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DIFFERENTIATING-DOMINATING SETS IN GRAPHS

UNDER BINARY OPERATIONS

SERGIO R. CANOY, JR. AND GINA A. MALACAS

Abstract. In this paper we characterize the differentiating-dominating sets in the join,
corona, and lexicographic product of graphs. We also determine bounds or the exact
differentiating-domination numbers of these graphs.

1. Introduction

Let G = (V (G),E(G)) be a connected graph and v ∈ V (G). The neighborhood of v is the

set NG (v) = N (v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v ∈ V (G) is equal to the

cardinality of NG (v) and the maximum degree of G is ∆(G) = max{deg (v) : v ∈V (G)}.

If X ⊆V (G), then the open neighborhood of X is the set NG (X ) = N (X ) =∪v∈X NG (v). The

closed neighborhood of X is NG [X ] = N [X ] = X ∪N (X ).

Now a connected graph G of order n ≥ 3 is point distinguishing if for any two distinct ver-

tices u and v of G , NG [u] ̸= NG [v]. It is totally point determining if for any two distinct vertices

u and v of G , NG (u) ̸= NG (v) and NG [u] ̸= NG [v]. These concepts were parts of investigation

in [2] and [7].

A subset X of V (G) is a dominating set of G if for every v ∈V (G)\X , there exists x ∈ X such

that xv ∈ E(G), i.e., N [X ] =V (G). The domination number γ(G) of G is the smallest cardinality

of a dominating set of G .

A subset S of V (G) is a locating set in a connected graph G if for any two distinct ver-

tices u and v in V (G)\S, NG (u)∩S ̸= NG (v)∩S. A subset S of V (G) is a differentiating set in

a connected graph G if for every two distinct vertices u and v of G , NG [u]∩ S ̸= NG [v]∩ S.

It is a strictly differentiating set if it is differentiating and NG [u]∩S ̸= S for all u ∈ V (G). The
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minimum cardinality of a differentiating set in G , denoted by dn(G), is called the differenti-

ating number of G . The minimum cardinality of a strictly differentiating set in G , denoted

by sdn(G), is called the strict differentiating number of G . A differentiating (resp. strictly dif-

ferentiating) subset S of V (G) which is also dominating is called a differentiating-dominating

(resp. strictly differentiating-dominating) set in a graph G . The minimum cardinality of a

differentiating-dominating (resp. strictly differentiating-dominating) set in G , denoted by

γD (G) (resp. γSD (G)), is called the differentiating-domination (resp. strict differentiating-

domination) number of G . Some of these concepts may be found in [4] and are investigated

in [1], [3], [5], and [7].

In a given network or graph, a differentiating set can be viewed as a set of monitors which

can actually determine the exact location of an intruder (e.g. a burglar, a fire, etc.). By requir-

ing such a set to be dominating implies that every vertex where there is no monitor in it is

connected to at least one monitoring device. Hence, determination of the differentiating-

domination number of a graph is equivalent to finding the least number of monitors that can

do the certain task in a given graph or network. In some contexts, differentiating dominating

sets are called identifying codes (see [8]).

Now let G be a connected graph of order n and suppose that there exist (distinct) adjacent

vertices u and v of G such that NG [u] = NG [v]. Then NG [u]∩S = NG [v]∩S for any subset S of

V (G). This implies that G cannot have a differentiating set. Also, if ∆(G) = n −1 and v ∈V (G)

with deg (v) = n−1, then NG [v]∩S = S for any subset S of V (G). Consequently, G cannot have

a strictly differentiating set. Thus, unless otherwise stated, throughout this paper, G is a point

distinguishing graph of order n ≥ 3. Moreover, whenever the concept of strictly differentiating

set of a graph G is mentioned in this paper, it is always assumed that ∆(G) ≤ n −2.

2. Preliminary results and characterizations

The following two simple observations are worth mentioning.

Remark 2.1. Every differentiating set in a connected graph G is a locating set.

Remark 2.2. Let G be a connected graph of order n ≥ 3. Then 2 ≤ γD (G) ≤ n −1.

Theorem 2.3. Let G be a connected graph. Then γD (G) = 2 if and only if G = P3.

Proof. Suppose γD (G) = 2, say S = {a,b} is a differentiating dominating set in G . If ab ∈ E(G),

then NG [a]∩ S = {a,b} = NG [b]∩ S, contrary to our assumption of S. Therefore, ab ∉ E(G).

