THE (a, d)-ASCENDING SUBGRAPH DECOMPOSITION

A. NAGARAJAN AND S. NAVANEETHA KRISHNAN*

Abstract

Let G be a graph of size q and a, n, d be positive integers for which $\frac{n}{2}(2 a+(n-1) d) \leq$ $q<\left(\frac{n+1}{2}\right)(2 a+n d)$. Then G is said to have (a, d) - ascending subgraph decomposition into n parts $((a, d)-A S D)$ if the edge set of G can be partitioned into n-non-empty sets generating subgraphs $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ without isolated vertices such that each G_{i} is isomorphic to a proper subgraph of G_{i+1} for $1 \leq i \leq n-1$ and $\left|E\left(G_{i}\right)\right|=a+(i-1) d$. In this paper, we find $(a, d)-A S D$ into n parts for W_{m}.

1. Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. A wheel on p vertices is denoted by W_{p}. A path of length t is denoted by P_{t+1}. Terms not defined here are used in the sense of Harary [4]. Throughout this paper $G \subset H$ means G is a subgraph of H. Let $G=(V, E)$ be a simple graph of order p and size q. If G_{1}, G_{2}, \ldots, G_{n} are edge disjoint subgraphs of G such that $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \cdots \cup E\left(G_{n}\right)$, then $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is said to be a decomposition of G.

The concept of $A S D$ was introduced by Alavi et al. [1]. The graph G of size q where $\binom{n+1}{2} \leq q<\binom{n+2}{2}$, is said to have an ascending subgraph decomposition $(A S D)$ if G can be decomposed into n-subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ without isolated vertices such that each G_{i} is isomorphic to a proper subgraph of G_{i+1} for $1 \leq i \leq n-1$ and $\left|E\left(G_{i}\right)\right|=i$.

We generalize this concept into $(a, d)-A S D$ as follows:
G is a simple graph of size q and a, n, d are positive integers for which $\frac{n}{2}(2 a+(n-$ $1) d) \leq q<\left(\frac{n+1}{2}\right)(2 a+n d)$. Then (a, d)-ascending subgraph decomposition $((a, d)-A S D)$ of G is the edge disjoint decomposition of G into subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ without isolated vertices such that each G_{i} is isomorphic to a proper subgraph of G_{i+1} for $1 \leq$ $i \leq n-1$ and $\left|E\left(G_{i}\right)\right|=a+(i-1) d$.

2. Main Results

Definition 2.1. Let G be a graph of size q and a, n, d be positive integers for which $\frac{n}{2}(2 a+(n-1) d) \leq q<\left(\frac{n+1}{2}\right)(2 a+n d)$. Then G is said to have (a, d) - ascending subgraph decomposition into n parts $((a, d)-A S D)$ if the edge set of G can be partitioned into n non-empty sets generating subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ without isolated vertices

[^0]such that each G_{i} is isomorphic to a proper subgraph of G_{i+1} for $1 \leq i \leq n-1$ and $\left|E\left(G_{i}\right)\right|=a+(i-1) d$.

Remark 2.2. From the above definition, the usual $A S D$ of G coincides with $(1,1)-$ $A S D$ of G.

Example 2.3. Consider the Graph G.

Figure 2.1.
Clearly $\left\{G_{1}, G_{2}, G_{3}\right\}$ is a $(1,2)-A S D$ of G.
Theorem 2.4. Let G be a graph of size q, where $\frac{n}{2}(2 a+(n-1) d) \leq q<\left(\frac{n+1}{2}\right)(2 a+$ $n d$) for some positive integer n, such that G has $(a, d)-A S D$ into n parts, then G has an $(a, d)-A S D$ into n parts $G_{1}, G_{2}, \ldots, G_{n}$ such that each G_{i} has size $a+(i-1) d$ for $1 \leq i \leq n-1$ and G_{n} has size $q-\left(\frac{n-1}{2}\right)(2 a+(n-2) d)$.

