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SOME OPEN PROBLEMS AND CONJECTURES ON SUBMANIFOLDS

OF FINITE TYPE: RECENT DEVELOPMENT

BANG-YEN CHEN

Abstract. Submanifolds of finite type were introduced by the author during the late

1970s. The first results on this subject were collected in author’s books [26, 29]. In 1991, a

list of twelve open problems and three conjectures on finite type submanifolds was pub-

lished in [40]. A detailed survey of the results, up to 1996, on this subject was given by

the author in [48]. Recently, the study of finite type submanifolds, in particular, of bihar-

monic submanifolds, have received a growing attention with many progresses since the

beginning of this century. In this article, we provide a detailed account of recent devel-

opment on the problems and conjectures listed in [40].

1. Introduction

Algebraic geometry studies algebraic varieties which are defined locally as the common

zero sets of polynomials. In algebraic geometry, one can define the degree of an algebraic

variety by its algebraic structure. The concept of degree plays a fundamental role in alge-

braic geometry. On the other hand, according to Nash’s imbedding theorem, every Rieman-

nian manifold can be realized as a Riemannian submanifold in some Euclidean space with

sufficiently high codimension. However, one lacks the notion of the degree for Riemannian

submanifolds in Euclidean spaces.

Inspired by the above simple observation, the author introduced in the late 1970s the no-

tions of “order” and “type” for submanifolds of Euclidean spaces and used them to introduce

the notion of finite type submanifolds. Just like minimal submanifolds, submanifolds of fi-

nite type can be characterized by a spectral variational principle; namely, as critical points of

directional deformations [66].

The family of submanifolds of finite type is huge, which contains many important fami-

lies of submanifolds; including minimal submanifolds of Euclidean space, minimal subman-

ifolds of hyperspheres, parallel submanifolds as well as all equivariantly immersed compact

homogeneous submanifolds.
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On one hand, the notion of finite type submanifolds provides a very natural way to apply

spectral geometry to study submanifolds. On the other hand, one can also apply the theory of

finite type submanifolds to investigate the spectral geometry of submanifolds. For instance,

the author was able to obtain sharp estimates of the total mean curvature for compact sub-

manifolds of Euclidean space via his theory of finite type submanifolds.

The first results on submanifolds of finite type were collected in [26, 29]. A list of twelve

open problems and three conjectures on submanifolds of finite type was published in 1991

[40]. Furthermore, a detailed report of the progress on this theory, up to 1996, was presented

in [48].

Recently, the study of finite type submanifolds, in particular, of biharmonic submani-

folds, have received a growing attention with many progresses since the beginning of this

century. In this article, we provide a detailed account of recent development on the problems

and conjectures listed in [40].

2. Preliminaries

2.1. Finite type submanifolds

We recall some basic definitions, results and formulas (for more details see for instance

[26, 52]).

Let x : M → E
m be an isometric immersion of a (connected) Riemannian manifold M into

the Euclidean m-space E
m . Denote by ∆ the Laplace operator of M . The immersion x is said

to be of finite type if the position vector field of M in E
m , also denoted by x, can be expressed

as a finite sum of Em-valued eigenfunctions of the Laplace operator, i.e., if x can be expressed

as

x = c +x1 +x2 + . . .+xk (2.1)

where c is a constant vector in E
m and x1, . . . , xk are non-constant Em-valued maps satisfying

∆xi =λi xi , i = 1, . . . ,k . (2.2)

The decomposition (2.1) is called the spectral decomposition or the spectral resolution of

the immersion x. In particular, if all of the eigenvalues λ1, . . . ,λk associated with the spectral

decomposition are mutually different, then the immersion x (or the submanifold M ) is said

to be of k-type. In particular, if one of λ1, . . . ,λk is zero, then the immersion is said to be of null

k-type. Clearly, every submanifold of null k-type is non-compact. A submanifold is said to be

of infinite type if it is not of finite type. In terms of finite type submanifolds, a result of [160]
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states that a submanifold of Em is of 1-type if and only if it is either a minimal submanifold of

E
m or a minimal submanifold of a hypersphere of Em .

For a spherical isometric immersion x : M → Sm−1
c ⊂ E

m , the immersion is called mass-

symmetric in Sm−1
c if the center of gravity of M in E

m coincides with the center c of the hyper-

sphere Sm−1
c in E

m .

