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CONTINUOUS ANALOGUE OF ALZER’S INEQUALITY

SU-LING ZHANG, CHAO-PING CHEN AND FENG QI

Abstract. Let b > a > 0 and δ > 0 be real numbers, then, for all real r,
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Both bounds are best possible.

1. Introduction

It has been shown in [3, 12] that
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for all natural numbers n, and all real r. Both bounds of (1) are best possible. This
extends a result given by H. Alzer [1], who established this inequality for r > 0. For
r > 0, several easy proofs of (1) have been published by different authors, see [2, 11, 15].
For convience, we call (1) Alzer’s inequality.

In this paper, we present a continuous analogue of (1) as follows:

Theorem. Let b > a > 0 and δ > 0 be real numbers, then, for all real r,
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Both bounds are best possible.

Remark. Our theorem extends a result given by F. Qi [10], who established the
inequality (2) for r > 0. In fact, (2) can be written as
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< 1, (3)
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where Lr(a, b) denotes the generalized logarithmic mean of two positive numbers a, b.

For convience, let us recall that the generalized logarithmic mean Lr(a, b) of two positive

numbers a, b is defined in [5, 13, 14] for a = b by Lr(a, b) = a and for a 6= b by
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, r 6= −1, 0;
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L(a, b) and I(a, b) are respectively called the logarithmic mean and exponential mean of

two positive numbers a, b. When a 6= b, Lr(a, b) is a strictly increasing function of r. In

particular,

lim
r→−∞

Lr(a, b) = min{a, b}, lim
r→+∞

Lr(a, b) = max{a, b}.

2. Proof of (3)

For r = −1. Then the left hand inequality of (3) is
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Define the function f by
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which implies (4).
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For r = 0. Then the left hand inequality of (3) is
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Since the logarithmic mean L(a, b) is strictly increasing with respect to the two variables
a and b, (5) holds obviously.

For r(r + 1) 6= 0. Then the left hand inequality of (3) is equivalent to
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i.e. (since (b + δ)r+1 − br+1 ≷ 0 according as r + 1 ≷ 0),
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By the mean value theorem for derivatives,
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according as r(r + 1) ≷ 0, which implies (6).
Since the generalized logarithmic mean Lr(a, b) is strictly increasing with respect to

the two variables a and b (see [4, 6, 7, 8, 9]), the right hand inequality of (3) holds
obviously.

It is clear that
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Thus, the both bounds given in (3) are best possible. The proof of (3) is complete.
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