Proof. If $q=\left(\frac{n}{2}\right)[2 a+(n-1) d]$, then there is nothing to prove.
Now, suppse $\left(\frac{n}{2}\right)[2 a+(n-1) d]<q<\left(\frac{n+1}{2}\right)[2 a+n d]$. Suppose G has H_{1}, H_{2}, \ldots, H_{n} as $(a, d)-A S D$. If the size of H_{n-1} is $a+(n-2) d$, then this decomposition has the desired properties. Therefore assume that the size of H_{n-1} exceeds $a+(n-1) d$. The size of H_{1} must exceed a. Select the edges $e_{11}, e_{12}, \ldots, e_{1 a}$ from H_{1}, inorder to
define G_{1}, a subgraph of G induced by the set of edges $\left\{e_{11}, e_{12}, \ldots, e_{1 a}\right\}$. Now let G_{2} be a graph induced by the edges $e_{21}, e_{22}, \ldots, e_{2(a+d)}$ from H_{2} so that $G_{1} \subset G_{2}$. Since H_{2} is isomorphic to a subgraph H_{3}^{\prime} of H_{3}, we can choose edges $e_{31}, e_{32}, \ldots, e_{3 d}$ from $E\left(H_{3}\right)-E\left(H_{3}^{\prime}\right)$ so as to define G_{3}, a subgraph of G, induced by edges of $E\left(H_{3}^{\prime}\right)$ and the edges $e_{31}, e_{32}, \ldots, e_{3 d}$. Then it is clear that $\left|E\left(G_{3}\right)\right|=a+2 d$ and $G_{2} \subset G_{3}$. Proceeding as before, we may define the graphs $G_{1}, G_{2}, \ldots, G_{k}(3 \leq k \leq n-2)$ such that $\left|E\left(G_{k}\right)\right|=a+(k-1) d$ and $G_{k-1} \subset G_{k}$. From the above construction, we observe that each $G_{k}(1 \leq k \leq n-2)$ is a subgraph of H_{k}. Now we construct G_{k+1} as follows: Since G_{k} is isomorphic to a sbugraph H_{k}^{\prime} of H_{k}, we choose the edges $e_{k 1}, e_{k 2}, \ldots, e_{k d}$ from $E\left(H_{k}\right)-E\left(H_{k}^{\prime}\right)$ such that the subgraph G_{k+1} is induced by the edges of $E\left(H_{k}^{\prime}\right)$ and $\left\{e_{k 1}, e_{k 2}, \ldots, e_{k d}\right\}$. Also note that $\left|E\left(G_{k+1}\right)\right|=a+(k-1) d+d=a+k d$. Therefore there exist graphs $G_{1}, G_{2}, \ldots, G_{n-1}$ such that $\left|E\left(G_{i}\right)\right|=a+(i-1) d$ for $1 \leq i \leq n-1$ and $G_{i} \subset G_{i+1}$ for $1 \leq i \leq n-2$. Now define G_{n}, the subgraph of G induced by the edges of $E(G)-\bigcup_{i=1}^{n-1} E\left(G_{i}\right)$. Hence G has the required $(a, d)-A S D$ into n parts namely $G_{1}, G_{2}, \ldots, G_{n}$. Clearly every graph does not posses $(a, d)-A S D$ into n parts. Now we wish to identify those graphs which admit $(a, d)-A S D$ into n parts.

The following number theoretical result will be useful for proving further results.
Lemma 2.5. Given that the numbers $a, a+d, a+2 d, \ldots, a+(n-1) d$ are in A.P $(a, d \in Z)$. Then their sum is
i) $S_{n}=(a-d) n+d\binom{n+1}{2}$ if $d \leq a$ and
ii) $S_{n}=a\binom{n+1}{2}+(d-a)\binom{n}{2}$ if $d \geq a$.