2.2. Minimal polynomials

For a finite type submanifold M satisfying (2.1) and (2.2), the polynomial P defined by

P(t ) =
k
∏

i=1

(t −λi ), (2.3)

satisfies P(∆)(x − c) = 0. This polynomial P is called the minimal polynomial of M . For an

n-dimensional submanifold M of a Euclidean space, the mean curvature vector H satisfies

Beltrami’s formula:

∆x =−nH . (2.4)

It follows from (2.4) that the minimal polynomial Q also satisfies Q(∆)H = 0. Conversely,

if M is compact and if there exists a constant vector c and a nontrivial polynomial Q such that

Q(∆)(x − c) = 0 (or Q(∆)H = 0), then M is always of finite type. This characterization of finite

type submanifolds via the minimal polynomial plays an important role in the theory of finite

type submanifolds.

When M is non-compact, the existence of a nontrivial polynomial Q satisfying Q(∆)H = 0

does not guarantee M to be finite type. On the other hand, if either M is one-dimensional or Q

is a polynomial of degree k with exactly k distinct roots, then the existence of the polynomial

Q satisfying Q(∆)(x −c) = 0 for some constant vector c does guarantee that M is of finite type

[82].

2.3. A basic formula for∆H

The following basic formula of∆H derived in [24, 26, 29] plays important role in the study

of submanifolds of low type as well as in the study of biharmonic submanifolds:

∆H =∆D H +
n
∑

i=1

h(ei , AH ei )+2trace (ADH )+
n

2
grad〈H , H〉 , (2.5)

where ∆D is the Laplace operator associated with the normal connection D, h is the second

fundamental form, and {e1, . . . ,en} is a local orthonormal frame of M . In particular, if M is a

hypersurface of a Euclidean space E
n+1, then formula (2.5) reduces to

∆H = (∆α+α||h||2)ξ+2trace(ADH )+
n

2
grad〈H , H〉 , (2.6)
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where α is the mean curvature and ξ a unit normal vector of M in E
n+1.

Similar formulas hold as well if the ambient spaces is pseudo-Euclidean.

2.4. δ-invariants and ideal immersions

Let M be a Riemannian n-manifold. Denote by K (π) the sectional curvature of a plane

section π ⊂ Tp M , p ∈ M . For any orthonormal basis e1, . . . ,en of Tp M , the scalar curvature τ

at p is

τ(p) =
∑

i< j
K (ei ∧e j ).

Let L be a r -subspace of Tp M with r ≥ 2 and let {e1, . . . ,er } be an orthonormal basis of L.

The scalar curvature τ(L) of L is defined by

τ(L) =
∑

α<β
K (eα∧eβ), 1 ≤α,β≤ r. (2.7)

For given integers n ≥ 3, k ≥ 1, we denote by S (n,k) the finite set consisting of k-tuples

(n1, . . . ,nk ) of integers satisfying 2 ≤ n1, · · · ,nk < n and
∑k

j=1 ni ≤ n.

Put S (n) = ∪k≥1S (n,k). For each k-tuple (n1, . . . ,nk ) ∈ S (n), the author introduced in

1990s the Riemannian invariant δ(n1, . . . ,nk ) by

δ(n1, . . . ,nk )(p) = τ(p)− inf{τ(L1)+·· ·+τ(Lk )}, p ∈ M , (2.8)

where L1, . . . ,Lk run over all k mutually orthogonal subspaces of Tp M such that dim L j =
n j , j = 1, . . . ,k (cf. [51] for details).

For an n-dimensional submanifold of Em and for a k-tuple (n1, . . . ,nk ) ∈S (n), the author

proved the following general sharp inequality [48, 52]:

δ(n1, . . . ,nk ) ≤
n2(n +k −1−

∑

n j )

2(n +k −
∑

n j )
|H |2, (2.9)

where |H |2 = 〈H , H〉 denotes the squared mean curvature of M .

A submanifold M of Em is called δ(n1, . . . ,nk )-ideal if it satisfies the equality case of (2.9)

identically. Roughly speaking, ideal submanifolds are submanifolds which receive the least

possible tension from its ambient space. For the most recent survey on δ-invariants and ideal

immersions, see [52, 53] for details.

2.5. Proper and ǫ-superbiharmonic submanifolds

An immersed submanifold M of a Riemannian manifold M̃ is said to be properly im-

mersed if the immersion is a proper map, i.e., the preimage of each compact set in M̃ is com-

pact in M .
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A hypersurface of a Euclidean space is called weakly convex if it has non-negative prin-

ciple curvatures. Also, a hypersurface of an (n + 1)-sphere is called isoparametric if it has

constant principal curvatures.

