
TAMKANG JOURNAL OF MATHEMATICS

Volume 37, Number 2, 109-116, Summer 2006

PROXIMAL EXTRAGRADIENT METHODS FOR PSEUDOMONOTONE

VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR1 AND ABDELLAH BNOUHACHEM2

Abstract. We consider and analyze some new proximal extragradient type methods for solving

variational inequalities. The modified methods converge for pseudomonotone operators, which

is a weaker condition than monotonicity. These new iterative methods include the projection,

extragradient and proximal methods as special cases.

1. Introduction

Variational inequalities have had a great impact and influence in the development of

almost all branches of pure and applied sciences. There are several numerical methods

including projection, the Wiener-Hopf equations , proximal auxiliary principle techniques

for solving variational inequalities, see [1-6]. It is well known that the convergence of

the projection method requires the operator T to be strongly monotone and Lipschitz

continuous. These strict conditions rule out many applications of the projection method

for a wide class of problems. These facts motivated to modify the projection method and

its variant forms. The extragradient method overcomes this difficulty by the technique of

updating the solution, which modified the projection method by performing additional

step and projection at each step according to double projection formula. It is worth

mentioning that the convergence of the extragradient method requires that the solution

exists and the operator to be monotone and Lipschitz continuous. When the operator is

not Lipschitz continuous or when the Lipschitz continuous is not known, the extragradi-

ent method and its variant forms require an Armijo-like line search procedure to compute

the step size with a new projection needed for each trial, which leads to expensive com-

putation. To overcome these draw backs, many authors have suggested and proposed

some modified extragradient methods for solving variational inequalities. Recently He at

el. [4] have considered a class of modified proximal-extragradient methods, which uses a
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better step-size rule (inexactness criteria) and includes the proximal and the extragra-

dient methods as a special cases. They have shown the convergence of this approximate

proximal method requires only monotonicity. Inspired and motivated by the research

going in this dynamic field, we suggest a new modified proximal extragradient method

for solving the variational inequalities. We show that the convergence of our methods

requires the pseudomonotonicity. As a special case, we conclude that the convergence of

the approximate proximal extragradient method of He, Yang and Yuan [4] requires the

pseudomonotonicity, which is a weaker condition than monotonicity. Thus our results

improve the convergence criteria of methods of He and Yang [4]. Our results can also be

viewed as a significant extension and generalization of the previously known methods for

solving variational inequalities and related optimization problems.

2. Formulation

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉

and ‖ · ‖ respectively. Let K be a closed convex set in H and T : H → H be a nonlinear

operator. We consider the problem of finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀ v ∈ K. (1)

Problem (1) is called the variational inequality , which was introduced and studied by

Stampacchia [8] in 1964. It has been shown that a large class of obstacle, unilateral, con-

tact, free, moving, and equilibrium problems arising in regional, physical, mathematical,

engineering and applied sciences can be studied in the unified and general framework of

the variational inequalities (1), see [1-12].

Lemma 2.1. For a given z ∈ H, u ∈ K satisfies the inequality

〈u − z, v − u〉 ≥ 0, ∀v ∈ K, (2)

if and only if

u = PK [z],

where PK is the projection of H onto K. Also, the projection operator PK is nonexpansive

and satisfies the inequality

‖PK [z] − u‖2 ≤ ‖z − u‖2 − ‖z − PK [z]‖2.

Definition 2.1. ∀u, v ∈ H , the operator T : H → H is said to be

(i) monotone, if

〈Tu − Tv, u − v〉 ≥ 0.

(ii) pseudomonotone, if

〈Tu, v − u〉 ≥ 0 implies 〈Tv, v − u〉 ≥ 0.
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Note that monotonicity implies pseudomonotonicity but the converse is not true [2].

3. Main Results

In this section, we use the projection technique to suggest some iterative methods for
solving the variational inequalities. For this purpose, we need the following result, which
can be proved by invoking Lemma 2.1.

Lemma 3.1. The function u ∈ K is a solution of (1) if and only if u ∈ K satisfies
the relation

u = PK [u − ρTu], (3)

where ρ > 0 is a constant.

Lemma 3.1 implies that problems (1) and (5) are equivalent. This alternative for-
mulation is very important from the numerical analysis point of view and has played a
significant part in suggesting several numerical methods for solving variational inequali-
ties and complementarity problems, see [17,10-12].