Theorem 2.6. G admits $(a, d)-A S D$ into n parts. Then $a=q-k, 2 \leq k \leq q-1$ if and only if $d=\frac{2(n k-(n-1) q)}{n(n-1)}$.

Proof. Suppose $a=q-k, 2 \leq k \leq q-1$.
As G adimts $(a, d)-A S D$ into n-parts, we have

$$
\begin{aligned}
& a+(a+d)+(a+2 d)+\cdots+a+(n-1) d=q \\
& n a+d\binom{n}{2}=q \\
& n(n-1) d=2(q-n a) \\
& n(n-1) d=2(q-n(q-k)) \quad \text { as } \quad a=(q-k) \\
& n(n-1) d=2(n k-(n-1) q) .
\end{aligned}
$$

Hence $d=\frac{2(n k-(n-1) q)}{n(n-1)}$.
Conversely, suppose $d=\frac{2(n k-(n-1) q)}{n(n-1)}->(1)$.

As G admits $(a, d)-A S D$ into n parts, we have

$$
\begin{aligned}
a+(a+d)+(a+2 d)+\cdots+a+(n-1) d & =q \\
n a+d\binom{n}{2} & =q \\
n a+[n k-(n-1) q] & =q \text { by }(1) \\
n(q-a) & =n k . \\
\text { Hence } a & =q-k .
\end{aligned}
$$

Corollary 2.7. If G admits $(a, d)-A S D$ into n even number of parts and let $a=q-k, 2 \leq k \leq q-1$, then $k \equiv 0(\bmod n-1)$.

Proof. Given $a=q-k, 2 \leq k \leq q-1$.

$$
\begin{aligned}
& \text { By 2.6, } \quad n(n-1) d=2 n k-2(n-1) q \\
& \quad(n-1)[n d+2 q]=2 n k \\
& \quad n d+2 q=\frac{2 n k}{(n-1)} \quad(n>3) .
\end{aligned}
$$

As $(n-1, n)=1$ and n is even, $n-1$ divides k. Therefore, $k \equiv 0(\bmod n-1)$
Observation 2.8. If G admits $(a, d)-A S D$ into n parts, then $1 \leq a \leq \frac{q-\binom{n}{2}}{n}$ and $1 \leq d \leq \frac{q-n}{\binom{n}{2}}$.

Proof. Suppose G admits $(a)-,A S D$ into n parts. Then we have,

$$
\begin{aligned}
a+(a+d)+(a+2 d)+\cdots+a+(n-1) d & =q \\
n a+d\binom{n}{2} & =q->(1) \\
n a+\binom{n}{2} \leq q \text { as } d \geq 1, \text { therefore } a & \leq \frac{q-\binom{n}{2}}{n} .
\end{aligned}
$$

Alos from (1) and since $a \geq 1, n+\binom{n}{2} d \leq q, d \leq \frac{q-n}{\binom{n}{2}}$.
Hence we have $1 \leq a \leq \frac{q-\binom{n}{2}}{n}$ and $1 \leq d \leq \frac{q-n}{\binom{n}{2}}$.
Corollary 2.9. If G admits $(a, d)-A S D$ into two parts, then $1 \leq a \leq \frac{q-1}{2}$ and $1 \leq d \leq q-2$.

Corollary 2.10. If G admits $(a, d)-A S D$ into two parts and if $a=\frac{q-1}{2}$, then $d=1$.
Corollary 2.11. If G admits $(a, d)-A S D$ into two parts and if $d=q-2$, then $a=1$.

Corollary 2.12. If G admits $(a, d)-A S D$ into two parts and let $d=q-k$ where $2 \leq k \leq q-1$, then k is even.

