ON STRONG APPROXIMATION BY MODIFIED **MEYER-KÖNIG AND ZELLER OPERATORS**

L. REMPULSKA AND M. SKORUPKA

Abstract. We introduce certain modified Meyer-König and Zeller operators $M_{n;r}$ in the space of r-th times differentiable functions f and we study strong differences $H_{n;r}^q(f)$ for them. This note is motivated by results on strong approximation connected with Fourier series ([7]).

1. Introduction

1.1. The Meyer-König and Zeller operators M_n , $n \in N = \{1, 2, \dots, \}$,

$$M_n(f;x) := \begin{cases} \sum_{k=0}^{\infty} p_{nk}(x) f(\frac{k}{n+k}) & \text{if } 0 \le x < 1, \\ f(1) & \text{if } x = 1, \end{cases}$$
(1)

$$p_{nk}(x) := \binom{n+k}{k} x^k (1-x)^{n+1}, \quad k \in N_0 = N \cup \{0\},$$
(2)

associated with bounded functions $f: I = [0, 1] \rightarrow R$, were introduced in [9].

Approximation properties of M_n were given in many papers (e.g. [1, 3, 5, 8, 9].

In many papers (e.g. [2, 4, 10]) were introduced certain modifications of operators ${\cal M}_n$ and were studied their properties in various functions spaces.

Let C_I be the space of all functions $f: I \to R$, continuous on I with the norm

$$||f|| = \sup\{|f(x)| : x \in I\}.$$
(3)

It is known ([1, 3, 8]) that $M_n, n \in N$, is a positive linear operator from the space C_I into C_I and for every $f \in C_I$ we have

$$||M_n(f)|| \le ||f||, \quad n \in N,$$
(4)

and

$$\|M_n(f) - f\| \le \frac{31}{27} \ \omega \ \left(f; \frac{1}{\sqrt{n}}\right), \quad n \in N,\tag{5}$$

Received September 20, 2004; revised December 07, 2004.

2000 Mathematics Subject Classification. 41A36.

Key words and phrases. Meyer-König and Zeller operator, linear operator, strong approximation.

where $\omega(\cdot, \cdot)$ is the modulus of continuity of f ([11]), i.e.

$$\omega(f;t) = \sup\{|f(x) - f(y)| : x, y \in I, |x - y| \le t\}, t \in I.$$
(6)

From (5) immediately follows

$$\lim_{n \to \infty} \|M_n(f) - f\| = 0,$$

for every $f \in C_I$.

Let $r \in N_0$ be a fixed number and let $C_I^r := \{f \in C_I : f^{(r)} \in C_I\}$ and the norm in C_I^r is defined by (3) $(C_I^0 \equiv C_I)$.

It is known ([1]-[3]) that if $f \in C_I^r$, $r \ge 2$, then

$$\|M_n(f) - f\| = O\left(\frac{1}{n}\right), \quad n \in N,$$
(7)

and this result cannot be improved.

1.2. In this note we shall show that certain modification of the formula (1) improves the approximation order (7) for functions $f \in C_I^r$, $r \ge 2$.

We introduce the following.

Definition. Let $r \in N_0$ be a fixed number. For $f \in C_I^r$ and $n \in N$ we define the following modified Meyer-König and Zeller operators:

$$M_n(f;x) := \begin{cases} \sum_{k=0}^{\infty} p_{nk}(x) \sum_{j=0}^{r} \frac{f^{(j)}(\xi_{nk})}{j!} (x - \xi_{n,k})^j & \text{if } 0 \le x < 1, \\ f(1) & \text{if } x = 1, \end{cases}$$
(8)

where

$$\xi_{nk} := \frac{k}{n+k}, \quad n \in N, \quad k \in N_0, \tag{9}$$

and $p_{nk}(x)$ is defined by (2).

Obviously $M_{n;0}(f;x) \equiv M_n(f;x)$ for $f \in C_I^0$, $x \in I$ and $n \in N$.

