TAMKANG JOURNAL OF MATHEMATICS
Volume 37, Number 2, 117-122, Summer 2006

SOME SUFFICIENT CONDITIONS FOR UNIVALENCE AND
CLOSE-TO-CONVEXITY

S. R. SWAMY

Abstract. The author uses the method of differential subordinations to obtain some new criteria
for a normalised regular function, in unit disc E = {z : |z] < 1} to be close-to-convex (univalent)
in E.

1. Introduction

Let f and g be regular in the unit disc E = {z : |z] < 1}. We say that f is subordinate
to g, written f(z) < g(z) or f < g, if there exists a function w regular in E which satisfies
w(0) =0, Jw(z)| <1 and f(z) = g(w(z)). If ¢ is univalent in F then f < g if and only if
£(0) = 9(0) and f(E) C g(E).

Let V' denote the class of all functions f regular in the unit disc F, with f(0) =
f'(0) — 1 = 0. Suppose that the function f is regular in E. The function f, with
£(0) # 0 is convex (univalent) in E if and only if Re[l+ zf"(z)/f'(%))] > 0, z € E. The
function f is close-to-convex (univalent) in E if and only if there is a convex function g
such that Re[f'(z)/¢'(z)] > 0, z € E[2].

Let D"f(z) = (2/(1 — 2)"*1) x f(2), where * denotes the Hadamard product (convo-
lution) of two regular functions in £ and n € Ny = {0, 1, 2,...} [9].

The aim of this paper is to give some sufficient conditions for a function f € V to be
close-to-convex in E.

2. Preliminary Lemmas
For the proof of our results we need the following lemmas.

Lemma 2.1. Let Q be a set in the complex plane C. Suppose that the function
¥ C?x E — C satisfies the condition 1 (ira, s1;2) € Q, for all real r2, s1 < —271(1+473)
and all z € E.

If p(z) is regular in E, with p(0) = 1 and ¥ (p(2), 2p'(2);2) € Q, when z € E, then
Re(p(z)) >0 in E.
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More general form of the above lemma may be found in [3, 4].

Lemma 2.2.([5]) Let h be a convex function in E and u(z) be reqular in E with
Re(u(z)) > 0. If p is regular in E and p(0) = h(0), then

p(z) + 2p'(2)(u(z)) < h(z) = p(z) < h(z), zE€E.

Lemma 2.3.([1, 4]) If « # 0, Re(a) > 0, h be convez in E and p is regular in E with
p(0) = h(0), then
zp'(2)
o

p(z) + < h(2), z€E,

implies

p(z) < azfa/ h(t)t*tdt < h(z), z € E.
0

The following lemma is a special case of Lemma 1 of Ponnusamy [6] and is also due
to S. Ponnusamy and V. Karunakaran [8], proved by them with the aid of Lemma 2.1:

Lemma 2.4. Let u be a regular function in E with Re(u(z)) > 6 >0 for z € E. If
p is reqular in E with p(0) =1, 8 <1, > 0 and

Re(p(z) + @zp'(z)) > 3, 2 €E,
then 261 6
a
Re(p(z)) > SR €E.

3.. Main Results

Theorem 3.1. Let f € V, n € Ny and 8 < 1. If a, X\ be compler numbers with
Re(a) > 0 and |A| < Re(w)/|al, then

Re(1+39) | (1= SE2) DG + a4 A0 Y| 8 sk,
(3.1)
implies
Re((1+ A2)(D"f(2)))) 2551”:11)):126((0?;)_5;", Z€E.
Proof. Let
p(2) = (L+X2)(D" f(2))
and

u(z) = a(l + Az).
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This p(z) is regular in E and p(0) = 1. One can easily verify the identity

2(D"f(2))" = (n+ DD f(2) — (D" f(2))]. (3-2)
Differentiating p(z) and using (3.2) we obtain
(1 32) | (1= = 222 (D" () + a1+ A0 (D 1)
=p(z) + :(—f)lzp’(z).

So by Lemma 2.4 and (3.1), we get

28(n+1)+06

Re(1+4 Xz)(D" f(2))" > X1+

z e FE,
whenever § < Re(a + aAz). But § can be chosen as near Re(a) — |a\| as we please and
so by allowing 6 — Re(a) — |aA| from below, we establish our claim.