Proof. Since G admits $(a, d)-A S D$ into 2 parts

$$
\begin{aligned}
& a+(a+d)=q \\
& 2 a+d=q \\
& 2 a+q-k=q, \text { as } d=q-k . \\
& \text { Therefore, } \quad k=2 a
\end{aligned}
$$

Corollary 2.13. If G admits $(a, d)-A S D$ into three parts, then $1 \leq a \leq \frac{q-3}{3}$ and $1 \leq d \leq \frac{q-3}{3}$.

3. $(a, d)-A S D$ on Wheel

In this section for proving $W_{m}=K_{1}+C_{m-1}(m \geq 4)$ admits $(a, d)-A S D$ into n parts, we need the following results.

Theorem 3.1. If W_{m} admits $(a, d)-A S D$ into n-parts, then
a) For $n \equiv 0(\bmod 4)$,
i) either $a \geq 1$ and $d \equiv 1(\bmod 2)$ or $a \geq 1$ and $d \equiv 0(\bmod 2)$
ii) $m \equiv \frac{n}{4}+1\left(\bmod \frac{n}{2}\right)$ when $a \geq 1$ and $d \equiv 1(\bmod 2)$ and
iii) $m \equiv 1\left(\bmod \frac{n}{2}\right)$ when $a \geq 1$ and $d \equiv 0(\bmod 2)$.
b) For $n \equiv 1(\bmod 4)$,
i) $m \equiv 1(\bmod n)$ and ii) $a \equiv 0(\bmod 2)$.
c) For $n \equiv 2(\bmod 4)$,
i) $m \equiv 1\left(\bmod \frac{n}{2}\right)$ and ii) $d \equiv 0(\bmod 2)$.
d) For $n \equiv 3(\bmod 4)$,
i) $m \equiv 1(\bmod n)$ and ii) a is even $($ odd $)$ if and only if d is even (odd).

Proof. Suppose W_{m} admits $(a, d)-A S D$ into n-parts. Then we have,

$$
\begin{aligned}
a+(a+d)+(a+2 d)+\cdots+a+(n-1) d & =q \\
\frac{n}{2}(2 a+(n-1) d) & =2(m-1) \quad \text { as } q=2(m-1) \\
n(2 a+(n-1) d) & =4(m-1)->(1)
\end{aligned}
$$

Case (a): Suppose $n \equiv 0(\bmod 4)$.
Let $n=4 k,\left(k \in z^{+}\right)$.
Sub case (a)(i): Suppose k is odd, then by (i) $(m-1)$ is either odd or even.
Suppose $(m-1)$ is odd, then $a \geq 1$ and $d \equiv 1(\bmod 2)$.
Suppose $(m-1)$ is even, then $a \geq 1$ and $d \equiv 0(\bmod 2)$.

Sub case (a)(i)(a): Suppose k is even.
Then $(m-1)$ must be even. Therefore $d \equiv 0(\bmod 2)$ or $d \equiv$ $1(\bmod 2)$.
Hence either $a \geq 1$ and $d \equiv 1(\bmod 2)$ or $a \geq 1$ and $d \equiv 0(\bmod 2)$.
Sub case a(ii): Suppose $a \geq 1$ and $d \equiv 1(\bmod 2)$.
Let $d=2 r+1\left(r \in z^{+} \cup\{0\}\right)$, By using (1) we have,

$$
\begin{aligned}
n[2 a+(n-1) d] & =4(m-1) \\
k[2 a+(4 k-1)(2 r+1)] & =(m-1) \text { since } n=4 k \\
k[2 a+(8 k r-2 r+4 k-2)+1] & =m-1 \\
2 k[a+(4 k r-r+2 k-1)] & =m-(k+1) .
\end{aligned}
$$

Therefore $m \equiv k+1(\bmod 2 k)$.
Hence $m \equiv \frac{n}{4}+1\left(\bmod \frac{n}{2}\right)$.
Sub case a(iii): Suppose $a>1$ and $d \equiv 0(\bmod 2)$.
Let $d=2 r\left(r \in z^{+}\right)$, By using (1) we have,

$$
\begin{aligned}
n(2 a+(n-1) d) & =4(m-1) \\
k(2 a+(n-1) 2 r) & =(m-1) \text { since } n=4 k \\
2 k(a+(n-1) r) & =m-1
\end{aligned}
$$

