SOME SUFFICIENT CONDITIONS FOR UNIVALENCE AND CLOSE-TO-CONVEXITY

S. R. SWAMY

Abstract. The author uses the method of differential subordinations to obtain some new criteria for a normalized regular function, in unit disc $E = \{ z : |z| < 1 \}$ to be close-to-convex (univalent) in E.

1. Introduction

Let f and g be regular in the unit disc $E = \{ z : |z| < 1 \}$. We say that f is subordinate to g, written $f(z) \prec g(z)$ or $f \prec g$, if there exists a function w regular in E which satisfies $w(0) = 0$, $|w(z)| < 1$ and $f(z) = g(w(z))$. If g is univalent in E then $f \prec g$ if and only if $f(0) = g(0)$ and $f(E) \subset g(E)$.

Let V denote the class of all functions f regular in the unit disc E, with $f(0) = f'(0) - 1 = 0$. Suppose that the function f is regular in E. The function f, with $f'(0) \neq 0$ is convex (univalent) in E if and only if $\text{Re}[1 + zf''(z)/f'(z)] > 0$, $z \in E$. The function f is close-to-convex (univalent) in E if and only if there is a convex function g such that $\text{Re}[f'(z)/g'(z)] > 0$, $z \in E$[2].

Let $D^n f(z) = (z/(1-z))^{n+1} * f(z)$, where $*$ denotes the Hadamard product (convolution) of two regular functions in E and $n \in N_0 = \{0, 1, 2, \ldots \}$ [9].

The aim of this paper is to give some sufficient conditions for a function $f \in V$ to be close-to-convex in E.

2. Preliminary Lemmas

For the proof of our results we need the following lemmas.

Lemma 2.1. Let Ω be a set in the complex plane C. Suppose that the function $\psi : C^2 \times E \to C$ satisfies the condition $\psi(ir_2, s_1; z) \notin \Omega$, for all real r_2, $s_1 \leq -2^{-1}(1+r_2^2)$ and all $z \in E$.

If $p(z)$ is regular in E, with $p(0) = 1$ and $\psi(p(z), zp'(z); z) \in \Omega$, when $z \in E$, then $\text{Re}(p(z)) > 0$ in E.

Received October 26, 2004; revised July 20, 2005.
2000 Mathematics Subject Classification. 30C45, 30C55.
Key words and phrases. Regular, convex and close-to-convex function, Hadamard product, Ruscheweyh derivatives, differential subordination.
More general form of the above lemma may be found in [3, 4].

Lemma 2.2. ([5]) Let h be a convex function in E and $u(z)$ be regular in E with $\Re(u(z)) > 0$. If p is regular in E and $p(0) = h(0)$, then
\[
p(z) + zp'(z)(u(z)) \prec h(z) \Rightarrow p(z) \prec h(z), \quad z \in E.
\]

Lemma 2.3. ([1, 4]) If $\alpha \neq 0$, $\Re(\alpha) \geq 0$, h be convex in E and p is regular in E with $p(0) = h(0)$, then
\[
p(z) + \frac{zp'(z)}{\alpha} \prec h(z), \quad z \in E,
\]
implies
\[
p(z) \prec \alpha z^{-\alpha} \int_0^z h(t)t^{\alpha-1}dt \prec h(z), \quad z \in E.
\]

The following lemma is a special case of Lemma 1 of Ponnusamy [6] and is also due to S. Ponnusamy and V. Karunakaran [8], proved by them with the aid of Lemma 2.1:

Lemma 2.4. Let u be a regular function in E with $\Re(u(z)) > \delta > 0$ for $z \in E$. If p is regular in E with $p(0) = 1$, $\beta < 1$, $\alpha > 0$ and
\[
\Re(p(z) + \frac{u(z)}{\alpha}zp'(z)) > \beta, \quad z \in E,
\]
then
\[
\Re(p(z)) > \frac{2\beta\alpha + \delta}{2\alpha + \delta}, \quad z \in E.
\]