Now, since S has only three different non-empty subsets, |V (G)| = 3. Therefore, since G ̸= K3,

G = P3.

For the converse, suppose that G = [a,c,b] = P3. Let S = {a,b}. Then, clearly, S is a differ-

entiating dominating set in G . Thus γD (G) = 2. ���
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Remark 2.4. Let G be a connected graph of order n ≥ 3. Then dn(G) ≤ γD (G) ≤ γSD (G) and

dn(G) ≤ sdn(G) ≤ γSD (G).

The following simple results give specific relationships between dn(G), sdn(G), γD (G),

and γSD (G) for a connected graph G .

Lemma 2.5. Let G be a connected graph of order n ≥ 3 such that dn(G) < γD (G). Then 1+
dn(G) = γD (G).

Proof. Let S be a minimum differentiating set in G . Then S is not a dominating set in G .

Hence, there exists a y ∈ V (G)\S such that x y ∉ E(G) for all x ∈ S. This implies that NG [y]∩
S = NG (y)∩ S = ;. Set S∗ = S ∪ {y} and let z ∈ V (G)\S∗. Since S is a locating set (Remark

2.1), NG (z)∩ S ̸= ;. This implies that there exists w ∈ S such that w z ∈ E(G). This shows

that S∗ is a dominating set in G . Next, let a,b ∈ V (G). Then NG [a]∩ S ̸= NG [b]∩ S since S

is a differentiating set in G . Therefore, NG [a]∩ S∗ ̸= NG [b] ∩ S∗. This implies that S∗ is a

differentiating set in G . Therefore γD (G) ≤ 1+dn(G). Since dn(G) < γD (G), 1+dn(G) ≤ γD (G).

This shows that 1+dn(G) = γD (G). ���

Lemma 2.6. Let G be a connected graph of order n ≥ 3 such that dn(G) < sdn(G) and ∆(G) ≤
n −2. Then 1+dn(G) = sdn(G).

Proof. Let S be a minimum differentiating set in G . By assumption, S is not a strictly differen-

tiating set in G . Hence, there exists a y ∈ V (G) such that NG [y]∩S = S. Since deg (y) ≤ n −2,

there exists z ∈V (G)\(S ∪ {y}) such that z ∉ NG (y). Set S∗ = S ∪ {z}. If a,b ∈V (G) (a ̸= b), then

NG [a]∩S ̸= NG [b]∩S since S is a differentiating set. Thus, NG [a]∩S∗ ̸= NG [b]∩S∗, showing

that S∗ is a differentiating set. Now let x ∈ V (G). If x = y , then z ∉ NG [x]. This implies that

z ∉ NG [x]∩S∗. Hence NG [x]∩S∗ ̸= S∗. If x ̸= y , then NG [x]∩S ̸= S since S is differentiating.

This implies that there exists w ∈ S such that w ∉ NG [x]. Hence, NG [x]∩S∗ ̸= S∗. Therefore S∗

is a strictly differentiating set in G . Consequently, sdn(G) ≤ 1+dn(G). Since dn(G) < sdn(G),

1+dn(G) ≤ sdn(G). This establishes the desired equality. ���

Lemma 2.7. Let G be a connected graph of order n ≥ 3 such that sdn(G) < γSD (G). Then

1+ sdn(G) = γSD (G).

Proof. Let S be a minimum strictly differentiating set in G . From the assumption, S is not a

dominating set in G . Hence, there exists a y ∈ V (G)\S such that x y ∉ E(G) for all x ∈ S. This

implies that NG [y]∩ S = NG (y)∩ S = ;. Set S∗ = S ∪ {y} and let z ∈ V (G)\S∗. Since S is a

differentiating set, NG [z]∩S = NG (z)∩S ̸= ;. This implies that there exists q ∈ S ⊆ S∗ such

that qz ∈ E(G). Hence S∗ is a dominating set in G .
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Next, let a,b ∈ V (G). Then NG [a]∩ S ̸= NG [b]∩ S since S is a differentiating set in G .