Therefore $m \equiv 1(\bmod 2 k)$.
Hence $m \equiv 1\left(\bmod \frac{n}{2}\right)$.
Case (b): Suppose $n \equiv 1(\bmod 4)$.
Let $n=4 k+1\left(k \in z^{+}\right)$, By using (1) we have,

$$
\begin{aligned}
n[2 a+(n-1) d] & =4(m-1) \\
n(2 a+4 k d) & =4(m-1) \\
n(a+2 k d) & =2(m-1) .
\end{aligned}
$$

As a, d are integers and n is odd, (b)(i) follows clearly. As n is odd, (b)(ii) follows clearly.
Case (c): Suppose $n \equiv 2(\bmod 4)$.
Let $n=4 k+2\left(k \in z^{+}\right)$, By using (1) we have,

$$
\begin{aligned}
n(2 a+(n-1) d) & =4(m-1) \\
(4 k+2)(2 a+(n-1) d) & =4(m-1) \\
2(m-1) & =(2 k+1) \ell \text { where } \ell=2 a+(n-1) d .
\end{aligned}
$$

The above equation is true only when ℓ is even. Then (c)(i) follows. Further, since ℓ is even and n is even, then (c)(ii) follows.

Case (d): Suppose $n \equiv 3(\bmod 4)$.
Let $n=4 k+3\left(k \in z^{+} \cup\{0\}\right)$, By using (1) we have,

$$
\begin{aligned}
n(2 a+(n-1) d) & =4(m-1) \\
n(2 a+(4 k+2) d) & =4(m-1) \\
n(a+(2 k+1) d) & =2(m-1) .
\end{aligned}
$$

As a, d are integers and n is odd, then (d)(i) follows clearly.
As n is odd, (d)(ii) follows clearly.
Theorem 3.2. If W_{m} admits $(a, d)-A S D$ into n-parts, then $1 \leq a \leq \frac{q-\binom{n}{2}}{n}$ and $1 \leq d \leq \frac{q-n}{\binom{n}{2}}$.

Proof. Suppose W_{m} admits $(a, d)-A S D$ into n-parts. Then by 2.8 , we have $1 \leq a \leq \frac{q-\binom{n}{2}}{n}$ and $1 \leq d \leq \frac{q-n}{\binom{n}{2}}$.

Theorem 3.3. W_{m} adimts $(a, d)-A S D$ into n-parts if and only if
a) For $n \equiv 0(\bmod 4)$,
i) either $a \geq 1$ and $d \equiv 1(\bmod 2)$ or $a \geq 1$ and $d \equiv 0(\bmod 2)$.
ii) a) $m \equiv \frac{n}{4}+1\left(\bmod \frac{n}{2}\right)$ and b) $m \geq \frac{n(n+1)}{4}+1$ when $a \geq 1$ and $d \equiv 1(\bmod 2)$.
iii) a) $m \equiv 1\left(\bmod \frac{n}{2}\right)$ and b) $m \geq \frac{n^{2}}{2}+1$ when $a \geq 1$ and $d \equiv 0(\bmod 2)$.
b) For $n \equiv 1(\bmod 4)$,
i) $m \equiv 1(\bmod n)$, ii) $a \equiv 0(\bmod 2)$ and iii) $m \geq \frac{n(n+3)}{4}+1$.
c) For $n \equiv 2(\bmod 4)$,
i) $m \equiv 1\left(\bmod \frac{n}{2}\right)$, ii) $d \equiv 0(\bmod 2)$ and iii) $m \geq \frac{n^{2}}{2}+1$.
d) For $n \equiv 3(\bmod 4)$,
i) $m \equiv 1(\bmod n)$, ii) a and d are both even or both odd and iii) $m \geq \frac{n(n+1)}{4}+1$.