Theorem 3.2. Let f € V, ne€ Ny and 8 < 1. If a« > 0 and \ be complex number
such that |\| <1, then

—Az a(n—i—l—i—)\z) n / « n+1 /
Re(e™) [(1_ (n+1)(1+>\2)) DrfE) + 1+Az(D TR > 8 ZE(E
3.3)

implies
2B8(n+ D)1+ |A]) + «

Re(e™ (D" f(2))") > 20+ 1A+ A+’

ze k.

Proof. If we let p(z) = e **(D"f(2))" and u(z) = a/(1 4+ Az), then using (3.2), it
can be seen that (3.3) is equivalent to

u(z)
n+1

Re (p(z) + zp’(z)) > 0, z € E.

and so by Lemma 2.4 we obtain that

26(n+1)+06

Re(e (D" f())) > St

z € FE,

whenever 0 < aRe(1/(1+ Az)). Now Theorem 3.2 follows by allowing § — a//(1 + |A|),
from below.
If we set

Anz
n—+1

0= (40 (5= 1= 257 ) (016 + (14 A0 ()Y
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and

) = | (5 - a0 + D)

a (n+D(1+A2) 1+ Az
then for a > 0 and 8 = 0, Theorem 3.1 and Theorem 3.2 reduces to

Re(v1(2)) > 0, zeE

implies ( A
n , a(l —|A
Re(1+ X2)(D" f(z)) >2(n+1)+a(1—|)\|)’ z €L,
and
Re(va(2)) > 0, zeE
implies N
—Az(n l
Re(e™**(D f(z)))>2(n+1)(1+|)\|)+a’ ze L.
Let aw — oo. Then (3.4) and (3.5) are equivalent to
Re(Vl(Z)) Z 07 AN D)
implies
Re(14+ X2)(D"f(2)) > 1, z € E,
and
Re(VQ(Z)) Z 07 PR
implies
Re(e™(D"f(2))) 21,  z€E,
where
— n+1 / Anz n /
M) = (40 [0 @) - (14 225 ) (07 (e |
and . 14
—AZ n ! n < n li
va(z) = e [H—)\z(D i) - m(l) f(Z))} :

In the following theorem we extend the results (3.6) and (3.7).

Theorem 3.3. Let f € V, n € Ny then for 3 <1 and |\ <1

Re(1+32) [+ 2D Q) - (14 225 ) (07|
(- /)1 )
> 7W, ze kb,

implies
Re(14+A2)(D"f(2)) > 8 :€E,

(3.4)

(3.7)

(3.8)
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and
e [(DMH(2) (m+1+A2) /
Re(e™™) |35~ (ET e AR
> — 1-5 , z e E, (3.9)
2(n+1)(1+ )]
implies

Re(e (D" f(2)))>pB z€E.
Proof. It can be proved in a manner similar to that of Lemma 1 of [6] (using the
identity (3.2)).

Remark. Theorem 1, Theorem 2 and Theorem 3 of Ponnusamy [6] are obtained for
n = 0 in our results.

Theorem 3.4. Let « be a real number with o > 0, n € Ny, h be convex in E with
h(0) =1, and g € V satisfies

D™g(2))
Re% >0, z€E.
If f € V satisfies
o (D"f(z))' N (D"'Hf(z))' . .
(1 )(D”g(z))’ + (D" ig(z)) =< h(z), €E,
then we have . ,
((D"chz)i’ <h(z), z€E.

Proof. It can be proved in a manner similar to that of Theorem 1 of Ponnusamy
and Juneja [7], ie using Lemma 2.2 and the identity (3.2) with

(D" f(2))
plz) =
“ = gy
e (D"g(2)
o« "g(z
u(z) = n+1(Dntg(z))"
Remark. Since the functions D"g;(z), (i = 1,2) denoted by (D"g}(z)) = ﬁ

and (D"g?(2))" = e satisfy Re(D"g;(2)'/(D"*1g;11(2))) > 0in E (i = 1,2), it follows
. Re(a)—|aA : a
(3.9) with 0 < 8 < 1, are respectively sufficient conditions for a function f € V to be

close-to-convex in F.
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For g(z) = z, the Theorem 3.4 can be further sharpened in the following form and its

proof follows in the similar lines of Theorem 3.4, using Lemma 2.3.

Theorem 3.5. Let f € V, n € Ny and h be convex function with h(0) = 1. Then for

any complex number o with Re(a) > 0 (a # 0)

(1 =a)(D"f(2)) + (D" f(2)) < h(z), z€E

implies

n+1
«

(D" f(2)) < ( )z_("+1)/0‘ /O ht=)Lat < h(z),  z€E.

The result is sharp.

(1]
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