
TAMKANG JOURNAL OF MATHEMATICS

Volume 37, Number 4, 377-390, Winter 2006

THE (a, d)-ASCENDING SUBGRAPH DECOMPOSITION

A. NAGARAJAN AND S. NAVANEETHA KRISHNAN∗

Abstract. Let G be a graph of size q and a, n, d be positive integers for which n

2
(2a+(n−1)d) ≤

q < ( n+1

2
)(2a + nd). Then G is said to have (a, d)- ascending subgraph decomposition into n

parts ((a, d) − ASD) if the edge set of G can be partitioned into n-non-empty sets generating

subgraphs G1, G2, G3, . . ., Gn without isolated vertices such that each Gi is isomorphic to a

proper subgraph of Gi+1 for 1 ≤ i ≤ n − 1 and |E(Gi)| = a + (i − 1)d. In this paper, we find

(a, d) − ASD into n parts for Wm.

1. Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. A
wheel on p vertices is denoted by Wp. A path of length t is denoted by Pt+1. Terms not
defined here are used in the sense of Harary [4]. Throughout this paper G ⊂ H means G

is a subgraph of H . Let G = (V, E) be a simple graph of order p and size q. If G1, G2,
. . ., Gn are edge disjoint subgraphs of G such that E(G) = E(G1)∪E(G2)∪· · ·∪E(Gn),
then {G1, G2, . . . , Gn} is said to be a decomposition of G.

The concept of ASD was introduced by Alavi et al. [1]. The graph G of size q where
(

n+1
2

)

≤ q <
(

n+2
2

)

, is said to have an ascending subgraph decomposition (ASD) if G

can be decomposed into n-subgraphs G1, G2, . . ., Gn without isolated vertices such that
each Gi is isomorphic to a proper subgraph of Gi+1 for 1 ≤ i ≤ n − 1 and |E(Gi)| = i.

We generalize this concept into (a, d) − ASD as follows:
G is a simple graph of size q and a, n, d are positive integers for which n

2 (2a + (n −
1)d) ≤ q < (n+1

2 )(2a+nd). Then (a, d)-ascending subgraph decomposition ((a, d)−ASD)
of G is the edge disjoint decomposition of G into subgraphs G1, G2, . . ., Gn without
isolated vertices such that each Gi is isomorphic to a proper subgraph of Gi+1 for 1 ≤
i ≤ n − 1 and |E(Gi)| = a + (i − 1)d.

2. Main Results

Definition 2.1. Let G be a graph of size q and a, n, d be positive integers for
which n

2 (2a + (n − 1)d) ≤ q < (n+1
2 )(2a + nd). Then G is said to have (a, d)- ascending

subgraph decomposition into n parts ((a, d)−ASD) if the edge set of G can be partitioned
into n non-empty sets generating subgraphs G1, G2, . . ., Gn without isolated vertices
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such that each Gi is isomorphic to a proper subgraph of Gi+1 for 1 ≤ i ≤ n − 1 and
|E(Gi)| = a + (i − 1)d.

Remark 2.2. From the above definition, the usual ASD of G coincides with (1, 1)−
ASD of G.

Example 2.3. Consider the Graph G.

Figure 2.1.

Clearly {G1, G2, G3} is a (1, 2) − ASD of G.

Theorem 2.4. Let G be a graph of size q, where
n

2
(2a+(n−1)d) ≤ q <

(n + 1

2

)

(2a+

nd) for some positive integer n, such that G has (a, d) − ASD into n parts, then G has

an (a, d)−ASD into n parts G1, G2, . . ., Gn such that each Gi has size a + (i− 1)d for

1 ≤ i ≤ n − 1 and Gn has size q −
(n − 1

2

)

(2a + (n − 2)d).

Proof. If q =
(n

2

)

[2a + (n − 1)d], then there is nothing to prove.

Now, suppse (n
2 )[2a + (n − 1)d] < q < (n+1

2 )[2a + nd]. Suppose G has H1, H2, . . .,
Hn as (a, d) − ASD. If the size of Hn−1 is a + (n − 2)d, then this decomposition has
the desired properties. Therefore assume that the size of Hn−1 exceeds a + (n − 1)d.
The size of H1 must exceed a. Select the edges e11, e12, . . ., e1a from H1, inorder to
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define G1, a subgraph of G induced by the set of edges {e11, e12, . . . , e1a}. Now let G2

be a graph induced by the edges e21, e22, . . ., e2(a+d) from H2 so that G1 ⊂ G2. Since

H2 is isomorphic to a subgraph H ′
3 of H3, we can choose edges e31, e32, . . ., e3d from

E(H3) − E(H ′
3) so as to define G3, a subgraph of G, induced by edges of E(H ′

3) and

the edges e31, e32, . . ., e3d. Then it is clear that |E(G3)| = a + 2d and G2 ⊂ G3.

