)$ and $G_2 = (v_1, v_2) \cup (v_m, v_2)$. Define when a = 1, d > 1, $G_1 = (v_m, v_1)$ $G_2 = (v_{\ell+1}, v_{\ell+2}) \cup \bigcup_{i=\ell+2}^{p} L_i \cup (v_m, v_{p+1})$ where $\ell = \lfloor \frac{a}{2} \rfloor$ and $p = \lfloor \frac{a}{2} \rfloor + \lfloor \frac{a+d}{2} \rfloor$. Define when a > 1 and d > 1 $\begin{pmatrix} \ell \end{pmatrix}$

$$G_1 = \left\{ \bigcup_{i=1}^{r} L_i \right\} \cup (v_m, v_{\ell+1})$$

$$G_2 = (v_{\ell+1}, v_{\ell+2}) \cup \bigcup_{i=\ell+2}^{p} L_i \cup (v_m, v_{p+1}) \text{ where } \ell = \left\lfloor \frac{a}{2} \right\rfloor \text{ and } p = \left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor \frac{a+d}{2} \right\rfloor$$

$$m_i = \left\lfloor \frac{a+kd}{2} \right\rfloor + \left\lfloor \frac{i}{2} \right\rfloor$$

Let $m_j = \left\lfloor \frac{a+kd}{2} \right\rfloor + \left\lfloor \frac{j}{4} \right\rfloor$

384

When $j \equiv 3 \pmod{4}$, define

$$G_{j} = (v_{\ell+1}, v_{\ell+2}) \cup \begin{cases} \sum_{k=0}^{j-1} m_{j} + 1 \\ \bigcup \\ i = \sum_{k=0}^{j-2} m_{j} + 2 \end{cases} \text{ where } \ell = \sum_{k=0}^{j-2} m_{j}.$$

When $j \equiv 0 \pmod{4}$, define $G_{j} = \begin{cases} \sum_{k=0}^{j-1} m_{j} \\ \bigcup \\ i = \sum_{k=0}^{j-2} m_{j} + 1 \end{cases}.$

When $j \equiv 1 \pmod{4}$, (j > 1), define

$$G_{j} = \left\{ \begin{array}{c} \sum_{k=0}^{j-1} m_{j} \\ \bigcup \\ \lim_{i=\sum_{k=0}^{j-2} m_{j} + 1} L_{i} \end{array} \right\} \cup (v_{m}, v_{p+1}) \text{ where } p = \sum_{k=0}^{j-1} m_{j}.$$

When $j \equiv 2 \pmod{4}$, (j > 2), define

$$G_{j} = (v_{p+1}, v_{p+2}) \cup \left\{ \begin{array}{c} \sum_{k=0}^{j-1} m_{j} \\ \bigcup \\ \lim_{i=\sum_{k=0}^{j-2} m_{j} + 2 \end{array} \right\} \cup (v_{m}, v_{\ell+1})$$

where $p = \sum_{k=0}^{j-2} m_{j}$ and $\ell = \sum_{k=0}^{j-1} m_{j}$.

In the above construction addition of indices being taken modulo (m-1) with residues $1, 2, \ldots, m-1$. Clearly $G_j \subset G_{j+1}$ for $1 \leq j \leq n-1$. Therefore, G_1, G_2, \ldots, G_n is an (a, d) - ASD of W_m .

Subcase (a)(iii) Suppose a is even and d is odd.

$$G_1 = \bigcup_{i=1}^{\ell} L_i$$

$$G_2 = \bigcup_{i=\ell+1}^{p} L_i \cup (v_m, v_{p+1}) \text{ where } \ell = \frac{a}{2} \text{ and } p = \frac{a}{2} + \left\lfloor \frac{a+d}{2} \right\rfloor$$

386

Let $m_j = \left\lfloor \frac{a+kd}{2} \right\rfloor + \left\lfloor \frac{j}{4} \right\rfloor$. When $j \equiv 3 \pmod{4}$, define

$$G_{j} = (v_{\ell+1}, v_{\ell+2}) \cup \left\{ \begin{array}{c} \sum_{k=0}^{j-1} m_{j} \\ \bigcup \\ i = \sum_{k=0}^{j-2} m_{j} + 2 \end{array} \right\} \cup (v_{m}, v_{p+1})$$

where $\ell = \sum_{k=0}^{j-2} m_{j}$ and $p = \sum_{k=0}^{j-1} m_{j}$.