Therefore, NG [a]∩S∗ ̸= NG [b]∩S∗. This implies that S∗ is a differentiating set in G . Moreover,

if x ∈V (G), then NG [x]∩S ̸= S since S is strictly differentiating. It follows that NG [x]∩S∗ ̸= S∗,

i.e., S∗ is a strictly differentiating (dominating) set. Therefore γSD (G) ≤ 1 + sdn(G). Since

sdn(G) < γSD (G), 1+ sdn(G) ≤ γSD (G). This shows that 1+ sdn(G) = γSD (G). ���

Lemma 2.8. Let G be a connected graph of order n ≥ 3 such that γD (G) < γSD (G). Then 1+
γD (G) = γSD (G).

Proof. Let S be a minimum differentiating dominating set in G . Then S is not a strictly differ-

entiating set in G . Hence, there exists a y ∈V (G) such that NG [y]∩S = S. Since deg (y) ≤ n−2,

there exists z ∈V (G)\(S∪{y}) such that z ∉ NG (y). Set S∗ = S∪{z}. Since S is a dominating set,

S∗ is also a dominating set. If a,b ∈V (G), then NG [a]∩S ̸= NG [b]∩S since S is a differentiating

set. Thus, NG [a]∩S∗ ̸= NG [b]∩S∗, showing that S∗ is a differentiating set. Now let x ∈ V (G).

If x = y , then z ∉ NG [x]. This implies that z ∉ NG [x]∩ S∗. Hence NG [x]∩ S∗ ̸= S∗. If x ̸= y ,

then NG [x]∩ S ̸= S since S is differentiating. This implies that there exists w ∈ S such that

w ∉ NG [x]. It follows that NG [x]∩S∗ ̸= S∗. Therefore S∗ is a strictly differentiating (dominat-

ing) set in G . Consequently, γSD (G) ≤ 1+γD (G). Since γD (G) < γSD (G), 1+γD (G) ≤ γSD (G).

Accordingly, 1+γD (G) = γSD (G). ���

3. Differentiating dominating sets in the join of graphs

The join G +H of two graphs G and H is the graph with V (G +H) =V (G)∪V (H) (disjoint

union) and E(G +H) = E(G)∪E(H)∪ {uv : u ∈V (G) and v ∈V (H)}.

Theorem 3.9. Let G and H be non-trivial graphs of orders m ≥ 2 and n ≥ 2, respectively. Then

S ⊆ V (G + H) is a differentiating dominating set in G + H if and only if SG = V (G)∩ S and

SH = V (H)∩S are differentiating sets in G and H, respectively, and either SG or SH is strictly

differentiating.

Proof. Let S ⊆ V (G +H) be a differentiating-dominating set in G +H . Let SG = V (G)∩S and

SH = V (H)∩ S. Suppose SG = ;. Pick distinct vertices u and v of G . Then NG+H [u]∩ S =
S = NG+H [v]∩ S, contrary to the assumption that S is a differentiating set for G + H . Thus,

SG ̸= ;. Similarly, SH ̸= ;. Suppose now that one of SG and SH is not a differentiating set,

say SG is not a differentiating set in G . Then there exist distinct vertices a,b ∈V (G) such that

NG [a]∩SG = NG [b]∩SG . Since SH ⊆ NG+H [a] and SH ⊆ NG+H [b], it follows that NG+H [a]∩S =
(NG [a]∩SG )∪SH = NG+H [b]∩S. This is impossible since S is a differentiating set for G +H .

Therefore, SG and SH are differentiating sets in G and H , respectively.

Next, suppose that both SG and SH are not strictly differentiating sets in G and H , re-

spectively. Then there exist z ∈ V (G)\SG and w ∈ V (H)\SH such that NG [z]∩ SG = SG and
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NH [w]∩SH = SH . It follows that NG+H [z]∩S = S = NG+H [w]∩S, contrary to the fact that S

a differentiating set in G + H . Thus, SG is a strictly differentiating set in G or SH is a strictly

differentiating set in H .

