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ON STRONG APPROXIMATION BY MODIFIED

MEYER-KÖNIG AND ZELLER OPERATORS

L. REMPULSKA AND M. SKORUPKA

Abstract. We introduce certain modified Meyer-König and Zeller operators Mn;r in the space

of r-th times differentiable functions f and we study strong differences Hq
n;r(f) for them.

This note is motivated by results on strong approximation connected with Fourier series ([7]).

1. Introduction

1.1. The Meyer-König and Zeller operators Mn, n ∈ N = {1, 2, . . . , },

Mn(f ; x) :=











∞
∑

k=0

pnk(x)f(
k

n + k
) if 0 ≤ x < 1,

f(1) if x = 1,

(1)

pnk(x) :=

(

n + k

k

)

xk(1 − x)n+1, k ∈ N0 = N ∪ {0}, (2)

associated with bounded functions f : I = [0, 1] → R, were introduced in [9].
Approximation properties of Mn were given in many papers (e.g. [1, 3, 5, 8, 9].
In many papers (e.g. [2, 4, 10]) were introduced certain modifications of operators

Mn and were studied their properties in various functions spaces.
Let CI be the space of all functions f : I → R, continuous on I with the norm

‖f‖ = sup{|f(x)| : x ∈ I}. (3)

It is known ([1, 3, 8]) that Mn, n ∈ N , is a positive linear operator from the space
CI into CI and for every f ∈ CI we have

‖Mn(f)‖ ≤ ‖f‖, n ∈ N, (4)

and

‖Mn(f) − f‖ ≤ 31

27
ω

(

f ;
1√
n

)

, n ∈ N, (5)
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where ω(·, ·) is the modulus of continuity of f ([11]), i.e.

ω(f ; t) = sup{|f(x) − f(y)| : x, y ∈ I, |x − y| ≤ t}, t ∈ I. (6)

From (5) immediatelly follows

lim
n→∞

‖Mn(f) − f‖ = 0,

for every f ∈ CI .

Let r ∈ N0 be a fixed number and let Cr
I := {f ∈ CI : f (r) ∈ CI} and the norm in

Cr
I is defined by (3) (C0

I ≡ CI).

It is known ([1]-[3]) that if f ∈ Cr
I , r ≥ 2, then

‖Mn(f) − f‖ = O
( 1

n

)

, n ∈ N, (7)

and this result cannot be improved.

1.2. In this note we shall show that certain modification of the formula (1) improves the

approximation order (7) for functions f ∈ Cr
I , r ≥ 2.

We introduce the following.

Definition. Let r ∈ N0 be a fixed number. For f ∈ Cr
I and n ∈ N we define the

following modified Meyer-König and Zeller operators:

Mn(f ; x) :=







∞
∑

k=0

pnk(x)
r
∑

j=0

f(j)(ξnk)
j! (x − ξn,k)j if 0 ≤ x < 1,

f(1) if x = 1,

(8)

where

ξnk :=
k

n + k
, n ∈ N, k ∈ N0, (9)

and pnk(x) is defined by (2).

Obviously Mn;0(f ; x) ≡ Mn(f ; x) for f ∈ C0
I , x ∈ I and n ∈ N .

From (1), (2), (8) and (9) it follows that

Mn;r(1; x) =
∞
∑

k=0

pnk(x) = 1 for x ∈ I, n ∈ N, r ∈ N0. (10)

In Section 2 we shall prove that Mn;r is a linear operator from the space Cr
I into CI .

The main approximation theorem will be given also in Section 2.

In this paper we shall denote by Ki(a, b), i ∈ N , suitable positive constants depending

only on indicated paramenters a, b.
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1.3. Let r ∈ N0 and q > 0 be fixed numbers. For f ∈ Cr
I and Mn;r(f) we introduce

strong differences with the power q as follows:

Hq
n;r(f ; x) :=







( ∞
∑

k=0

pnk(x)
∣

∣

∣

r
∑

j=0

f(j)(ξnk)
j! (x − ξn,k)j − f(x)

∣

∣

∣

q) 1
q

if x ∈ [0, 1),

0 if x = 1,

(11)

In particular for f ∈ CI , n ∈ N and q > 0 we have

Hq
n;0(f ; x) :=







(

∞
∑

k=0

pnk(x)|f(ξnk) − f(x)|q
)

1
q

if 0 ≤ x < 1,

0 if x = 1,

(12)

The properties of Hq
n;r(f) will be given in Section 2.

2. Lemmas and Theorem

2.1. First we shall give auxiliary results.

Lemma 1. For every s ∈ N there exists K1(s) =const.> 0 such that

Mn;0(|t − x|s; x) ≡ Mn(|t − x|s; x) ≤ K1(s)n
−

s
2 ,

for all x ∈ I and n ∈ N .

Proof. In [4] was given the following inequality

Mn((t − x)2s; x) ≤ K2(s)n
−s for x ∈ I and n, s ∈ N,

where K2(s) is suitable positive constant dependent only on s.