Proceeding as before, we may define the graphs G1, G2, . . ., Gk (3 ≤ k ≤ n − 2) such

that |E(Gk)| = a + (k − 1)d and Gk−1 ⊂ Gk. From the above construction, we observe

that each Gk (1 ≤ k ≤ n − 2) is a subgraph of Hk. Now we construct Gk+1 as follows:

Since Gk is isomorphic to a sbugraph H ′
k of Hk, we choose the edges ek1, ek2, . . ., ekd

from E(Hk) − E(H ′
k) such that the subgraph Gk+1 is induced by the edges of E(H ′

k)

and {ek1, ek2, . . . , ekd}. Also note that |E(Gk+1)| = a + (k− 1)d + d = a + kd. Therefore

there exist graphs G1, G2, . . ., Gn−1 such that |E(Gi)| = a + (i − 1)d for 1 ≤ i ≤ n − 1

and Gi ⊂ Gi+1 for 1 ≤ i ≤ n − 2. Now define Gn, the subgraph of G induced by the

edges of E(G)−
n−1
⋃

i=1

E(Gi). Hence G has the required (a, d)−ASD into n parts namely

G1, G2, . . ., Gn. Clearly every graph does not posses (a, d) − ASD into n parts. Now

we wish to identify those graphs which admit (a, d) − ASD into n parts.

The following number theoretical result will be useful for proving further results.

Lemma 2.5. Given that the numbers a, a + d, a + 2d, . . ., a + (n − 1)d are in

A.P (a, d ∈ Z). Then their sum is

i) Sn = (a − d)n + d
(

n+1
2

)

if d ≤ a and

ii) Sn = a
(

n+1
2

)

+ (d − a)
(

n
2

)

if d ≥ a.

Theorem 2.6. G admits (a, d) − ASD into n parts. Then a = q − k, 2 ≤ k ≤ q − 1

if and only if d = 2(nk−(n−1)q)
n(n−1) .

Proof. Suppose a = q − k, 2 ≤ k ≤ q − 1.

As G adimts (a, d) − ASD into n-parts, we have

a + (a + d) + (a + 2d) + · · · + a + (n − 1)d = q

na + d

(

n

2

)

= q

n(n − 1)d = 2(q − na)

n(n − 1)d = 2(q − n(q − k)) as a = (q − k)

n(n − 1)d = 2(nk − (n − 1)q).

Hence d =
2(nk − (n − 1)q)

n(n − 1)
.

Conversely, suppose d =
2(nk − (n − 1)q)

n(n − 1)
—— > (1).
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As G admits (a, d) − ASD into n parts, we have

a + (a + d) + (a + 2d) + · · · + a + (n − 1)d = q

na + d

(

n

2

)

= q

na + [nk − (n − 1)q] = q by (1)

n(q − a) = nk.

Hence a = q − k.

Corollary 2.7. If G admits (a, d) − ASD into n even number of parts and let

a = q − k, 2 ≤ k ≤ q − 1, then k ≡ 0 (mod n − 1).

Proof. Given a = q − k, 2 ≤ k ≤ q − 1.

By 2.6, n(n − 1)d = 2nk − 2(n − 1)q

(n − 1)[nd + 2q] = 2nk

nd + 2q =
2nk

(n − 1)
(n > 3).

As (n − 1, n) = 1 and n is even, n − 1 divides k. Therefore, k ≡ 0 (mod n − 1)

Observation 2.8. If G admits (a, d) − ASD into n parts, then 1 ≤ a ≤
q−(n

2)
n

and
1 ≤ d ≤ q−n

(n

2)
.

Proof. Suppose G admits (a, ) − ASD into n parts. Then we have,

a + (a + d) + (a + 2d) + · · · + a + (n − 1)d = q

na + d

(

n

2

)

= q —— > (1)

na +

(

n

2

)

≤ q as d ≥ 1, therefore a ≤
q −

(

n
2

)

n
.

Alos from (1) and since a ≥ 1, n +
(

n
2

)

d ≤ q, d ≤ q−n

(n

2)
.

Hence we have 1 ≤ a ≤
q−(n

2)
n

and 1 ≤ d ≤ q−n

(n

2)
.