For the converse, suppose SG = V (G)∩S and SH = V (H)∩S are differentiating sets in G

and H , respectively, and where SG or SH is a strictly differentiating set. Let x and y be distinct

vertices in V (G+H). If x, y ∈V (G), then NG [x]∩SG ̸= NG [y]∩SG . It follows that NG+H [x]∩S =
(NG [x]∩SG )∪SH ̸= (NG [y]∩SG )∪SH = NG+H [y]∩S. Similarly, NG+H [x]∩S ̸= NG+H [y]∩S if

x, y ∈ V (H). Suppose x ∈ V (G) and y ∈ V (H). Suppose, without loss of generality, that SG is a

strictly differentiating set in G . Then SG is not contained in NG+H [x]. Since SG ⊆ NG+H [y], it

follows that NG+H [x]∩S ̸= NG+H [y]∩S. Accordingly, S is a differentiating set in G+H . Clearly,

S is a dominating set in G +H . ���
The next results are direct consequences of Theorem 3.9 or of its proof.

Corollary 3.10. Let G and H be connected non-trivial graphs of orders m ≥ 2 and n ≥ 2, respec-

tively. Then every differentiating set in G +H is dominating.

Corollary 3.11. Let G and H be connected non-trivial graphs of orders m ≥ 2 and n ≥ 2, respec-

tively. Then γD (G +H) = min{sdn(H)+dn(G), sdn(G)+dn(H)}.

Theorem 3.12. Let G = K1 = 〈v〉 and H a non-trivial graph. Then S ⊆V (G +H) is a differenti-

ating dominating set in G +H if and only if v ∈ S and V (H)∩S is a strictly differentiating set in

H or v ∉ S and S is a strictly differentiating dominating set in H.

Proof. Suppose S is a differentiating dominating set in G + H and suppose v ∈ S. Since S is

differentiating and |V (H)| ≥ 2, V (H)∩S ̸= ;. Also, since NG+H [v]∩S = S, V (H)∩S must be a

strictly differentiating set in H . Suppose now that v ∉ S. Then S ⊆V (H) must be a dominating

set in H . Since NG+H [u]∩S = NH [u]∩S for every u ∈V (H) and NG+H [v]∩S = S, S is a strictly

differentiating set in H . Hence S is a strictly differentiating dominating set in H .

The converse is clear. ���

Corollary 3.13. Let G = K1 = 〈v〉 and H a non-trivial graph. Then γD (G +H) = γSD (H).

Proof. Let S be a minimum differentiating dominating set in G +H . Suppose first that v ∈ S.

Then V (H)∩S is a strictly differentiating set in H , by Theorem 3.12. Hence, sdn(G)+1 ≤ |S| =
γD (G + H). By Remark 2.4 and Lemma 2.7, γSD (H) ≤ γD (G + H). If v ∉ S, then S is a strictly

differentiating dominating set in H by Theorem 3.12. It follows that γSD (H) ≤ |S| = γD (G+H).

Thus γD (G +H) ≥ γSD (H).

Now let S be a minimum strictly differentiating dominating set in H . Then S is a differ-

entiating dominating set in G +H by Theorem 3.12. Thus γD (G +H) ≤ |S| = γSD (H).
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Therefore γD (G +H) = γSD (H). ���

4. Differentiating dominating sets in the corona of graphs

The corona G ◦H of two graphs G and H is the graph obtained by taking one copy of G of

order n and n copies of H , and then joining the i th vertex of G to every vertex in the i th copy

of H . For every v ∈ V (G), we denote by H v the copy of H whose vertices are attached one

by one to the vertex v . Subsequently, we denote by v +H v the subgraph of the corona G ◦H

corresponding to the join 〈v〉+H v , where v ∈V (G).

Theorem 4.14. Let G (not necessarily point distinguishing) and let H be non-trivial connected

graphs. Then C ⊆ V (G ◦ H) is a differentiating dominating set in G ◦ H if and only if for every

v ∈V (G), one of the following is true:

(i) v ∈C , NG (v)∩C ̸= ;, and C ∩V (H v ) is a differentiating set in H v ;

(ii) v ∈C , NG (v)∩C =;, and C ∩V (H v ) is a strictly differentiating set in H v ;

(iii) v ∉C , NG (v)∩C ̸= ;, and C1 =V (H v )∩C is a differentiating dominating set in H v ; or

(iv) v ∉C , NG (v)∩C =; and C1=V (H v )∩C is a strictly differentiating dominating set in H v .

Proof. Suppose C is a differentiating dominating set in G ◦H . Let v ∈ V (G), C1 = V (H v )∩C ,

and let x, y ∈V (H v ), where x ̸= y . Then NG◦H [x]∩C = (NH v [x]∩C1)∪ (C ∩ {v}), NG◦H [y]∩C =
(NH v [y]∩C1)∪ (C ∩ {v}), and NG◦H [v]∩C = (NG (v)∩C2)∪ (Nv+H v [v]∩C1)∪ (C ∩ {v}), where

C2 =C ∩V (G).