Using the Hölder inequality to Mn(|t − x|s; x) and by (10) and the above result, we
immediately obtain the desired inequality.

Now we shall prove analogue of the inequality (4).

Lemma 2. Let n, r ∈ N be fixed numbers. Then Mn;r(f) is a linear operator from

the space Cr
I into CI and

‖Mn;r(f)‖ ≤
r

∑

j=0

‖f (j)‖, (13)

for every f ∈ Cr
I .

Proof. Let f ∈ Cr
I with r ∈ N . By (2), (3) and (9) we have

∣

∣

∣

r
∑

j=0

f (j)(ξnk)

j!
(x − ξnk)j

∣

∣

∣
≤

r
∑

j=0

‖f (j)‖
j!

|x − ξnk|j ≤
r

∑

j=0

‖f (j)‖
j!

,
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for all x ∈ I, k ∈ N0 and n ∈ N . From this and by (8) - (10) we deduce the continuity

of Mn;r(f) on interval [0,1) and

|Mn;r(f ; x)| ≤
r

∑

j=0

‖f (j)‖ for x ∈ [0, 1), n ∈ N. (14)

Now we shall prove the continuity of Mn;r(f) at x = 1.

If f ∈ Cr
I , r ∈ N , then the functions hj,s(x) = xsf (j)(x), x ∈ I, j, s = 0, 1, . . . , r,

belong to CI and by properties of operators Mn given in Section 1 we have also Mn(hj,s) ∈
CI and limx→1− Mn(hj,s(t); x) = hj,s(1), i.e.

lim
x→1−

Mn(tsf (j)(t); x) = f (j)(1), 0 ≤ j, s ≤ r. (15)

From the above and by (8) and (1) we get

Mn;r(f ; x) =

r
∑

j=0

1

j!

j
∑

s=0

(

j

s

)

(−1)sxj−sMn(tsf (j)(t); x) (16)

for x ∈ [0, 1), which by (15) and the equality

j
∑

s=0

(

j

s

)

(−1)s =

{

1 if j = 0,

0 if j ∈ N,

implies that

lim
x→1−

Mn(f ; x) =
r

∑

j=0

f (j)(1)

j!

j
∑

s=0

(

j

s

)

(−1)s = f(1). (17)

The formulas (8), (16) and (17) show that Mn;r with n, r ∈ N is a linear operator from

the space CI into CI . Moreover from (8) and (14) immedialely follow (13).

Applying Lemma 1 and Lemma 2 we can prove the following.

Lemma 3. Let r ∈ N0 be a fixed number. Then Hq
n;r(f ; x) is well-defined for every

f ∈ Cr
I , x ∈ I, n ∈ N and q > 0. Moreover the formula (11) can be written in the form:

Hq
n;r(f ; x) :=







(

Mn

(
∣

∣

∣

r
∑

j=0

f(j)(t)
j! (x − t)j − f(x)

∣

∣

∣

q

; x
))

1
q

if x ∈ [0, 1),

0 if x = 1,

(18)

By elementary calculations we obtain.

Lemma 4. Suppose that f ∈ Cr
I with a fixed r ∈ N0. Then for x ∈ I and n ∈ N we

have

|Mn;r(f ; x) − f(x)| ≤ H1
n;r(f ; x) (19)
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and

Hp
n;r(f ; x) ≤ Hq

n;r(f ; x) if 0 < p < q < ∞. (20)

Proof. The formulas (8)-(10) and (1) imply that

|Mn;r(f ; x) − f(x)| =
∣

∣

∣
Mn

(

r
∑

j=0

f (j)(t)

j!
(x − t)j − f(x); x

)
∣

∣

∣

≤ Mn

(
∣

∣

∣

r
∑

j=0

f (j)(t)

j!
(x − t)j − f(x)

∣

∣

∣
; x

)

for 0 ≤ x < 1 and Mn;r(f ; 1) − f(1) = 0, which by (18) yield (19).
Applying the Hölder inequality and (10), we get

(Mn(|g(t)|p; x))
1
p ≤ (Mn(|g(t)|q; x))

1
q , x ∈ I, n ∈ N, (21)

for every g ∈ CI and 0 < p < q < ∞. From (18) and (21) immediately follows (20).

2.2. Applying the above lemmas we shall prove the main theorem.

Theorem. Let r ∈ N0 and q > 0 be fixed numbers. Then there exists K5(q, r) =
const.> 0 such that for every f ∈ Cr

I and n ∈ N we have

‖Hq
n;r(f ; ·)‖ ≤ K5(q, r)n

−
r
2 ω

(

f (r);
1√
n

)

. (22)

Proof. First let r ∈ N and q ∈ N . Analogously to [6] we apply the following modified
Taylor formula of f ∈ Cr

I at a fixed point x0 ∈ I:

f(x) =

r
∑

j=0

f (j)(x0)

j!
(x − x0)

j

+
(x − x0)

r

(r − 1)!