The total mean curvature of a submanifold M in a Riemannian manifold is defined to be
∫

M |H |2d v .

Let M be a submanifold of a Riemannian manifold with inner product 〈 , 〉. Then M is

called ǫ-superbiharmonic if it satisfies

〈∆H , H 〉 ≥ (ǫ−1)|∇H |2, (2.10)

where ǫ ∈ [0,1] is a constant.

For a complete Riemannian manifold (N ,h) and α≥ 0, if the sectional curvature K N of N

satisfies

K N ≥−L(1+distN ( · , q0)2)α/2 (2.11)

for some L > 0 and q0 ∈ N , then we call that K N has a polynomial growth bound of order α

from below.

3. Finite type hypersurfaces of Euclidean space

The class of finite type submanifolds in Euclidean spaces is huge. It includes all minimal

submanifolds of Euclidean spaces, all minimal submanifolds of hyperspheres as well as all

compact homogeneous submanifolds equivariantly immersed in some Euclidean space. In

contrast, very few examples of finite type hypersurfaces in Euclidean spaces are known. So

far, minimal surfaces, circular cylinders and the spheres are the only known surfaces of finite

type in E
3.

In [40], the author asked the following problem.

Problem 1. Classify all finite type hypersurfaces in E
n+1. In particular, classify all finite type

surfaces in E
3.

This problem does have a complete solution when n = 1. In fact, it was proved in [25, 26]

that circles are the only finite type closed planar curves. Also, it is known that lines are the

only non-closed planar curves [36]. In fact, lines are the only null finite type planar curves

[56].

Next, we recall some classical results concerning Problem 1. The first result on the clas-

sification of finite type surfaces in E
3 was obtained in [33] which states that circular cylinders

are the only tubes of finite type. It was proved in [56] that a ruled surface in E
3 is of finite type
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if and only if it is a plane, a circular cylinder or a helicoid. Furthermore, it was shown in [62]

that spheres and circular cylinders are the only quadrics of finite type in E
3. In [117], it was

proved that a cone in E
3 is of finite type if and only if it is a plane. Also, it was shown in [76]

that every compact 2-type hypersurface of En+1 has non-constant mean curvature.

For compact finite type surfaces in E
3, the author made the following conjecture in [29,

40].

Conjecture 1. The only compact surfaces of finite type in E
3 are the ordinary spheres.

Besides the classical results given above, there are several additional results obtained

in [3, 13, 33, 88, 94, 122, 164] which support this conjecture. However, after more than two

decades Conjecture 1 remains open.

In addition to Conjecture 1, the author would like to make the following two additional

conjectures which are closely related to Conjecture 1.

Conjecture 1.A. The only surfaces of finite type in E
3 are minimal surfaces, and open portions

of spheres and circular cylinders.

Conjecture 1.B. The only compact hypersurfaces of finite type in Euclidean space are ordinary

hyperspheres.

4. Spherical hypersurfaces of finite type

4.1. Finite type spherical hypersurfaces

In contrast to Euclidean hypersurfaces, there do exist many 1-type and 2-type spheri-

cal hypersurfaces. The author proved in [30] that every compact hypersurface of a hyper-

sphere Sn+1 ⊂ E
n+2, not a small hypersphere, is mass-symmetric and of 2-type if and only if

it has non-zero constant mean curvature and constant scalar curvature. Consequently, ev-

ery isoparametric hypersurface of a hypersphere is either of 1-type or mass-symmetric and

2-type. Since there exist non-minimal isoparametric hypersurfaces in hyperspheres, there do

exist 2-type hypersurfaces of hyperspheres.

The following problem was proposed by the author in [40].

Problem 2. Study and classify 2-type hypersurfaces in a hypersphere of En+2. In particular,

classify 2-type hypersurfaces of a hypersphere S4 in E
5.

It is known that a compact surface M in S3 is of 2-type if and only if it is the product of

two plane circles of different radii, i.e., M = S1(a)×S1(b) with a 6= b and a2 +b2 = 1 [16, 25].