Corollary 2.9. If G admits (a, d) − ASD into two parts, then 1 ≤ a ≤ q−1
2 and

1 ≤ d ≤ q − 2.

Corollary 2.10. If G admits (a, d)−ASD into two parts and if a = q−1
2 , then d = 1.

Corollary 2.11. If G admits (a, d) − ASD into two parts and if d = q − 2, then

a = 1.
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Corollary 2.12. If G admits (a, d) − ASD into two parts and let d = q − k where

2 ≤ k ≤ q − 1, then k is even.

Proof. Since G admits (a, d) − ASD into 2 parts

a + (a + d) = q

2a + d = q

2a + q − k = q, as d = q − k.

Therefore, k = 2a.

Corollary 2.13. If G admits (a, d) − ASD into three parts, then 1 ≤ a ≤ q−3
3 and

1 ≤ d ≤ q−3
3 .

3. (a, d) − ASD on Wheel

In this section for proving Wm = K1 + Cm−1 (m ≥ 4) admits (a, d) − ASD into n

parts, we need the following results.

Theorem 3.1. If Wm admits (a, d) − ASD into n-parts, then

a) For n ≡ 0 (mod 4),

i) either a ≥ 1 and d ≡ 1 (mod 2) or a ≥ 1 and d ≡ 0 (mod 2)

ii) m ≡ n
4 + 1(mod n

2 ) when a ≥ 1 and d ≡ 1 (mod 2) and

iii) m ≡ 1(mod n
2 ) when a ≥ 1 and d ≡ 0 (mod 2).

b) For n ≡ 1 (mod 4),

i) m ≡ 1 (mod n) and ii) a ≡ 0 (mod 2).

c) For n ≡ 2 (mod 4),

i) m ≡ 1 (mod n
2 ) and ii) d ≡ 0 (mod 2).

d) For n ≡ 3 (mod 4),

i) m ≡ 1 (mod n) and ii) a is even (odd) if and only if d is even (odd).

Proof. Suppose Wm admits (a, d) − ASD into n-parts. Then we have,

a + (a + d) + (a + 2d) + · · · + a + (n − 1)d = q
n

2
(2a + (n − 1)d) = 2(m − 1) as q = 2(m − 1)

n(2a + (n − 1)d) = 4(m − 1) —— > (1)

Case (a): Suppose n ≡ 0 (mod 4).

Let n = 4k, (k ∈ z+).

Sub case (a)(i): Suppose k is odd, then by (i) (m − 1) is either odd or even.

Suppose (m − 1) is odd, then a ≥ 1 and d ≡ 1 (mod 2).

Suppose (m − 1) is even, then a ≥ 1 and d ≡ 0 (mod 2).



382 A. NAGARAJAN AND S. NAVANEETHA KRISHNAN

Sub case (a)(i)(a): Suppose k is even.

Then (m − 1) must be even. Therefore d ≡ 0 (mod 2) or d ≡

1 (mod 2).

Hence either a ≥ 1 and d ≡ 1 (mod 2) or a ≥ 1 and d ≡ 0 (mod 2).

Sub case a(ii): Suppose a ≥ 1 and d ≡ 1 (mod 2).

Let d = 2r + 1 (r ∈ z+ ∪ {0}), By using (1) we have,

n[2a + (n − 1)d] = 4(m − 1)

k[2a + (4k − 1)(2r + 1)] = (m − 1) since n = 4k

k[2a + (8kr − 2r + 4k − 2) + 1] = m − 1

2k[a + (4kr − r + 2k − 1)] = m − (k + 1).

Therefore m ≡ k + 1 (mod 2k).

Hence m ≡ n
4 + 1 (mod n

2 ).

Sub case a(iii): Suppose a > 1 and d ≡ 0 (mod 2).

Let d = 2r (r ∈ z+), By using (1) we have,

n(2a + (n − 1)d) = 4(m − 1)

k(2a + (n − 1)2r) = (m − 1) since n = 4k

2k(a + (n − 1)r) = m − 1.

Therefore m ≡ 1 (mod 2k).

Hence m ≡ 1 (mod n
2 ).

Case (b): Suppose n ≡ 1 (mod 4).

Let n = 4k + 1 (k ∈ z+), By using (1) we have,

n[2a + (n − 1)d] = 4(m − 1)

n(2a + 4kd) = 4(m − 1)

n(a + 2kd) = 2(m − 1).

As a, d are integers and n is odd, (b)(i) follows clearly.

As n is odd, (b)(ii) follows clearly.