Suppose first that v ∈C . If NG (v)∩C ̸= ;, then, since C is differentiating,

(NH v [x]∩C1)∪ {v} = NG◦H [x]∩C ̸= NG◦H [y]∩C = (NH v [y]∩C1)∪ {v}.

It folows that NH v [x]∩C1 ̸= NH v [y]∩C1. Thus C1 is differentiating in H v , i.e., (i) holds. Sup-

pose NG (v)∩C = ;. Then, again, since C is differentiating, C1 is differentiating in H v . Now,

since NG◦H [v]∩C = Nv+H v [v]∩C1 = {v}∪C1, C1 must be strictly differentiating in H v . Hence,

(ii) holds.

Next, suppose that v ∉C . If NG (v)∩C ̸= ;, then, since C is differentiating,

NH v [x]∩C1 = NG◦H [x]∩C ̸= NG◦H [y]∩C = NH v [y]∩C1.

This implies that C1 is differentiating in H v . Since v ∉C and C is dominating, C1 is dominating

in H v . Therefore, (iii) holds. Suppose NG (v)∩C =;. Since C is a differentiating dominating

set, v ∉ C , and NG◦H [v] = C1, it follows that C1 is a strictly differentiating dominating set in

H v , i.e., (iv) holds.

For the converse, suppose that C satisfies (i), (ii), (iii), or (iv) for every v ∈ V (G). Let

x ∈V (G ◦H)\C and v ∈V (G) be such that x ∈V (v +H v ). If v ∈C , then xv ∈ E(G ◦H) (x ̸= v). If
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v ∉C (say when x = v), then, by (iii), or (iv), C1 =V (H v )∩C is a dominating set in H v . Hence,

there exists y ∈C1 such that x y ∈ E(H v ) ⊆ E(G ◦H). Therefore, C is a dominating set in G ◦H .

Next, let a,b ∈ V (G ◦ H) with a ̸= b. Let u, v ∈ V (G) such that a ∈ V (u + H u) and b ∈
V (v +H v ). Consider the following cases:

Case 1: Suppose that u = v .

If a,b ∈V (H v ), then NH v [a]∩C1 ̸= NH v [b]∩C1 since C1 is differentiating in H v by (i), (ii),

(iii), and (iv). Therefore,

(NG◦H [a]∩C )∪ ({v}∩C ) ̸= (NG◦H [b]∩C )∪ ({v}∩C ), i.e.,

NG◦H [a]∩C ̸= NG◦H [b]∩C .

Suppose a = v and b ∈ V (H v ). If NG (v)∩C ̸= ;, say z ∈ NG (v)∩C , then z ∈ [NG◦H [a]∩
C ]\[NG◦H [b]∩C ]. Thus, NG◦H [a]∩C ̸= NG◦H [b]∩C . If NG (v)∩C = ;, then V (H v )∩C is

strictly differentiating in H v by (ii) and (iv). Hence, there exists w ∈ V (H v ) ∩C such that

w ∉ NG◦H [b]∩C . Since w ∈ NG◦H [a]∩C , it follows that NG◦H [a]∩C ̸= NG◦H [b]∩C .

Case 2: Suppose that u ̸= v .

Since V (H u)∩C and V (H v )∩C are non-empty disjoint sets, and V (H u)∩C∩NG◦H [a]∩C ̸=
; and V (H v )∩C ∩NG◦H [b]∩C ̸= ;, it follows that NG◦H [a]∩C ̸= NG◦H [b]∩C .

Accordingly, C is a differentiating dominating set in G ◦H . ���

Corollary 4.15. Let G (not necessarily point distinguishing) and let H (point distinguishing)

be non-trivial connected graphs. Then

|V (G)|γD (H) ≤ γD (G ◦H) ≤ |V (G)|γSD (H).

Proof. Let C be a minimum differentiating dominating set in G . Then

γD (G ◦H) = |C | = ∑
v∈V (G)∩C

(1+|V (H v )∩C |)+ ∑
v∈V (G)\C

|V (H v )∩C |.