The same result also holds without compactness [119].
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For 2-type hypersurfaces in S4, we have the following classification theorem from [46]. A

compact hypersurface of S4(1) is of 2-type if and only if it is congruent to one of the following

two hypersurfaces:

(a) a standard imbedding S1×S2 ⊂ S4(1) ⊂ E
5 such that the radii r1 of S1 and r2 of S2 satisfying

r 2
1 + r 2

2 = 1 and (r1,r2) 6=
(

1p
3

,
p

2p
3

)

;

(b) a tube T r (V 2) with radius r 6= π
2

over the Veronese surface V 2 in S4(1).

It was proved by Hasanis and Vlachos in [120] that every 2-type hypersurface of a hyper-

sphere Sn+1 has nonzero constant mean curvature and constant scalar curvature.

The following problems was also proposed by the author in [40].

Problem 3. Classify finite type hypersurfaces of a hypersphere in E
n+2.

Very little were known on finite type spherical hypersurfaces with type number ≥ 3. The

only known general result in this respect is that every 3-type spherical hypersurface has non-

constant mean curvature [37, 75]. For finite type spherical surfaces in a 3-sphere S3 with arbi-

trary type number, the author and Dillen proved in [61] that standard 2-spheres and products

of two plane circles are the only compact finite type surfaces with constant Gauss curvature

in S3.

The classification of k-type spherical hypersurfaces with k ≥ 3 remains a very challenge

problem. From all available information, it seems to the author that there exist no surfaces of

k-type in S3 for any finite k greater than 2.

At an international conferences held at Berlin in 1990, the author proposed the following

conjecture.

Conjecture 2. Minimal surfaces, standard 2-spheres and products of two plane circles are the

only finite type surfaces in S3 ⊂ E
4.

This conjecture was also proposed in [40]. There are several results obtained in [37, 55,

75, 110, 146] which support this conjecture. On the other hand, this conjecture remains open

in general.

4.2. Dupin hypersurfaces

A hypersurface M of Sn+1 is called a Dupin hypersurface if the multiplicities of the prin-

cipal curvatures are constant and each principal curvature are constant along its principal

directions. Since 2-type spherical hypersurfaces are mass-symmetric [120], a result of [30]
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implies that if a compact Dupin hypersurface M of Sn+1 is not of 1-type and if it has at most

three distinct principal curvatures, then it is parametric if and only if it is of 2-type.

For Dupin hypersurfaces, the author gave the following open problem in [40].

Problem 4. When is a Dupin hypersurface of a hypersphere to be of finite type? When is a finite

type Dupin hypersurface of a hypersphere to be isoparametric?

As far as the author know, no further results were known for this problem.

5. Spherical 2-type submanifolds of higher codimension

It is well-known that there exist ample examples of 1-type surfaces lying fully in odd-

dimensional spheres as well as in even-dimensional spheres. Also, it is known that there exist

abundant examples of mass-symmetric 2-type surfaces lying fully in odd-dimensional hyper-

spheres (see, e.g., [14, 26, 116, 136, 143]). In contrast, it was proved by the author and Barros

in [14] that there do not exist mass-symmetric 2-type surfaces lying fully in S4. So far there are

no known examples of non-mass-symmetric 2-type surfaces in S4. In this respect, the author

asked in [40] the following

Problem 5. Do there exist non-mass-symmetric 2-type surfaces in S4?

Since there exist no known examples of mass-symmetric 2-type surfaces lying fully in a

hypersphere of a Euclidean space for any even codimension, the author proposed the follow-

ing problem in [40] which is more general than Problem 5.

Problem 6. Do there exist 2-type surfaces lying fully in an even-dimensional hypersphere of a

Euclidean space ? In particular, do there exist mass-symmetric 2-type surfaces lying fully in an

even-dimensional hypersphere ?

If the mass-symmetric, 2-type, spherical surfaces come from one of the following four

families

• stationary surfaces [14],

• topological 2-spheres[136],

• surfaces with constant Gauss curvature [143],

• flat Chen surfaces [116],

the answers to Problem 6 is known to be negative.

Up to author’s knowledge, Problems 5 and 6 remain unsolved.
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6. Linearly independent submanifolds

The notion of linearly independent immersions or submanifolds were introduced by the

author in [39]. Suppose that x : M → E
m is a k-type immersion whose spectral decomposition

is given by (2.1). Denote by Ei the subspace of Em spanned by {xi (p), p ∈ M }, i ∈ {1, . . . ,k}. The

immersion x (or the submanifold M ) is called linearly independent if the subspaces E1, . . . ,Ek

are linearly independent. The immersion x is called orthogonal if the subspaces E1, . . . ,Ek are

mutually orthogonal.