When $j \equiv 0 \pmod{4}$, define

$$G_{j} = (v_{\ell}, v_{\ell+1}) \cup \left\{ \bigcup_{\substack{k=0\\ i=\sum_{k=0}^{j-2} m_{j}+1}}^{j-1} L_{i} \right\} \text{ where } \ell = \sum_{k=0}^{j-2} m_{j}.$$

When $j \equiv 1 \pmod{4}$, (j > 1), define

$$G_{j} = \left\{ \bigcup_{\substack{k=0\\j=2\\i=\sum_{k=0}^{j-2}m_{j}+1}^{j-1} L_{i} \right\}.$$

When $j \equiv 2 \pmod{4}$, (j > 2), define

$$G_{j} = \left\{ \bigcup_{\substack{k=0\\j=2\\i=\sum_{k=0}^{j-1}m_{j}+1}}^{j-1} L_{i} \right\} \cup (v_{m}, v_{\ell+1}) \text{ where } \ell = \sum_{k=0}^{j-1}m_{j}.$$

In the above construction addition of indices being taken modulo (m-1) with residues $1, 2, \ldots, m-1$.

Clearly $G_j \subset G_{j+1}$ for $1 \leq j \leq n-1$. Therefore, G_1, G_2, \ldots, G_n is an (a, d) - ASD into n parts of W_m . Subcase (a)(iv): Suppose a is odd and d is even.

Define $G_1 = (v_m, v_1)$ when $a = 1, d \ge 2$

$$G_1 = \Big\{\bigcup_{i=1}^{\ell} L_i\Big\} \cup (v_m, v_{\ell+1}) \text{ when } a > 1, \ d \ge 2$$

$$G_2 = (v_{\ell+1}, v_{\ell+2}) \cup \bigcup_{i=\ell+2}^p L_i \text{ where } \ell = \left\lfloor \frac{a}{2} \right\rfloor \text{ and } p = \left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor \frac{a+d}{2} \right\rfloor + 1.$$

Let $m_j = \left\lfloor \frac{a+kd}{2} \right\rfloor + \left\lfloor \frac{j}{2} \right\rfloor$. When $j \equiv 3 \pmod{4}$, define

$$G_{j} = \left\{ \bigcup_{\substack{k=0\\ k=0}}^{j-1} m_{j} \\ \bigcup_{i=\sum_{k=0}^{j-2} m_{j} + 1}^{j-1} L_{i} \right\} \cup (v_{m}, v_{\ell+1}) \text{ where } \ell = \sum_{k=0}^{j-1} m_{j}$$

Figure 3.4.

When $j \equiv 0 \pmod{4}$, define

$$G_{j} = (v_{\ell}, v_{\ell+1}) \cup \left\{ \bigcup_{\substack{k=0\\i=\sum_{k=0}^{j-2}m_{j}+1}}^{j-1} L_{i} \right\} \text{ where } \ell = \sum_{k=0}^{j-2}m_{j}.$$

When $j \equiv 1 \pmod{4}$, (j > 1), define

$$G_{j} = \left\{ \bigcup_{\substack{k=0\\ k=0}}^{j-1} m_{j} \\ \bigcup_{i=\sum_{k=0}^{j-2} m_{j}+1}^{j-1} L_{i} \right\} \cup (v_{m}, v_{p+1}) \text{ where } p = \sum_{k=0}^{j-1} m_{j}.$$

When $j \equiv 2 \pmod{4}$, (j > 2), define

$$G_{j} = (v_{p}, v_{p+1}) \cup \left\{ \bigcup_{\substack{k=0\\j=2\\i=\sum_{k=0}^{j-2}m_{j}+1}}^{j-1} L_{i} \right\} \text{ where } p = \sum_{k=0}^{j-2}m_{j}.$$

In the above construction addition of indices being taken modulo (m-1) with residues $1, 2, \ldots, m-1$.

Clearly $G_j \subset G_{j+1}$ for $1 \leq j \leq n-1$. Therefore, G_1, G_2, \ldots, G_n is an (a,d) - ASD into n parts of W_m .

Case (b): Let $n \equiv 1 \pmod{4}$.

The proof of this case is anologus to subcases a (i) and a(iii). Case (c): Let $n\equiv 2\ ({\rm mod}\ 4).$

The proof of this case is anologue to subcases a(i) and a(iv). Case (d): Let $n \equiv 3 \pmod{4}$.

The proof of this case is anologue to subcases a(i) and a(ii).

References

Y. Alavi, A. J. Boals, G. Chartrand, P. Erdos and O. R. Oellermann, *The ascending subgraph decomposition problem*, Congressus Numerantium 58 (1987), 7-14.

- [2] J. Bosak, *Decomposition of graphs*, Mathematics and its applications, Vol. 47 (East European series), Kluwer Academic Publications, 1980.
- [3] R. J. Faudree, A. Gyarfas and R. H. Schelp, *Graphs which have an ascending subgraph decomposition*, Congressus Numerantium **59** (1987), 49-54.
- [4] F. Harary, Graph Theory, Addition-Wesley Publishing company Inc., USA, 1969.

Department of Mathematics, V.O.C. College, Tuticorin-628008, Tamilnadu, India.

Department of Mathematics, V.O.C. College, Tuticorin-628008, Tamilnadu, India.