3. Main Results

Theorem 3.1. Let $f \in V$, $n \in N_0$ and $\beta < 1$. If α, λ be complex numbers with $\Re(\alpha) > 0$ and $|\lambda| \leq \Re(\alpha)/|\alpha|$, then
\[
\Re((1 + \lambda z)(D^nf(z))') > 2\beta(n + 1) + \Re(\alpha) - |\alpha\lambda| \quad \frac{2(n + 1) + \Re(\alpha) - |\alpha\lambda|}{2(n + 1) + \Re(\alpha) - |\alpha\lambda|}, \quad z \in E.
\]
This \(p(z) \) is regular in \(E \) and \(p(0) = 1 \). One can easily verify the identity
\[
z(D^n f(z))'' = (n+1)[(D^{n+1} f(z))' - (D^n f(z))'].
\]
Differentiating \(p(z) \) and using (3.2) we obtain
\[
(1 + \lambda z) \left[\left(1 - \alpha - \frac{\alpha \lambda n z}{n+1} \right) (D^n f(z))' + \alpha (1 + \lambda z)(D^{n+1} f(z))' \right]
= p(z) + \frac{u(z)}{n+1} z p'(z).
\]
So by Lemma 2.4 and (3.1), we get
\[
\text{Re} \left(1 + \lambda z \right) (D^n f(z))' > \frac{2\beta(n+1) + \delta}{2(n+1) + \delta}, \quad z \in E,
\]
whenever \(\delta < \text{Re}(\alpha + \alpha \lambda z) \). But \(\delta \) can be chosen as near \(\text{Re}(\alpha) - |\alpha \lambda| \) as we please and so by allowing \(\delta \to \text{Re}(\alpha) - |\alpha \lambda| \) from below, we establish our claim.

Theorem 3.2. Let \(f \in V \), \(n \in \mathbb{N}_0 \) and \(\beta < 1 \). If \(\alpha > 0 \) and \(\lambda \) be complex number such that \(|\lambda| \leq 1 \), then
\[
\text{Re}(e^{-\lambda z} (D^n f(z))') > \frac{2\beta(n+1) + \delta}{2(n+1) + \delta}, \quad z \in E,
\]
implies
\[
\text{Re}(e^{-\lambda z}(D^n f(z))') > \frac{2\beta(n+1)(1 + |\lambda|) + \alpha}{2(n+1)(1 + |\lambda|) + \alpha}, \quad z \in E.
\]

Proof. If we let \(p(z) = e^{-\lambda z} (D^n f(z))' \) and \(u(z) = \alpha/(1 + \lambda z) \), then using (3.2), it can be seen that (3.3) is equivalent to
\[
\text{Re} \left(p(z) + \frac{u(z)}{n+1} z p'(z) \right) > \beta, \quad z \in E.
\]
and so by Lemma 2.4 we obtain that
\[
\text{Re}(e^{-\lambda z}(D^n f(z))') > \frac{2\beta(n+1) + \delta}{2(n+1) + \delta}, \quad z \in E,
\]
whenever \(\delta < a \text{Re}(1/(1 + \lambda z)) \). Now Theorem 3.2 follows by allowing \(\delta \to a/(1 + |\lambda|) \), from below.

If we set
\[
u_1(z) = (1 + \lambda z) \left[\left(\frac{1}{\alpha} - 1 - \frac{\lambda n z}{n+1} \right) (D^n f(z))' + (1 + \lambda z)(D^{n+1} f(z))' \right]
\]
and
\[v_2(z) = e^{-\lambda z} \left[\frac{1}{\lambda} - \frac{n + 1 + \lambda z}{(n + 1)(1 + \lambda z)} \right] (D^n f(z))' + \frac{1}{1 + \lambda z} (D^{n+1} f(z))' \]
then for \(\alpha > 0 \) and \(\beta = 0 \), Theorem 3.1 and Theorem 3.2 reduces to
\[\text{Re}(v_1(z)) > 0, \quad z \in E \quad (3.4) \]
implies
\[\text{Re}(1 + \lambda z)(D^n f(z))' > \frac{\alpha(1 - |\lambda|)}{2(n + 1) + \alpha(1 - |\lambda|)}, \quad z \in E, \]
and
\[\text{Re}(v_2(z)) > 0, \quad z \in E \quad (3.5) \]
implies
\[\text{Re}(e^{-\lambda z}(D^n f(z))') > \frac{\alpha}{2(n + 1)(1 + |\lambda|) + \alpha}, \quad z \in E. \]
Let \(\alpha \to \infty \). Then (3.4) and (3.5) are equivalent to
\[\text{Re}(v_1(z)) \geq 0, \quad z \in E \quad (3.6) \]
implies
\[\text{Re}(1 + \lambda z)(D^n f(z))' \geq 1, \quad z \in E, \]
and
\[\text{Re}(v_2(z)) \geq 0, \quad z \in E \quad (3.7) \]
implies
\[\text{Re}(e^{-\lambda z}(D^n f(z))') \geq 1, \quad z \in E, \]
where
\[v_1(z) = (1 + \lambda z) \left[(1 + \lambda z)(D^{n+1} f(z))' - \left(1 + \frac{\lambda n z}{n + 1} \right) (D^n f(z))' \right] \]
and
\[v_2(z) = e^{-\lambda z} \left[\frac{1}{1 + \lambda z} (D^{n+1} f(z))' - \frac{n + 1 + \lambda z}{(n + 1)(1 + \lambda z)} (D^n f(z))' \right]. \]
In the following theorem we extend the results (3.6) and (3.7).