From (1), (2), (8) and (9) it follows that

$$M_{n;r}(1;x) = \sum_{k=0}^{\infty} p_{nk}(x) = 1 \text{ for } x \in I, \ n \in N, \ r \in N_0.$$
(10)

In Section 2 we shall prove that $M_{n;r}$ is a linear operator from the space C_I^r into C_I . The main approximation theorem will be given also in Section 2.

In this paper we shall denote by $K_i(a, b), i \in N$, suitable positive constants depending only on indicated parameters a, b.

1.3. Let $r \in N_0$ and q > 0 be fixed numbers. For $f \in C_I^r$ and $M_{n;r}(f)$ we introduce strong differences with the power q as follows:

$$H_{n;r}^{q}(f;x) := \begin{cases} \left(\sum_{k=0}^{\infty} p_{nk}(x) \middle| \sum_{j=0}^{r} \frac{f^{(j)}(\xi_{nk})}{j!} (x - \xi_{n,k})^{j} - f(x) \middle|^{q} \right)^{\frac{1}{q}} & \text{if } x \in [0,1), \\ 0 & \text{if } x = 1, \end{cases}$$
(11)

In particular for $f \in C_I$, $n \in N$ and q > 0 we have

$$H_{n;0}^{q}(f;x) := \begin{cases} \left(\sum_{k=0}^{\infty} p_{nk}(x) |f(\xi_{nk}) - f(x)|^{q}\right)^{\frac{1}{q}} & \text{if } 0 \le x < 1, \\ 0 & \text{if } x = 1, \end{cases}$$
(12)

The properties of $H_{n;r}^q(f)$ will be given in Section 2.

2. Lemmas and Theorem

2.1. First we shall give auxiliary results.

Lemma 1. For every $s \in N$ there exists $K_1(s) = const. > 0$ such that

$$M_{n;0}(|t-x|^s;x) \equiv M_n(|t-x|^s;x) \le K_1(s)n^{-\frac{s}{2}},$$

for all $x \in I$ and $n \in N$.

Proof. In [4] was given the following inequality

$$M_n((t-x)^{2s};x) \le K_2(s)n^{-s}$$
 for $x \in I$ and $n, s \in N$,

where $K_2(s)$ is suitable positive constant dependent only on s.

Using the Hölder inequality to $M_n(|t-x|^s;x)$ and by (10) and the above result, we immediately obtain the desired inequality.

Now we shall prove analogue of the inequality (4).

Lemma 2. Let $n, r \in N$ be fixed numbers. Then $M_{n;r}(f)$ is a linear operator from the space C_I^r into C_I and

$$\|M_{n;r}(f)\| \le \sum_{j=0}^{r} \|f^{(j)}\|,\tag{13}$$

for every $f \in C_I^r$.

Proof. Let $f \in C_I^r$ with $r \in N$. By (2), (3) and (9) we have

$$\left|\sum_{j=0}^{r} \frac{f^{(j)}(\xi_{nk})}{j!} (x - \xi_{nk})^{j}\right| \le \sum_{j=0}^{r} \frac{\|f^{(j)}\|}{j!} |x - \xi_{nk}|^{j} \le \sum_{j=0}^{r} \frac{\|f^{(j)}\|}{j!},$$

for all $x \in I$, $k \in N_0$ and $n \in N$. From this and by (8) - (10) we deduce the continuity of $M_{n;r}(f)$ on interval [0,1) and

$$|M_{n;r}(f;x)| \le \sum_{j=0}^{r} ||f^{(j)}|| \quad \text{for } x \in [0,1), \quad n \in N.$$
(14)

Now we shall prove the continuity of $M_{n;r}(f)$ at x = 1.