Case (c): Suppose n ≡ 2 (mod 4).

Let n = 4k + 2 (k ∈ z+), By using (1) we have,

n(2a + (n − 1)d) = 4(m − 1)

(4k + 2)(2a + (n − 1)d) = 4(m − 1)

2(m − 1) = (2k + 1)ℓ where ℓ = 2a + (n − 1)d.

The above equation is true only when ℓ is even. Then (c)(i) follows. Further,

since ℓ is even and n is even, then (c)(ii) follows.
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Case (d): Suppose n ≡ 3 (mod 4).

Let n = 4k + 3 (k ∈ z+ ∪ {0}), By using (1) we have,

n(2a + (n − 1)d) = 4(m − 1)

n(2a + (4k + 2)d) = 4(m − 1)

n(a + (2k + 1)d) = 2(m − 1).

As a, d are integers and n is odd, then (d)(i) follows clearly.

As n is odd, (d)(ii) follows clearly.

Theorem 3.2. If Wm admits (a, d) − ASD into n-parts, then 1 ≤ a ≤
q −

(

n
2

)

n
and

1 ≤ d ≤
q − n
(

n
2

) .

Proof. Suppose Wm admits (a, d) − ASD into n-parts. Then by 2.8, we have

1 ≤ a ≤
q −

(

n
2

)

n
and 1 ≤ d ≤

q − n
(

n
2

) .

Theorem 3.3. Wm adimts (a, d) − ASD into n-parts if and only if

a) For n ≡ 0 (mod 4),

i) either a ≥ 1 and d ≡ 1 (mod 2) or a ≥ 1 and d ≡ 0 (mod 2).

ii) a) m ≡ n
4 + 1(mod n

2 ) and b) m ≥ n(n+1)
4 + 1 when a ≥ 1 and d ≡ 1 (mod 2).

iii) a) m ≡ 1(mod n
2 ) and b) m ≥ n2

2 + 1 when a ≥ 1 and d ≡ 0 (mod 2).

b) For n ≡ 1 (mod 4),

i) m ≡ 1 (mod n), ii) a ≡ 0 (mod 2) and iii) m ≥ n(n+3)
4 + 1.

c) For n ≡ 2 (mod 4),

i) m ≡ 1 (mod n
2 ), ii) d ≡ 0 (mod 2) and iii) m ≥ n2

2 + 1.
d) For n ≡ 3 (mod 4),

i) m ≡ 1 (mod n), ii) a and d are both even or both odd and iii) m ≥ n(n+1)
4 + 1.

Proof. The proof of the necessary part follows from 3.1. Conversely,

Let V (Wm) = {v1, v2, . . . , vm} and

E(Wm) = {(vi, vi+1)|1 ≤ i ≤ m − 1} ∪ {(vm, vi)|1 ≤ i ≤ m − 1}.

Define Li = (vi, vi+1) ∪ (vm, vi), 1 ≤ i ≤ m − 1.

Case (a): Let n ≡ 0 (mod 4).

Subcase (a)(i): Suppose a and d are even.
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a = 4, d = 2

Figure 3.1.

Define G1 =

a

2
⋃

i=1

Li and for 2 ≤ j ≤ n, Gj =







































1

2

j−1
∑

k=0

(a + kd)

⋃

i=
1

2

j−2
∑

k=0

(a + kd) + 1

Li







































.

Clearly Gj ⊂ Gj+1 for 1 ≤ j ≤ n − 1.
Therefore G1, G2, . . ., Gn is an (a, d) − ASD into n-parts of Wm.

Subcase(a)(ii): Suppose a and d are odd.
Define when a = 1, d = 1, G1 = (vm, v1) and G2 = (v1, v2) ∪ (vm, v2).
Define when a = 1, d > 1, G1 = (vm, v1)

G2 =(vℓ+1, vℓ+2) ∪

p
⋃

i=ℓ+2

Li ∪ (vm, vp+1) where ℓ =
⌊

a
2

⌋

and p =
⌊

a
2

⌋

+
⌊

a+d
2

⌋

.

Define when a > 1 and d > 1

G1=

{

ℓ
⋃

i=1

Li

}

∪ (vm, vℓ+1)

G2=(vℓ+1, vℓ+2)∪

p
⋃

i=ℓ+2

Li∪(vm, vp+1) where ℓ=
⌊a

2

⌋

and p=
⌊a

2

⌋

+
⌊a + d

2

⌋

.