Proof. The proof of the necessary part follows from 3.1. Conversely,

$$
\begin{aligned}
& \text { Let } V\left(W_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \text { and } \\
& E\left(W_{m}\right)=\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq m-1\right\} \cup\left\{\left(v_{m}, v_{i}\right) \mid 1 \leq i \leq m-1\right\} . \\
& \text { Define } L_{i}=\left(v_{i}, v_{i+1}\right) \cup\left(v_{m}, v_{i}\right), \quad 1 \leq i \leq m-1
\end{aligned}
$$

Case (a): Let $n \equiv 0(\bmod 4)$.
Subcase (a)(i): Suppose a and d are even.
$a=4, d=2$

W_{15}
Figure 3.1.
Define $G_{1}=\bigcup_{i=1}^{\frac{a}{2}} L_{i}$ and for $\left.2 \leq j \leq n, G_{j}=\left\{\begin{array}{c}\frac{1}{2} \sum_{k=0}^{j-1}(a+k d) \\ \bigcup \\ i=\frac{1}{2} \sum_{k=0}^{j-2}(a+k d)+1\end{array}\right\} L_{i}\right\}$.
Clearly $G_{j} \subset G_{j+1}$ for $1 \leq j \leq n-1$.
Therefore $G_{1}, G_{2}, \ldots, G_{n}$ is an $(a, d)-A S D$ into n-parts of W_{m}.
Subcase(a)(ii): Suppose a and d are odd.
Define when $a=1, d=1, G_{1}=\left(v_{m}, v_{1}\right)$ and $G_{2}=\left(v_{1}, v_{2}\right) \cup\left(v_{m}, v_{2}\right)$.
Define when $a=1, d>1, G_{1}=\left(v_{m}, v_{1}\right)$
$G_{2}=\left(v_{\ell+1}, v_{\ell+2}\right) \cup \bigcup_{i=\ell+2}^{p} L_{i} \cup\left(v_{m}, v_{p+1}\right)$ where $\ell=\left\lfloor\frac{a}{2}\right\rfloor$ and $p=\left\lfloor\frac{a}{2}\right\rfloor+\left\lfloor\frac{a+d}{2}\right\rfloor$.
Define when $a>1$ and $d>1$

$$
\begin{aligned}
& G_{1}=\left\{\bigcup_{i=1}^{\ell} L_{i}\right\} \cup\left(v_{m}, v_{\ell+1}\right) \\
& G_{2}=\left(v_{\ell+1}, v_{\ell+2}\right) \cup \bigcup_{i=\ell+2}^{p} L_{i} \cup\left(v_{m}, v_{p+1}\right) \text { where } \ell=\left\lfloor\frac{a}{2}\right\rfloor \text { and } p=\left\lfloor\frac{a}{2}\right\rfloor+\left\lfloor\frac{a+d}{2}\right\rfloor .
\end{aligned}
$$

Let $m_{j}=\left\lfloor\frac{a+k d}{2}\right\rfloor+\left\lfloor\frac{j}{4}\right\rfloor$
$a=3, d=1$

Figure 3.2.
When $j \equiv 3(\bmod 4)$, define

$$
G_{j}=\left(v_{\ell+1}, v_{\ell+2}\right) \cup\left\{\begin{array}{l}
\sum_{k=0}^{j-1} m_{j}+1 \\
\bigcup_{i=\sum_{k=0}^{j-2} m_{j}+2}
\end{array}\right\} \text { where } \quad \ell=\sum_{k=0}^{j-2} m_{j}
$$