Theorem 3.3. Let \(f \in V, \quad n \in N_0 \) then for \(\beta < 1 \) and \(|\lambda| \leq 1 \)
\[\text{Re}(1 + \lambda z) \left[(1 + \lambda z)(D^{n+1} f(z))' - \left(1 + \frac{\lambda n z}{n + 1} \right) (D^n f(z))' \right] > \frac{(1 - \beta)(1 - |\lambda|)}{2(n + 1)}, \quad z \in E, \quad (3.8) \]
implies
\[\text{Re}(1 + \lambda z)(D^n f(z))' > \beta, \quad z \in E, \]
and
\[
Re(e^{-\lambda z}) \left[\frac{(D^{n+1}f(z))'}{1+\lambda z} - \frac{(n+1+\lambda z)}{(1+\beta(1+\lambda z))} (D^n f(z))' \right] > -\frac{1 - \beta}{2(n+1)(1+|\lambda|)}, \quad z \in E, \quad (3.9)
\]
implies
\[
Re(e^{-\lambda z}(D^n f(z))') > \beta \quad z \in E.
\]

Proof. It can be proved in a manner similar to that of Lemma 1 of [6] (using the identity (3.2)).

Remark. Theorem 1, Theorem 2 and Theorem 3 of Ponnusamy [6] are obtained for \(n = 0 \) in our results.

Theorem 3.4. Let \(\alpha \) be a real number with \(\alpha > 0 \), \(n \in \mathbb{N}_0 \), \(h \) be convex in \(E \) with \(h(0) = 1 \), and \(g \in V \) satisfies
\[
Re \left(\frac{(D^n g(z))'}{(D^{n+1} g(z))'} \right) > 0, \quad z \in E.
\]
If \(f \in V \) satisfies
\[
(1 - \alpha) \frac{(D^n f(z))'}{(D^n g(z))'} + \alpha \frac{(D^{n+1} f(z))'}{(D^{n+1} g(z))'} \prec h(z), \quad z \in E,
\]
then we have
\[
\frac{(D^n f(z))'}{(D^n g(z))'} \prec h(z), \quad z \in E.
\]

Proof. It can be proved in a manner similar to that of Theorem 1 of Ponnusamy and Juneja [7], ie using Lemma 2.2 and the identity (3.2) with
\[
p(z) = \frac{(D^n f(z))'}{(D^n g(z))'}
\]
and
\[
u(z) = \frac{\alpha}{n+1} \frac{(D^n g(z))'}{(D^{n+1} g(z))'}.
\]

Remark. Since the functions \(D^n g_i(z), \quad (i = 1, 2) \) denoted by \((D^n g_i(z))' = \frac{1}{(1+\lambda z)} \) and \((D^n g_i^4(z))' = e^{\lambda z} \) satisfy \(Re(D^n g_i(z)'/(D^{n+1}g_{i+1}(z))') > 0 \) in \(E \) \((i = 1, 2) \), it follows that (3.1) with \(-\frac{Re(\alpha - |\lambda|)}{2(n+1)} \leq \beta < 1 \), (3.3) with \(-\frac{\beta}{2(n+1)(1+|\lambda|)} \leq \beta < 1 \), (3.8) and (3.9) with \(0 \leq \beta < 1 \), are respectively sufficient conditions for a function \(f \in V \) to be close-to-convex in \(E \).
For \(g(z) = z \), the Theorem 3.4 can be further sharpened in the following form and its proof follows in the similar lines of Theorem 3.4, using Lemma 2.3.

Theorem 3.5. Let \(f \in V, n \in N_0 \) and \(h \) be convex function with \(h(0) = 1 \). Then for any complex number \(\alpha \) with \(Re(\alpha) \geq 0 \) \((\alpha \neq 0)\)

\[
(1 - \alpha)(D^n f(z))' + \alpha(D^{n+1} f(z))' \prec h(z), \quad z \in E
\]

implies

\[
(D^n f(z))' \prec \left(\frac{n+1}{\alpha} \right) z^{-(n+1)/\alpha} \int_0^z h(t)t^{(n+1)/\alpha}dt \prec h(z), \quad z \in E.
\]

The result is sharp.

Acknowledgement

The author thanks the referee for his valuable suggestions to improve the presentation.

References

P G Department of Computer Science, R. V. College of Engineering, Bangalore-560 059, India.
E-mail: mailtoswamy@rediffmail.com