Let mj =
⌊

a+kd
2

⌋

+
⌊

j
4

⌋
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a = 3, d = 1

Figure 3.2.

When j ≡ 3 (mod 4), define

Gj = (vℓ+1, vℓ+2) ∪







































j−1
∑

k=0

mj + 1

⋃

i=

j−2
∑

k=0

mj + 2

Li







































where ℓ =

j−2
∑

k=0

mj .

When j ≡ 0 (mod 4), define Gj =







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































.

When j ≡ 1 (mod 4), (j > 1), define

Gj =







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































∪(vm, vp+1) where p =

j−1
∑

k=0

mj .
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When j ≡ 2 (mod 4), (j > 2), define

Gj = (vp+1, vp+2) ∪







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 2

Li







































∪ (vm, vℓ+1)

where p =

j−2
∑

k=0

mj and ℓ =

j−1
∑

k=0

mj.

In the above construction addition of indices being taken modulo (m−1) with

residues 1, 2, . . . , m − 1.

Clearly Gj ⊂ Gj+1 for 1 ≤ j ≤ n − 1.

Therefore, G1, G2, . . ., Gn is an (a, d) − ASD of Wm.

Subcase (a)(iii) Suppose a is even and d is odd.

G1 =
ℓ

⋃

i=1

Li

G2 =

p
⋃

i=ℓ+1

Li ∪ (vm, vp+1) where ℓ =
a

2
and p =

a

2
+

⌊a + d

2

⌋

a = 4, d = 1

Figure 3.3.
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Let mj =
⌊a + kd

2

⌋

+
⌊ j

4

⌋

.

When j ≡ 3 (mod 4), define

Gj = (vℓ+1, vℓ+2) ∪







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 2

Li







































∪ (vm, vp+1)

where ℓ =

j−2
∑

k=0

mj and p =

j−1
∑

k=0

mj .

When j ≡ 0 (mod 4), define

Gj = (vℓ, vℓ+1) ∪







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































where ℓ =

j−2
∑

k=0

mj.

When j ≡ 1 (mod 4), (j > 1), define

Gj =







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































.

When j ≡ 2 (mod 4), (j > 2), define

Gj =







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































∪ (vm, vℓ+1) where ℓ =

j−1
∑

k=0

mj .

In the above construction addition of indices being taken modulo (m−1) with
residues 1, 2, . . . , m − 1.
Clearly Gj ⊂ Gj+1 for 1 ≤ j ≤ n − 1.
Therefore, G1, G2, . . ., Gn is an (a, d) − ASD into n parts of Wm.
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Subcase (a)(iv): Suppose a is odd and d is even.

Define G1 = (vm, v1) when a = 1, d ≥ 2

G1 =
{

ℓ
⋃

i=1

Li

}

∪ (vm, vℓ+1) when a > 1, d ≥ 2

G2 = (vℓ+1, vℓ+2)∪

p
⋃

i=ℓ+2

Li where ℓ =
⌊a

2

⌋

and p =
⌊a

2

⌋

+
⌊a + d

2

⌋

+1.

Let mj =
⌊a + kd

2

⌋

+
⌊ j

2

⌋

.

When j ≡ 3 (mod 4), define

Gj =







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































∪ (vm, vℓ+1) where ℓ =

j−1
∑

k=0

mj

a = 1, d = 2

Figure 3.4.
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When j ≡ 0 (mod 4), define

Gj = (vℓ, vℓ+1) ∪







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































where ℓ =

j−2
∑

k=0

mj.

When j ≡ 1 (mod 4), (j > 1), define

Gj =







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































∪ (vm, vp+1) where p =

j−1
∑

k=0

mj .

When j ≡ 2 (mod 4), (j > 2), define

Gj = (vp, vp+1) ∪







































j−1
∑

k=0

mj

⋃

i=

j−2
∑

k=0

mj + 1

Li







































where p =

j−2
∑

k=0

mj.

In the above construction addition of indices beinig taken modulo (m−1) with

residues 1, 2, . . . , m − 1.
Clearly Gj ⊂ Gj+1 for 1 ≤ j ≤ n − 1. Therefore, G1, G2, . . ., Gn is an

(a, d) − ASD into n parts of Wm.
Case (b): Let n ≡ 1 (mod 4).

The proof of this case is anologus to subcases a(i) and a(iii).
Case (c): Let n ≡ 2 (mod 4).

The proof of this case is anologus to subcases a(i) and a(iv).
Case (d): Let n ≡ 3 (mod 4).

The proof of this case is anologus to subcases a(i) and a(ii).
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