If $f \in C_I^r$, $r \in N$, then the functions $h_{j,s}(x) = x^s f^{(j)}(x)$, $x \in I$, j, s = 0, 1, ..., r, belong to C_I and by properties of operators M_n given in Section 1 we have also $M_n(h_{j,s}) \in C_I$ and $\lim_{x \to 1^-} M_n(h_{j,s}(t); x) = h_{j,s}(1)$, i.e.

$$\lim_{x \to 1^{-}} M_n(t^s f^{(j)}(t); x) = f^{(j)}(1), \quad 0 \le j, \quad s \le r.$$
(15)

From the above and by (8) and (1) we get

$$M_{n;r}(f;x) = \sum_{j=0}^{r} \frac{1}{j!} \sum_{s=0}^{j} {j \choose s} (-1)^{s} x^{j-s} M_{n}(t^{s} f^{(j)}(t);x)$$
(16)

for $x \in [0, 1)$, which by (15) and the equality

$$\sum_{s=0}^{j} \binom{j}{s} (-1)^s = \begin{cases} 1 & \text{if } j = 0, \\ 0 & \text{if } j \in N, \end{cases}$$

implies that

$$\lim_{x \to 1-} M_n(f;x) = \sum_{j=0}^r \frac{f^{(j)}(1)}{j!} \sum_{s=0}^j \binom{j}{s} (-1)^s = f(1).$$
(17)

The formulas (8), (16) and (17) show that $M_{n;r}$ with $n, r \in N$ is a linear operator from the space C_I into C_I . Moreover from (8) and (14) immediately follow (13).

Applying Lemma 1 and Lemma 2 we can prove the following.

Lemma 3. Let $r \in N_0$ be a fixed number. Then $H^q_{n,r}(f;x)$ is well-defined for every $f \in C^r_I$, $x \in I$, $n \in N$ and q > 0. Moreover the formula (11) can be written in the form:

$$H_{n;r}^{q}(f;x) := \begin{cases} \left(M_{n} \left(\left| \sum_{j=0}^{r} \frac{f^{(j)}(t)}{j!} (x-t)^{j} - f(x) \right|^{q}; x \right) \right)^{\frac{1}{q}} & \text{if } x \in [0,1), \\ 0 & \text{if } x = 1, \end{cases}$$
(18)

By elementary calculations we obtain.

Lemma 4. Suppose that $f \in C_I^r$ with a fixed $r \in N_0$. Then for $x \in I$ and $n \in N$ we have

$$|M_{n;r}(f;x) - f(x)| \le H^1_{n;r}(f;x)$$
(19)

and

$$H^{p}_{n;r}(f;x) \le H^{q}_{n;r}(f;x) \quad if \ 0
(20)$$

Proof. The formulas (8)-(10) and (1) imply that

$$|M_{n;r}(f;x) - f(x)| = \left| M_n \left(\sum_{j=0}^r \frac{f^{(j)}(t)}{j!} (x-t)^j - f(x); x \right) \right|$$
$$\leq M_n \left(\left| \sum_{j=0}^r \frac{f^{(j)}(t)}{j!} (x-t)^j - f(x) \right|; x \right)$$

for $0 \le x < 1$ and $M_{n;r}(f;1) - f(1) = 0$, which by (18) yield (19).

Applying the Hölder inequality and (10), we get

$$(M_n(|g(t)|^p;x))^{\frac{1}{p}} \le (M_n(|g(t)|^q;x))^{\frac{1}{q}}, \ x \in I, \ n \in N,$$
(21)

for every $g \in C_I$ and 0 . From (18) and (21) immediately follows (20).

2.2. Applying the above lemmas we shall prove the main theorem.

Theorem. Let $r \in N_0$ and q > 0 be fixed numbers. Then there exists $K_5(q, r) = const. > 0$ such that for every $f \in C_I^r$ and $n \in N$ we have

$$\|H_{n;r}^{q}(f;\cdot)\| \le K_{5}(q,r)n^{-\frac{r}{2}} \omega\left(f^{(r)};\frac{1}{\sqrt{n}}\right).$$
(22)