Clearly, every orthogonal immersion is linearly independent and every 1-type immersion

is orthogonal. There exist many examples of orthogonal immersions and abundant examples

of linearly independent immersions which are not orthogonal. In fact, every k-type curve ly-

ing fully in E
2k and every null k-type curve lying fully in E

2k−1 are linearly independent curves;

but W -curves are the only orthogonal curves in a Euclidean space.

For a given linearly independent immersion x : M → E
m and a given point p ∈ M , one has

the notion of the adjoint hyperquadric Qp defined in [39]. When M lies in one of the adjoint

hyperquadrics Qp , p ∈ M , then all of the adjoint hyperquadrics Qp , p ∈ M , coincide. This

common hyperquadric is called the adjoint hyperquadric of the linearly independent immer-

sion [39].

It was shown in [39] that if x : M → E
m is a linearly independent immersion of a compact

manifold, then the submanifold lies in its adjoint hyperquadric if and only if the submanifold

is spherical with an appropriate center. Moreover, it is known that a non-minimal linearly

independent immersion x is orthogonal if and only if M is immersed by x as a minimal sub-

manifold of the adjoint hyperquadric [39]. Consequently, every orthogonal immersion of a

compact manifold is spherical. Moreover, it also known that each compact homogeneous

submanifold, equivariantly immersed in E
m , is orthogonal and therefore it is immersed as a

minimal submanifold in its adjoint hyperquadric [39].

It is known that the only linearly independent Euclidean hypersurfaces are hyperspheres,

minimal hypersurfaces or spherical hypercylinders (see [66, 82, 94, 118, 122]). Also, by apply-

ing the classification theorem of 2-type curves in Euclidean space from [64], one may con-

clude that the only linearly independent curves of codimension 2 in a Euclidean space are

circles, lines and circular helices. In this respect, the author would like to point out that there

do exist abundant examples of linearly independent curves of codimension 3 in Euclidean

space.

In [40] the next two problems on linearly independent immersions were proposed.

Problem 7. Study and classify linearly independent 2-type immersions.

Problem 8. Study and classify linearly independent submanifolds of codimension 2.



96 BANG-YEN CHEN

In [128], Jang studied linearly independent immersions with codimension ≤ 3. He de-

rived some necessary and sufficient conditions for linearly independent immersions with

codimension ≤ 3 to be orthogonal. His results provide some partial generalizations of au-

thor’s results in [39] for codimension ≤ 3.

The class of linearly independent immersions lies in a much larger class of immersions;

namely, the class of immersions of restricted type introduced in [67].

A submanifold of a Euclidean space is said to be of restricted type if its shape operator

with respect to the mean curvature vector is the restriction of a fixed linear transformation of

the ambient space to the tangent space of the submanifold at every point of the submanifold.

There are very few known results on submanifolds of restricted type. The only known clas-

sification results for submanifolds of restricted in Euclidean spaces are the classifications of

planar curves and Euclidean hypersurface of restricted type [67] (see also [163, 164]).

7. Null 2-type submanifolds

It was proved in [75] that every 2-type submanifold in a Euclidean space with parallel

mean curvature vector is either spherical or of null 2-type. Related with this the author also

asked in [40] the following.

Problem 9. Is every n-dimensional non-null 2-type submanifold with constant mean cur-

vature be in E
n+2 spherical?

It follows from the definition of null 2-type submanifolds and formula (2.3) that the mean

curvature vector H of a null 2-type submanifold satisfies

∆H =λH , (7.1)

where λ is a nonzero real number. It was proved in [36] that biharmonic submanifolds, null

2-type submanifolds and 1-type submanifolds are the only Euclidean submanifolds satisfying

(7.1).

From the classification of finite type planar curves, we know that there do not exist null

2-type planar curves. Furthermore, it follows from [36] that the only null 2-type curves in Eu-

clidean spaces are circular helices with nonzero torsion in E
3. A general result from [35] states

that circular cylinders are the only null 2 type surfaces in Euclidean 3-space. Since bihar-

monic and null 2-type surfaces in E
3 were classified, the complete classification of surfaces in

E
3 satisfying (7.1) was done.