When $j \equiv 0(\bmod 4)$, define $G_{j}=\left\{\begin{array}{c}\sum_{k=0}^{j-1} m_{j} \\ \bigcup_{i=\sum_{k=0}^{j-2} m_{j}+1} L_{i}\end{array}\right\}$.
When $j \equiv 1(\bmod 4),(j>1)$, define

$$
G_{j}=\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
\bigcup_{i=}^{j-2} \sum_{k=0} m_{j}+1
\end{array}\right\} \cup\left(v_{m}, v_{p+1}\right) \text { where } p=\sum_{k=0}^{j-1} m_{j} .
$$

When $j \equiv 2(\bmod 4),(j>2)$, define

$$
\begin{aligned}
& G_{j}=\left(v_{p+1}, v_{p+2}\right) \cup\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
\bigcup_{j-2}^{j-2} L_{i} \\
i=\sum_{k=0} m_{j}+2
\end{array}\right\} \cup\left(v_{m}, v_{\ell+1}\right) \\
& \quad \text { where } p=\sum_{k=0}^{j-2} m_{j} \text { and } \ell=\sum_{k=0}^{j-1} m_{j}
\end{aligned}
$$

In the above construction addition of indices being taken modulo $(m-1)$ with residues $1,2, \ldots, m-1$.
Clearly $G_{j} \subset G_{j+1}$ for $1 \leq j \leq n-1$.
Therefore, $G_{1}, G_{2}, \ldots, G_{n}$ is an $(a, d)-A S D$ of W_{m}.
Subcase (a)(iii) Suppose a is even and d is odd.

$$
\begin{aligned}
& G_{1}=\bigcup_{i=1}^{\ell} L_{i} \\
& G_{2}=\bigcup_{i=\ell+1}^{p} L_{i} \cup\left(v_{m}, v_{p+1}\right) \text { where } \ell=\frac{a}{2} \text { and } p=\frac{a}{2}+\left\lfloor\frac{a+d}{2}\right\rfloor
\end{aligned}
$$

$$
a=4, d=1
$$

Figure 3.3.

Let $m_{j}=\left\lfloor\frac{a+k d}{2}\right\rfloor+\left\lfloor\frac{j}{4}\right\rfloor$.
When $j \equiv 3(\bmod 4)$, define

$$
\begin{gathered}
G_{j}=\left(v_{\ell+1}, v_{\ell+2}\right) \cup\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
\bigcup_{j=2}^{j-2} L_{i} \\
i=\sum_{k=0} m_{j}+2
\end{array}\right\} \cup\left(v_{m}, v_{p+1}\right) \\
\quad \text { where } \ell=\sum_{k=0}^{j-2} m_{j} \text { and } p=\sum_{k=0}^{j-1} m_{j}
\end{gathered}
$$

When $j \equiv 0(\bmod 4)$, define

$$
G_{j}=\left(v_{\ell}, v_{\ell+1}\right) \cup\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
i=\sum_{k=0}^{j-2} m_{j}+1
\end{array} L_{i}\right\} \text { where } \ell=\sum_{k=0}^{j-2} m_{j}
$$

When $j \equiv 1(\bmod 4),(j>1)$, define

$$
G_{j}=\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
\bigcup_{i=2}^{j-2} L_{i} \\
i=m_{k=0}+1
\end{array}\right\}
$$

When $j \equiv 2(\bmod 4),(j>2)$, define

$$
G_{j}=\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
\bigcup_{i=}^{j-2} \sum_{k=0} m_{j}+1
\end{array}\right\} \cup\left(v_{m}, v_{\ell+1}\right) \text { where } \ell=\sum_{k=0}^{j-1} m_{j}
$$

In the above construction addition of indices being taken modulo $(m-1)$ with residues $1,2, \ldots, m-1$.
Clearly $G_{j} \subset G_{j+1}$ for $1 \leq j \leq n-1$.
Therefore, $G_{1}, G_{2}, \ldots, G_{n}$ is an $(a, d)-A S D$ into n parts of W_{m}.