Proof. First let $r \in N$ and $q \in N$. Analogously to [6] we apply the following modified Taylor formula of $f \in C_I^r$ at a fixed point $x_0 \in I$:

$$f(x) = \sum_{j=0}^{r} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \frac{(x - x_0)^r}{(r - 1)!} \int_0^1 (1 - t)^{r - 1} (f^{(r)}(x_0 + t(x - x_0)) - f^{(r)}(x_0)) dt, \quad x \in I.$$
(23)

Setting $x_0 = \frac{k}{n+k} \equiv \xi_{nk}$ and using (23) to (11), we can write

$$H_{n;r}^{q}(f;x) = \left(\sum_{k=0}^{\infty} p_{nk}(x) \left| \frac{(x-\xi_{nk})^{r}}{(r-1)!} I_{n,k,r} \right|^{q} \right)^{\frac{1}{q}} \text{ for } x \in [0,1),$$

where

$$I_{n,k,r} := \int_0^1 (1-t)^{r-1} (f^{(r)}(\xi_{nk} + t(x-\xi_{nk})) - f^{(r)}(\xi_{nk})) dt.$$

By (6) and properties of modulus of continuity ([11]) we have

$$|f^{(r)}(\xi_{nk} + t(x - \xi_{nk})) - f^{(r)}(\xi_{nk})| \le \omega (f^{(r)}; t|x - \xi_{nk}|)$$

$$\le \omega (f^{(r)}; |x - \xi_{nk}|) \le \omega \left(f^{(r)}; \frac{1}{\sqrt{n}}\right) (\sqrt{n} |x - \xi_{nk}| + 1),$$

for $0 \le t \le 1$ and further

$$|I_{n,k,r}| \le \frac{1}{r} \omega \left(f^{(r)}; \frac{1}{\sqrt{n}} \right) (\sqrt{n} |x - \xi_{nk}| + 1).$$

From the above and by the Minkowski inequality and (1) we get

$$H_{n;r}^{q}(f;x) \leq \frac{1}{r!} \omega \left(f^{(r)}; \frac{1}{\sqrt{n}} \right) \left(\sum_{k=0}^{\infty} p_{nk}(x) (\sqrt{n} |x - \xi_{nk}|^{r+1} + |x - \xi_{nk}|^{r})^{q} \right)^{\frac{1}{q}} \\ \leq \frac{1}{r!} \omega \left(f^{(r)}; \frac{1}{\sqrt{n}} \right) \left(\sqrt{n} \left(M_{n}(|t - x|^{(r+1)q}; x) \right)^{\frac{1}{q}} + \left(M_{n}(|t - x|^{qr}; x) \right)^{\frac{1}{q}} \right),$$

for $x \in [0, 1), n \in N$. Now applying Lemma 1, we easily obtain

$$H_{n;r}^{q}(f;x) \le K_{6}(q,r)n^{-\frac{r}{2}} \omega\left(f^{(r)};\frac{1}{\sqrt{n}}\right),$$

for $x \in [0,1)$ and $\in N$. From this and (11) and (3) follows (22) for $q \in N$ and $r \in N$.

If $r \in N$ and $0 < q \notin N$, then [q] + 1 belongs to N and q < [q] + 1 ([q] is the integral part of q). Applying (20) and (3), we get

$$||H_{n;r}^q(f;\cdot)|| \le ||H_{n;r}^{[q]+1}(f;\cdot)||, \quad n \in N,$$

which by (22) for $\|H_{n;r}^{[q]+1}(f;\cdot)\|$ implies (22) for $r \in N$ and $0 < q \notin N$.

b) If r = 0 and $f \in C_I$, then by (12) and (6) we have

$$H_{n;0}^{q}(f;x) := \begin{cases} (M_{n}(|f(t) - f(x)|^{q};x))^{\frac{1}{q}} & \text{if } 0 \le x < 1, \\ 0 & \text{if } x = 1, \end{cases}$$
(24)

and

$$|f(t) - f(x)| \le \omega(f; |t - x|) \le \omega\left(f; \frac{1}{\sqrt{n}}\right)(\sqrt{n} |t - x| + 1)$$

$$\tag{25}$$

for $t, x \in I$. Arguing as in the case $r \in N$ and using (25) to (24), we obtain (22) for r = 0.