Next, we present some classical results on null 2-type Euclidean surfaces with codimen-

sion ≥ 2. It is known in [36] that null 2-type surfaces in E
4 are helical cylinders if they have
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constant mean curvature. However, it still unknown whether every null 2-type surface in E
4

has constant mean curvature.

As a generalization of [35], null 2-type hypersurfaces with at most two distinct principal

curvatures were classified in [110] (see [109] for null 2-type conformally flat hypersurfaces of

dimension 6= 3). In [36], the author proved that a surface M in E
4 is of null 2-type with parallel

normalized mean curvature vector if and only if it is an open portion of a circular cylinder

in a hyperplane of E4. The author also proved that the only null 2-type surfaces in E
4 with

constant mean curvature are open portion of helical cylinders. Hasani and Vlachos proved

in [124] that non-spherical hypersurfaces in E
4 with non-vanishing constant mean curvature

and constant scalar curvature are the only null 2-type hypersurfaces.

For null 2-type submanifolds, the author proposed in [40] the following.

Problem 10. Study and classify null 2-type submanifolds. In particular, classify all null 2-type

surfaces in 4-dimensional Euclidean space and in 4-dimensional pseudo-Euclidean spaces.

Now, we present some later development concerning Problem 10. It was showed by Li in

[130] that a surface in E
m with parallel normalized mean curvature vector is of null 2-type if

and only if it is an open portion of a circular cylinder. Also, it was proved in [131] that, for a

non-pseudo-umbilical Chen surface M in E
m , if M is of null 2-type and with constant mean

curvature, then M is flat and must lie in a totally geodesic E
6 ⊂ E

m .

In [103], Dursun classified 3-dimensional null 2-type submanifold of E5 with two distinct

principal curvatures in the parallel mean curvature direction and with constant squared norm

of the second fundamental form. Also, he proved in [105] that if a null 2-type submanifold

of En+2 with codimension 2 has flat normal connection, constant mean curvature and non-

parallel mean curvature vector, then the first normal space must one-dimensional. By using

this fact, he derived some some classification results.

Recently, it was proved by the author and Garay in [70] that a null 2-type hypersurface of

E
n+1 is δ(2)-ideal if and only if it an open portion of a spherical cylinder Sn−1 ×E.

However, until now there are still no complete classification of null 2-type submanifolds.

In particular, null 2-type surfaces in Euclidean 4-space E
4 are not completely classified.

8. Finite type submanifolds in homogeneous spaces

For finite type submanifolds of compact irreducible homogeneous manifolds, the follow-

ing problem was proposed in [40].

Problem 11. Let M̃ be a compact irreducible homogeneous manifold immersed in a Euclidean

space EN by its first standard immersion φ and M a submanifold of M̃. When M is of finite type
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in E
N via φ? In particular, when M is of 1- or 2-type in E

N via φ?

If M̃ is a projective m-space F P m over a field F = R,C or H with a standard Riemannian

metric, this problem has been investigated in [15, 18, 26, 27, 142, 161], [155]-[157] and [97]-

[102], among others. When M̃ is the real Grassmannian GR (p, q) or the space U (n)/O(n), this

problem has been investigated in [19].

Several recent results in this respect were given by Dimitrić in a series of his papers [99]-

[102]. In [102] he studied 2 and 3-type Hopf hypersurfaces of complex projective space C P m

and of complex hyperbolic space C H m via some suitable imbeddings into pseudo-Euclidean

spaces of Hermitian matrices. He proved in [102] that tubes of certain radii around totally

geodesic C P k ⊂ C P m , k ∈ {0, . . . ,m − 1}, and around the complex quadric Qm−1 ⊂ C P m are

2-type Hopf hypersurfaces in C P m . Conversely, every 2-type Hopf hypersurface in C P m is

locally congruent to such a tube. For C H m , he shown that a Hopf hypersurface is of 2-type if

and only if it is locally congruent to a geodesic hypersphere or to a tube of any radius r > 0

around a totally geodesic C H m−1 ⊂ C H m . He also obtained partial classification of 3-type

Hopf hypersurfaces in C P 2 as well as in C H 2.

9. Biharmonic submanifolds

The study of biharmonic submanifolds was initiated in the middle of 1980s via author’s

study of finite type submanifolds; also independently by Jiang [129] via his study of Euler-

Lagrange’s equation of bienergy functional in the sense of Eells and Lemaire [106, 107].