Subcase (a)(iv): Suppose a is odd and d is even.
Define $G_{1}=\left(v_{m}, v_{1}\right)$ when $a=1, d \geq 2$

$$
G_{1}=\left\{\bigcup_{i=1}^{\ell} L_{i}\right\} \cup\left(v_{m}, v_{\ell+1}\right) \text { when } a>1, d \geq 2
$$

$$
G_{2}=\left(v_{\ell+1}, v_{\ell+2}\right) \cup \bigcup_{i=\ell+2}^{p} L_{i} \text { where } \ell=\left\lfloor\frac{a}{2}\right\rfloor \text { and } p=\left\lfloor\frac{a}{2}\right\rfloor+\left\lfloor\frac{a+d}{2}\right\rfloor+1 .
$$

Let $m_{j}=\left\lfloor\frac{a+k d}{2}\right\rfloor+\left\lfloor\frac{j}{2}\right\rfloor$.
When $j \equiv 3(\bmod 4)$, define

$$
G_{j}=\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
\bigcup_{i=}^{j-2} \sum_{k=0} m_{j}+1
\end{array}\right\} \cup\left(v_{m}, v_{\ell+1}\right) \text { where } \ell=\sum_{k=0}^{j-1} m_{j}
$$

$$
a=1, d=2
$$

Figure 3.4.

When $j \equiv 0(\bmod 4)$, define

$$
\left.G_{j}=\left(v_{\ell}, v_{\ell+1}\right) \cup\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
i=\sum_{k=0}^{j-2} m_{j}+1
\end{array}\right\} L_{i}\right\} \text { where } \ell=\sum_{k=0}^{j-2} m_{j}
$$

When $j \equiv 1(\bmod 4),(j>1)$, define

$$
G_{j}=\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
i=\sum_{k=0}^{j-2} m_{j}+1
\end{array}\right\} \cup\left(v_{m}, v_{p+1}\right) \text { where } p=\sum_{k=0}^{j-1} m_{j}
$$

When $j \equiv 2(\bmod 4),(j>2)$, define

$$
G_{j}=\left(v_{p}, v_{p+1}\right) \cup\left\{\begin{array}{c}
\sum_{k=0}^{j-1} m_{j} \\
i=\sum_{k=0}^{j-2} m_{j}+1
\end{array}\right\} \text { where } p=\sum_{k=0}^{j-2} m_{j}
$$

In the above construction addition of indices beinig taken modulo $(m-1)$ with residues $1,2, \ldots, m-1$.
Clearly $G_{j} \subset G_{j+1}$ for $1 \leq j \leq n-1$. Therefore, $G_{1}, G_{2}, \ldots, G_{n}$ is an $(a, d)-A S D$ into n parts of W_{m}.
Case (b): Let $n \equiv 1(\bmod 4)$.
The proof of this case is anologus to subcases a(i) and a(iii).
Case (c) : Let $n \equiv 2(\bmod 4)$.
The proof of this case is anologus to subcases a(i) and a(iv).
Case (d): Let $n \equiv 3(\bmod 4)$.
The proof of this case is anologus to subcases a(i) and a(ii).

References

[1] Y. Alavi, A. J. Boals, G. Chartrand, P. Erdos and O. R. Oellermann, The ascending subgraph decomposition problem, Congressus Numerantium 58 (1987), 7-14.
[2] J. Bosak, Decomposition of graphs, Mathematics and its applications, Vol. 47 (East European series), Kluwer Academic Publications, 1980.
[3] R. J. Faudree, A. Gyarfas and R. H. Schelp, Graphs which have an ascending subgraph decomposition, Congressus Numerantium 59 (1987), 49-54.
[4] F. Harary, Graph Theory, Addition-Wesley Publishing company Inc., USA, 1969.

Department of Mathematics, V.O.C. College, Tuticorin-628008, Tamilnadu, India.
Department of Mathematics, V.O.C. College, Tuticorin-628008, Tamilnadu, India.

[^0]: Received August 3, 2005.

 * Corresponding author.