Thus the proof is completed.

2.3. Finaly we shall give some corollaries and remarks.

From imequalities (19) and (20) and by (3) we deduce that

$$\|M_{n;r}(f) - f\| \le \|H_{n;r}^1(f)\| \le \|H_{n;r}^q(f)\|, \quad n \in N,$$
(26)

for every $f \in C_I$, $r \in N_0$, and q > 1.

The inequality (26) shows that our theorem on the strong approximation (with the power $q \ge 1$) of $f \in C_I^r$ by $M_{n;r}(f)$ implies the classical approximation theorem for them. From Theorem and (26) we derive the following two corollaries.

Corollary 1. For every $f \in C_I^r$, $r \in N_0$, and q > 0 we have

$$\lim_{n \to \infty} n^{\frac{1}{2}} \|H_{n;r}^q(f)\| = 0$$

and

$$\lim_{n \to \infty} n^{\frac{1}{2}} \|M_{n;r}(f) - f\| = 0.$$
(27)

Corollary 2. Suppose that $f \in C_I^r$, $r \in N_0$, and $f^{(r)} \in \text{Lip } \alpha$ with $0 < \alpha \leq 1$, i.e. $\omega(f^{(r)};t) = O(t^{\alpha}), t \in (0,1]$. Then

$$||H_{n;r}^{q}(f)|| = O\left(n^{-\frac{r+\alpha}{2}}\right), \quad n \in N,$$

for every fixed q > 0. Consequently we have

$$||M_{n;r}(f) - f|| = O\left(n^{-\frac{r+\alpha}{2}}\right), \quad n \in N.$$
 (28)

Remark. The given theorem (also the above corollaries) shows that the order of strong approximation of $f \in C_I^r$, $r \in N$, by $M_{n;r}(f)$ is better than for classical Meyer-König and Zeller operators $M_n(f)$. Moreover, Theorem shows that the order of strong approximation of $f \in C_I^r$ by $M_{n;r}(f)$ improves if r increases.

The identical properties we deduce from (27), (28) and (5) for ordinary approximation of $f \in C_I^r$ by $M_{n;r}, r \in N$.

References

- M. Becker and R. J. Nessel, A global approximation theorem for Meyer-König and Zeller operators, Math. Z. 160(1978), 195-206.
- [2] W. Chen, On the integral type Meyer-König and Zeller operators, Approx. Theory and its Applic. 2(1986), 7-18.
- [3] R. A. De Vore, The Approximation of Continuous Functions by Positive Linear Operators, Springer, new York, 1972.
- [4] S. Guo, On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation, J. Approx. Theory 56(1989), 245-255.
- [5] V. Gupta, A note on Meyer-König and Zeller operators for functions of bounded variation, Approx. Theory and its Applic. 18(2002), 99-102.
- [6] G. H. Kirov, A generalization of the Bernstein polynomials, Math. Balkanica 6(1992), 147-153.
- [7] L. Leindler, Strong Approximation by Fourier Series, Akad. Kiado, Budapest, 1985.
- [8] A. Lupas and M. W. Müller, Approximation properties of the M_n-operators, Aequationes Math. 5(1970), 19-37.
- [9] W. Meyer-König and K. Zeller, Bernsteiniche Potenzreihen, Studia Math. 19(1960), 89-94.
- [10] M. W. Müller, L_p-approximation by the method of integral Meyer-König and Zeller operators, Studia Math. 63(1978), 81-88.
- [11] A. F. Timan, Theory of Approximation of Functions of Real Variable, New York, 1963.

L. REMPULSKA AND M. SKORUPKA

Institute of Mathematics, Poznań University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland.

E-mail: lrempuls@math.put.poznan.pl

Institute of Mathematics, Poznań University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland.

E-mail: mariolas@math.put.poznan.pl