Let x : M → E
m be an isometric immersion. As we already mentioned earlier, the position

vector field of M in E
m satisfies Beltrami’s formula:

∆x =−nH . (9.1)

Formula (9.1) implies that the immersion is minimal if and only if it is harmonic, i.e., ∆x = 0.

An immersion x : M → E
m is called biharmonic if

∆
2x = 0, or equi v al entl y ∆H = 0, (9.2)

holds identically.

Let x : M → E
m be an isometric immersion. It follows from (2.5) and (9.2) that M is a

biharmonic submanifold if and only if it satisfies the following fourth order strongly elliptic

semi-linear PDE system (see, e.g., [24, 52]):

∆
D H +

n
∑

i=1

σ(AH ei ,ei ) = 0, (9.3)

n grad〈H , H 〉+4trace ADH = 0, (9.4)
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where {e1, . . . ,en} is an orthonormal frame of M .

It is obvious that minimal immersions are trivially biharmonic. Thus, the real problem is

if there are other submanifolds besides minimal ones that are biharmonic.

In [40] the author made the following simple geometric question.

Problem 12. Other than minimal submanifolds, which submanifolds of Em are biharmonic?

A biharmonic map is a map φ : (M , g ) → (N ,h) between Riemannian manifolds that is a

critical point of the bienergy functional:

E 2(φ,D) =
1

2

∫

D
||τφ||2 ∗1 (9.5)

for every compact subset D of M , where τφ = traceg∇dφ is the tension field φ.

The Euler-Lagrange equation of (9.5) gives the following biharmonic map equation [129]:

τ2
φ := traceg (∇φ∇φ−∇φ

∇M )τφ− traceg R N (dφ,τφ)dφ= 0, (9.6)

where R N denotes the curvature tensor of (N ,h). Equation (9.6) implies that φ is a biharmonic

map if and only if its bi-tension field τ2
φ vanishes.

For an n-dimensional submanifold M of Em , if we denote by ι : M → E
m the inclusion map

of the submanifold, then the tension field of the inclusion map is given by τι = −∆ι = −nH

according to Beltrami’s formula. Therefore, the submanifold M is biharmonic if and only if

n∆H =−∆2ι=−τ2
ι = 0,

i.e., the inclusion map ι is a biharmonic map.

10. Biharmonic conjectures

10.1. The original biharmonic conjecture

The author shown in 1985 that biharmonic surfaces in E
3 are minimal (independently by

Jiang [129]). This result was the starting point of Dimitrić’s work on his thesis [95] at Michigan

State University. In [95], Dimitrić extended author’s result (unpublished then) to biharmonic

Euclidean hypersurfaces with at most two distinct principal curvatures [95]. He also proved

that each biharmonic submanifold of finite type in in a Euclidean space is minimal. Further-

more, he proved that biharmonic Euclidean submanifolds of finite type and pseudo-umbilical

biharmonic Euclidean submanifolds are always minimal.

In [40], the author pointed out that spherical biharmonic submanifolds of a Euclidean

space are minimal. Moreover, it was proved by Hasani and Vlachos in [123] that biharmonic

hypersurfaces of E4 are also minimal.
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In [40], the author proposed the following Biharmonic Conjecture.

Conjecture 3: The only biharmonic submanifolds of Euclidean spaces are the minimal ones.

10.2. Generalized Chen’s biharmonic conjectures

Caddeo, Montaldo and Oniciuc proved in [21] that every biharmonic surface in the hy-

perbolic 3-space H 3 is minimal. They also proved in [20] that biharmonic hypersurfaces of

H n with at most two distinct principal curvatures are minimal. Based on these facts, they

made the following conjecture in [20].

Generalized Chen’s Conjecture: Every biharmonic submanifold of a Riemannian mani-

fold with non-positive sectional curvature is minimal.

The study of biharmonic submanifolds is nowadays a very active research subject. Bihar-

monic submanifolds have received a growing attention with many progresses done since the

beginning of this century.

11. Recent developments on author’s original biharmonic conjecture

From the definition of biharmonic submanifolds and Hopf’s lemma we see that bihar-

monic submanifolds in a Euclidean space are always non-compact.

The following recent results provide strong supports to the original biharmonic conjec-

ture.

• Biharmonic properly immersed [138].

• Biharmonic submanifolds which are complete and proper [1].

• δ(2)-ideal and δ(3)-ideal biharmonic hypersurfaces [79].

• Weakly convex biharmonic submanifolds [133].