∫ 1

0

(1 − t)r−1(f (r)(x0 + t(x − x0)) − f (r)(x0))dt, x ∈ I. (23)

Setting x0 = k
n+k

≡ ξnk and using (23) to (11), we can write

Hq
n;r(f ; x) =

(

∞
∑

k=0

pnk(x)
∣

∣

∣

(x − ξnk)r

(r − 1)!
In,k,r

∣

∣

∣

q) 1
q

for x ∈ [0, 1),

where

In,k,r :=

∫ 1

0

(1 − t)r−1(f (r)(ξnk + t(x − ξnk)) − f (r)(ξnk))dt.

By (6) and properties of modulus of continuity ([11]) we have

|f (r)(ξnk + t(x − ξnk)) − f (r)(ξnk)| ≤ ω (f (r); t|x − ξnk|)

≤ ω (f (r); |x − ξnk|) ≤ ω
(

f (r);
1√
n

)

(
√

n |x − ξnk| + 1),
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for 0 ≤ t ≤ 1 and further

|In,k,r | ≤
1

r
ω

(

f (r);
1√
n

)

(
√

n |x − ξnk| + 1).

From the above and by the Minkowski inequality and (1) we get

Hq
n;r(f ; x) ≤ 1

r!
ω

(

f (r);
1√
n

)(

∞
∑

k=0

pnk(x)(
√

n |x − ξnk|r+1 + |x − ξnk|r)q
)

1
q

≤ 1

r!
ω

(

f (r);
1√
n

)(√
n (Mn(|t − x|(r+1)q; x))

1
q + (Mn(|t − x|qr ; x))

1
q

)

,

for x ∈ [0, 1), n ∈ N . Now applying Lemma 1, we easily obtain

Hq
n;r(f ; x) ≤ K6(q, r)n

−
r
2 ω

(

f (r);
1√
n

)

,

for x ∈ [0, 1) and ∈ N . From this and (11) and (3) follows (22) for q ∈ N and r ∈ N .

If r ∈ N and 0 < q /∈ N , then [q] + 1 belongs to N and q < [q] + 1 ([q] is the integral
part of q). Applying (20) and (3), we get

‖Hq
n;r(f ; ·)‖ ≤ ‖H [q]+1

n;r (f ; ·)‖, n ∈ N,

which by (22) for ‖H [q]+1
n;r (f ; ·)‖ implies (22) for r ∈ N and 0 < q /∈ N .

b) If r = 0 and f ∈ CI , then by (12) and (6) we have

Hq
n;0(f ; x) :=

{

(Mn(|f(t) − f(x)|q; x))
1
q if 0 ≤ x < 1,

0 if x = 1,
(24)

and

|f(t) − f(x)| ≤ ω(f ; |t − x|) ≤ ω
(

f ;
1√
n

)

(
√

n |t − x| + 1) (25)

for t, x ∈ I. Arguing as in the case r ∈ N and using (25) to (24), we obtain (22) for
r = 0.

Thus the proof is completed.

2.3. Finaly we shall give some corollaries and remarks.
From imequalities (19) and (20) and by (3) we deduce that

‖Mn;r(f) − f‖ ≤ ‖H1
n;r(f)‖ ≤ ‖Hq

n;r(f)‖, n ∈ N, (26)

for every f ∈ CI , r ∈ N0, and q > 1.
The inequality (26) shows that our theorem on the strong approximation (with the

power q ≥ 1) of f ∈ Cr
I by Mn;r(f) implies the classical approximation theorem for them.

From Theorem and (26) we derive the following two corollaries.
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Corollary 1. For every f ∈ Cr
I , r ∈ N0, and q > 0 we have

lim
n→∞

n
r
2 ‖Hq

n;r(f)‖ = 0

and

lim
n→∞

n
r
2 ‖Mn;r(f) − f‖ = 0. (27)

Corollary 2. Suppose that f ∈ Cr
I , r ∈ N0, and f (r) ∈ Lip α with 0 < α ≤ 1, i.e.

ω(f (r); t) = O(tα), t ∈ (0, 1]. Then

‖Hq
n;r(f)‖ = O

(

n−
r+α

2

)

, n ∈ N,

for every fixed q > 0. Consequently we have

‖Mn;r(f) − f‖ = O
(

n−
r+α

2

)

, n ∈ N. (28)

Remark. The given theorem (also the above corollaries) shows that the order of

strong approximation of f ∈ Cr
I , r ∈ N , by Mn;r(f) is better than for classical Meyer-

König and Zeller operators Mn(f). Moreover, Theorem shows that the order of strong

approximation of f ∈ Cr
I by Mn;r(f) improves if r increases.

The identical properties we deduce from (27), (28) and (5) for ordinary approximation

of f ∈ Cr
I by Mn;r, r ∈ N .
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