From Theorem 4.14(i) and (ii), Remark 2.4, and Lemma 2.5, 1+ |V (H v )∩C | ≥ 1+dn(H) ≥
γD (H) for every v ∈V (G)∩C . Now, if v ∈V (G)\C and NG (v)∩C ̸=∅, then |V (H v )∩C | ≥ γD (H)

by Theorem 4.14(iii). If NG (v)∩C =∅, then |V (H v )∩C | ≥ γSD (H) ≥ γD (H) by Theorem 4.14(iv)

and Remark 2.4. Thus, |V (H v )∩C | ≥ γD (H) for every v ∈V (G)\C . Therefore γD (G ◦H) = |C | ≥
|V (G)|γD (H).

Next, let S be a minimum strictly differentiating-dominating set in H . For each v ∈V (G),

pick Sv ⊆ V (H v ), where 〈Sv 〉 ∼= 〈S〉. Then C =∪v∈V (G)Sv is a differentiating dominating set in

G ◦H by Theorem 4.14. Hence, γD (G ◦H) ≤ |C | = |V (G)|γSD (H).

Therefore, |V (G)|γD (H) ≤ γD (G ◦H) ≤ |V (G)|γSD (H). ���
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5. Differentiating dominating sets in the lexicographic product of graphs

The lexicographic product G[H ] of two graphs G and H is the graph with V (G[H ]) =
V (G)×V (H) and (u,u′)(v, v ′) ∈ E(G[H ]) if and only if either uv ∈ E(G) or u = v and u′v ′ ∈ E(H).

Observe that any subset C of V (G)×V (H) (in fact, any set of ordered-pairs) can be written

as C =∪x∈S({x}×Tx ), where S ⊆V (G) and Tx ⊆V (H) for each x ∈ S. Henceforth, we shall use

this form to denote any subset C of V (G)×V (H).

Theorem 5.16. Let G (not necessarily point distinguishing) and H be non-trivial connected

graphs. Then C =∪x∈S({x}×Tx ), where S ⊆V (G) and Tx ⊆V (H) for each x ∈ S, is a differentiating-

dominating set in G[H ] if and only if

(i) S =V (G);

(ii) Tx is a differentiating set in H for every x ∈V (G);

(iii) Tx or Ty is strictly differentiating in H whenever x and y are adjacent vertices of G with

NG [x] = NG [y]; and

(iv) Tx or Ty is (differentiating) dominating in H whenever x and y are distinct non-adjacent

vertices of G with NG (x) = NG (y).

Proof. Suppose C is a differentiating dominating set in G[H ]. Suppose there exists x ∈V (G)\S.

Pick a,b ∈ V (H), where a ̸= b. Then (x, a), (x,b) ∉ C and (x, a) ̸= (x,b). Since {(x,c) : c ∈
V (H)}∩C =;, it follows that NG[H ][(x, a)]∩C = NG[H ][(x,b)]∩C . This implies that C is not a

differentiating set in G[H ], contrary to our assumption. Therefore, S =V (G).

Now let x ∈V (G) and suppose that Tx is not differentiating in H . Then there exists distinct

vertices p and q in V (H) such that NH [p]∩Tx = NH [q]∩Tx . Let Dx = NH [p]∩Tx . Since

NG[H ][(x, p)] ∩C = ∪{{y} × Ty : y ∈ NG (x)} ∪ ({x} × Dx ) = NG[H ][(x, q)] ∩C , it follows that C

is a not a differentiating set in G[H ]. Again, this gives a contradiction. Therefore, Tx is a

differentiating set in H .

To prove (iii), let x and y be adjacent vertices of G with NG [x] = NG [y]. Suppose that Tx

and Ty are not strictly differentiating in H . Then there exist c,d ∈V (H) such that NH [c]∩Tx =
Tx and NH [d ]∩Ty = Ty . It follows that ({x}×Tx )∪({y}×Ty ) ⊆ NG[H ][(x,c)]∩NG[H ][(y,d)]. Since

NG [x] = NG [y], it follows that NG[H ][(x,c)]∩C = NG[H ][(y,d)]∩C , i.e., C is not a differentiating

set in G[H ]. This contradicts our assumption. Therefore, Tx or Ty is strictly differentiating in

H .

To prove (iv), let x and y be distinct non-adjacent vertices of G with NG (x) = NG (y).