• Submanifolds whose Lp , p ≥ 2, integral of the mean curvature vector field satisfies certain

decay condition at infinity [135].

• Biharmonic submanifolds satisfying the decay condition at infinity

lim
ρ→∞

1

ρ2

∫

f −1(Bρ)
|H |2d v = 0,

where f is the immersion, Bρ is a geodesic ball of N with radius ρ [167].

The author would like to point out that Y.-L. Ou showed recently in [150] that the origi-

nal biharmonic conjecture cannot be generalized to biharmonic conformal submanifolds in

Euclidean spaces.
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Remark 1. Conjecture 3 remains open.

Remark 2. Conjecture 3 is false if the ambient Euclidean space were replaced by a pseudo-

Euclidean space. The simplest examples are constructed in [71].

12. Recent developments on generalized biharmonic conjecture

In the last few years, there are many partial answers support the generalized Chen’s bi-

harmonic conjecture. The following is a list of recent results which support the generalized

biharmonic conjecture.

• Biharmonic hypersurfaces in H 4(−1) [11].

• Pseudo-umbilical biharmonic submanifolds of H m(−1) [20].

• Totally umbilical biharmonic hypersurfaces in Einstein spaces [151].

• Biharmonic hypersurfaces with finite total mean curvature in a Riemannian manifold of

non-positive Ricci curvature [147].

• Biharmonic submanifolds with finite total mean curvature in a Riemannian manifold of

non-positive sectional curvature [148].

• Biharmonic properly immersed submanifolds in a complete Riemannian manifold with

non-positive sectional curvature whose sectional curvature has polynomial growth bound

of order less than 2 from below [139].

• Complete biharmonic submanifolds with finite bi-energy and energy in a non-positively

curved Riemannian manifold [149].

• Complete oriented biharmonic hypersurfaces M whose mean curvature H satisfying H ∈
L2(M ) in a Riemannian manifold with non-positive Ricci tensor [2].

• Compact biharmonic submanifolds in a Riemannian manifold with non-positive sec-

tional curvature [140].

• Complete biharmonic submanifolds (resp., hypersurfaces) in a Riemannian manifold whose

sectional curvature (resp., Ricci curvature) is non-positive with at most polynomial vol-

ume growth [134].

• Complete biharmonic submanifolds (resp., hypersurfaces) in a negatively curved Rie-

mannian manifold whose sectional curvature (resp., Ricci curvature) is smaller that −ǫ
for some ǫ> 0 [134].

• Complete biharmonic submanifolds (resp., hypersurfaces) M in a Riemannian manifold

of non-positive sectional (resp., Ricci) curvature whose mean curvature vector satisfies
∫

M |H p |d v <∞ for some p > 0 [134].
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• Complete biharmonic hypersurfaces M in a Riemannian manifold of non-positive Ricci

curvature whose mean curvature vector satisfies
∫

M |H |αd v <∞ for some ǫ> 0 with 1+ǫ≤
α<∞ [140].

• ǫ-superbiharmonic submanifolds in a complete Riemannian manifolds satisfying the de-

cay condition at infinity

lim
ρ→∞

1

ρ2

∫

f −1(Bρ)
|H |2d v = 0,

where f is the immersion, Bρ is a geodesic ball of N with radius ρ [167].

• Proper ǫ-superharmonic submanifolds M with ǫ> 0 in a complete Riemannian manifold

N whose mean curvature vector satisfying the growth condition

lim
ρ→∞

1

ρ2

∫

f −1(Bρ)
|H |2+ad v = 0,

where f is the immersion, Bρ is a geodesic ball of N with radius ρ, and a ≥ 0 [134].

On the other hand, Ou and Tang [153] proved that generalized biharmonic conjecture

is false in general by constructing foliations of proper biharmonic hyperplanes in some con-

formally flat 5-manifolds with negative sectional curvature. Further counterexamples to the

generalized biharmonic conjecture were constructed in [132].

Finally, the author would like to recall the following two biharmonic conjectures men-

tioned earlier in [54] which are closely related to author’s original biharmonic conjecture.

Biharmonic Conjecture for Hypersurfaces: Every biharmonic hypersurface of Euclidean spaces

is minimal.

The global version of author’s original biharmonic conjecture can be found, for instance,

in [1, 140].

Global Version of Chen’s biharmonic Conjecture: Every complete biharmonic submanifold

of a Euclidean space is minimal.
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