We now define the projection residue vector by the relation

R(u) = u − PK [u − ρTu] = u − y, (4)

y = PK [u − ρTu]. (5)

Invoking Lemma 3.1, one can easily show that u ∈ K is a solution of (1) if and only if
u ∈ K is a zero of the equation

R(u) = 0. (6)

For a positive constant α, equation (6) can be written as:

u = u − αR(u) = u − α{u − PK [u − ρTu]}.

We use this fixed-point formulation to suggest the following iterative method for
variational inequalities (1).

This fixed-point formulation can be used to suggest the following iterative method.

Algorithm 3.1. For a given u0 ∈ H, compute the approximate solution un+1 by the
iterative scheme

un+1 = PK [un − γnR(un+1)]

= PK [un − γn{un − PK [un − ρTun+1]}], n = 0, 1, 2, . . . ,

or equivalently

yn = PK [un − ρTun+1] (7)

un+1 = PK [un − γn{un − yn}], n = 0, 1, 2, . . . (8)
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which can be considered as a proximal point method and appears to be a new one. Note

that for γn = 1, Algorithm 3.1 reduces to:

Algorithm 3.2. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

un+1 = PK [un − ρTun+1], n = 0, 1, 2 . . .

which is known as the proximal method. In recent years, proximal methods have been

considered and studied extensively. Several conditions have been studied which are easy

to implement and to accelerate the convergence; see [4,10,12].

Now we look at Algorithm 3.3 from a different angle. Consider y defined by (5) as

an approximate solution of the variational inequality (1) and define

w = PK [u − γ(u − y)] (9)

z = PK [u − ρTw]. (10)

We use this formulation to suggest the following iterative method

Algorithm 3.4. For a given u0 ∈ H, calculate the approximate solution un+1 by the

iterative schemes;

yn = PK [un − ρTun]

wn = PK [un − γ(un − yn)]

un+1 := zn = PK [un − ρTwn], n = 0, 1, 2, . . .

which is called the modified extragradient method and appears to be a new one. Note

that for γ = 1, Algorithm 3.4 reduces to

Algorithm 3.5. For a given u0 ∈ H, compute the approximate solution un+1 by the

iterative scheme

yn = PK [un − ρTun]

un+1 = PK [un − ρTyn], n = 0, 1, 2, . . .

which is exactly the extragradient method for solving the general variational inequality

(1).

For a positive constant α, consider

u = u − α(u − z). (11)

Here the positive constant α can be viewed as a step length along the direction −(u−z).

We use this fixed-point formulation to suggest the following iterative method.
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Algorithm 3.6. For a given u0 ∈ H, compute the following iterative schemes:

yn = PK [un − ρnTun]

wn = PK [un − γn(un − yn)]

zn = PK [un − ρnTwn] (12)

un+1 = PK [un − α(un − zn)], n = 0, 1, 2, . . . (13)

α =
‖zn − wn‖

2 + ‖un − zn‖
2 −△(wn)

2‖un − zn‖2
(14)

where

△(wn) ≤ ν(‖zn − wn‖
2 + ‖un − zn‖

2), ν < 1

= ν{2〈wn − zn, wn − un + ρnTwn〉 − ‖wn − zn‖
2}. (15)

Here △(wn) is known as the inexactness criteria and can be viewed as stepsize.

For α = 1 and zn = wn, Algorithm 3.6 is exactly Algorithm 3.4. If y = w, then
Algorithm 3.6 reduces to:

Algorithm 3.7. For a given u∈H, compute the approximate solution un+1 by the
iterative schemes

yn = PK [un − ρnTun]

wn = PK [un − γ(un − yn)]

un+1 := zn = PK [un − α(un − wn)], n = 0, 1, 2, . . .

α =
‖un − yn‖

2 + ‖un − wn‖
2 −△(yn)

2‖un − wn‖2

which is an approximate extragradient projection method for solving (1). In particular,
for γ = 1, the identity operator, Algorithm 3.7 is exactly the same as considered by He,
Yang and Yuan [4] for solving the variational inequalities (1). If yn is defined by (7), then
Algorithm 3.4-3.7 are called the approximate proximal extragradient methods, which are
new ones. In a similar way, one can obtain several new and known algorithms as special
cases of Algorithm 3.6. This shows that Algorithm 3.6 unifies several recently proposed
(implicit or explicit ) algorithms for solving variational inequalities.

We now study the convergence analysis of Algorithm 3.6. The analysis is in the
spirit of He, Yang and Yuan [4] and Noor [12]. To convey the idea and for the sake of
completeness, we include the details.