Suppose that Tx is not a dominating set in H . Then there exists a ∈ V (H)\Tx such that

ab ∉ E(H) for all b ∈ Tx . It follows that (x, a) ∉ C and NG[H ][(x, a)]∩C = NG[H ]((x, a))∩C =
∪{{z}×Tz : z ∈ NG (x)}. Let c ∈ V (H)\Ty . Then (y,c) ∉ C . Since NG (x) = NG (y), it follows that
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∪{{z}×Tz : z ∈ NG (x)} ⊆ NG[H ]((y,c))∩C = NG[H ][(y,c)]∩C . Since C is a differentiating set in

G[H ], there exists (y,d) ∈ {y}×Ty such that (y,d)(y,c) ∈ E(G[H ]). This implies that d ∈ Ty and

cd ∈ E(H). Therefore, Ty is a dominating set in H . This shows that (iv) holds.

For the converse, suppose that conditions (i), (ii), (iii), and (iv) hold. By (i) and the fact

that G is connected, it follows that C is a dominating set in G[H ]. Now let (x, a), (y,b) ∈
V (G[H ]) with (x, a) ̸= (y,b). Consider the following cases:

Case 1. Suppose x = y .

Then a ̸= b. Since Tx is a differentiating set in H , NH [a]∩Tx = A ̸= B = NH [b]∩Ty . Now,

since ({x}×Tx )∩ (NG[H ][(x, a)]∩C ) = {x}× A and ({y}×Ty )∩ (NG[H ][(y,b)]∩C ) = {y}×B , it

follows that NG[H ][(x, a)]∩C ̸= NG[H ][(y,b)]∩C .

Case 2. Suppose x ̸= y .

Consider the following sub-cases:

Sub-case 1. Suppose x y ∉ E(G).

Suppose first that NG (x) ̸= NG (y), say z ∈ NG (x)\NG (y). Pick d ∈ Tz . Then (z,d) ∈ C

and (z,d) ∈ (NG[H ][(x, a)]∩C )\(NG[H ][(y,b)]∩C ). Next, suppose that NG (x) = NG (y). By (iv),

we may assume that Tx is a dominating set in H . If (x, a) ∈ C , then (x, a) ∈ (NG[H ][(x, a)]∩
C )\(NG[H ][(y,b)]∩C ). If (x, a) ∉C , then a ∉ Tx . Hence, there exists c ∈ Tx such that ac ∈ E(H).

This implies that (x,c) ∈C and (x,c) ∈ (NG[H ][(x, a)]∩C )\(NG[H ][(y,b)]∩C ).

Sub-case 2. Suppose x y ∈ E(G).

If NG [x] ̸= NG [y], then NG (x) ̸= NG (y); hence, as in a previous case, NG[H ][(x, a)]∩C ̸=
NG[H ][(y,b)]∩C . If NG [x] = NG [y], then, by (iii), it can be assumed that Tx is strictly differen-

tiating in H . Hence NH [a]∩Tx ̸= Tx . This implies that there exists q ∈ Tx such that q ∉ NH [a].

It follows that (x, q) ∈C and (x, q) ∈ (NG[H ][(y,b)]∩C )\(NG[H ][(x, a)]∩C ).

Accordingly, C is a differentiating-dominating set in G[H ]. ���
The following is a direct consequence of Theorem 5.16.

Corollary 5.17. Let G be a non-trivial connected totally point determining graph and H a non-

trivial connected point distinguishing graph with ∆(H) ≤ |V (H)|−2. Then C =∪x∈S({x}×Tx ),

where S ⊆V (G) and Tx ⊆V (H) for each x ∈ S, is a minimum differentiating-dominating set in

G[H ] if and only if S =V (G) and each Tx is a minimum differentiating set in H.

The next result is immediate from Corollary 5.17.

Corollary 5.18. Let G be a non-trivial connected totally point determining graph and H a

non-trivial connected point distinguishing graph with ∆(H) ≤ |V (H)| − 2. Then γD (G[H ]) =
|V (G)|γD (H).
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Proof. Let C = ∪x∈S({x}×Tx ) be a minimum differentiating dominating set in G[H ]. Then

S =V (G) and Tx is a minimum differentiating set in H for every x ∈V (G), by Corollary 5.17. It

follows that γD (G[H ]) = |C | = |V (G)|dn(H). ���
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