Theorem 3.1. Let the operator T be pseudomonotone. If u ∈ K be a solution of the
variational inequality (1) and un+1 be the approximate solution obtained from Algorithm
3.6, then

‖un+1(α) − u‖2 ≤ ‖un − u‖2 −
(1 − ν)2

4
{‖un − wn‖

2

+‖un − zn‖
2}. (16)
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Proof. Let u ∈ K be a solution of (1). Then

〈Tu, v − u〉 ≥ 0, ∀v ∈ K,

implies that

〈Tv, v − u〉 ≥ 0, (17)

since T is pseudomonotone.
Taking v = wn in (17), we have

〈Twn, wn − u〉 ≥ 0,

which can be written as

〈Twn, zn − u〉 ≥ 〈Twn, zn − wn〉. (18)

Taking z = [un − ρnTwn], u = zn and v = u in (2), we have

〈un − ρnTwn − zn, un − u〉 ≥ 0,

from which we have

〈un − zn, un − u〉 ≥ 〈un − u, ρnTwn〉. (19)

¿From (18) and (19), we have

〈un − zn, zn − wn〉 ≥ 〈ρnTwn, zn − wn〉. (20)

Consider

‖un − u‖2 − ‖un+1(α) − u‖2 = ‖un − u‖2

−‖PK [un − α(un − zn] − PK [u]‖2

≥ ‖un − u‖2 − ‖un − u − α(un − zn‖
2

= 2α〈un − u, un − zn〉 − α2‖un − zn‖
2

= 2α‖un − zn‖
2 + 2α〈zn − u, un − zn〉

−α2‖un − zn‖
2. (21)

Combining (15), (20) and (21), we obtain

‖un − u‖2 − ‖un+1(α) − u‖2 ≥ α{‖zn − wn‖
2 + ‖un − zn‖

2

−△ (wn)} − α2‖un − zn‖
2, (22)

which is a quadratic in α and has a maximum at

α∗ =
‖zn − wn‖

2 + ‖un − zn‖
2 −△(wn)

2‖un − wn‖2
. (23)
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From (15), (22) and (23), we have the required result (16).

Theorem 3.2. Let H be a finite dimensional subspace. If u ∈ K be a solution of (1)

and un+1 be the approximate solution obtained from Algorithm 3.6, then limn→∞(un) =
u.

Proof. Let u ∈ H be a solution of (1). From (16), it follows that the sequence
{‖u − un‖} is nonincreasing and consequently {un} is bounded. Furthermore, we have

∞∑

n=1

(1 − ν)2

4
{‖zn − wn‖

2 + ‖un − zn‖
2} ≤ ‖u0 − u‖2,

which implies that

lim
n→∞

‖zn − wn‖ = 0 (24)

lim
n→∞

‖un − zn‖ = 0. (25)

Thus we see that the sequences {wn} and {zn} are also bounded. Also from (24) and
(25), we have

‖R(wn)‖ = ‖wn − PK [wn − ρTwn]‖

= ‖wn − zn + zn − PK [wn − ρTwn]‖

≤ ‖wn − zn‖ + ‖PK [un − ρTwn] − PK [wn − ρTwn]‖

≤ ‖wn − zn‖ + ‖un − wn‖

= 0.

Thus

lim
n→∞

R(wn) = 0. (26)

Let û be a cluster point of { wn} and the subsequence {wni
} converges to û. Since

R(u) is a continuous function of u, it follows that

lim
n→∞

R(wni
) = R(û) = 0,

which shows that û is a solution of the variational inequality (1). From (24) and (25),
we know that limn→∞(yni

) = û = limn→∞(zni
). Hence from (16), we have

‖un+1 − û‖2 ≤ ‖un − û‖2, ∀n ≥ 0,

which shows that the sequence {un} converges to û, the required result.

Remark 3.1. In this paper, we have suggested and analyzed a new proximal ex-

tragradient method for pseudomonotone variational inequalities and complementarity
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problems. The convergence of the new method requires only the pseudomonotonicity of

the operator, which is a weaker condition than monotonicity. Since Algorithms 3.4-3.5

and 3.7 are special cases of Algorithm 3.6, Theorem 3.1 and Theorem 3.2 continue to

hold for these algorithms. In this respect, our results represent a significant improvement.
The comparison of this new method with the other methods is an intertesting problem

for further research.
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