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COMPOSITE FUNCTIONS WITH ALLEN DETERMINANTS AND

THEIR APPLICATIONS TO PRODUCTION MODELS IN ECONOMICS

M. EVREN AYDIN AND MAHMUT ERGUT

Abstract. In this paper, we derive an explicit formula for the Allen determinants of com-

posite functions of the form:

f (x) = F (h1 (x1)×·· ·×hn (xn)) .

We completely classify the composite functions by using their Allen determinants. Some

applications of Allen determinants to production models are also given.

1. Introduction

In economics, a production function is a mathematical expression which denotes the

physical relations between the output generated of a firm, an industry or an economy and in-

puts that have been used. Explicitly, a production function is a map which has non-vanishing

first derivatives defined by

f :Rn
+ −→R+, f = f (x1, . . . , xn) ,

where f is the quantity of output, n are the number of inputs and x1, . . . , xn are the inputs.

The production functions satisfy the following conditions:

1. f is equivalently zero in absence of an input.

2.
∂ f
∂xi

> 0, for i = 1, . . . ,n, which means that the production function is strictly increasing

with respect to any factor of production.

3.
∂2 f

∂x2
i

< 0, for i = 1, . . . ,n, i.e., the production has decrasing efficiency with respect to any

factor of production.

4. f
(

x+y
)

= f (x)+ f
(

y
)

, ∀x,y ∈Rn
+, which implies that the production has non-decreasing

global efficiency. For more detailed properties of production functions, see [2, 13, 15, 17,

19, 21, 22].
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A production function f (x1, . . . , xn) is said to be homogeneous of degree p or p−homogenous

if

f (t x1, . . . , t xn)= t p f (x1, . . . , xn) (1.1)

holds for each t ∈ R+ for which (1.1) is defined. A homogeneous function of degree one is

called linearly homogeneous. Many important properties of homogeneous production func-

tions in economics were interpreted in terms of the geometry of their graphs by [4, 5, 11, 17,

18].

A. D. Vilcu and G. E. Vilcu [23] gave an exact classification for homogeneous production

functions with proportional marginal rate of substitution and with constant elasticity of labor

and capital.

The most common quantitative indices of production factor substitutability are forms of

the elasticity of substitution. R.G.D. Allen and J.R. Hicks [1] suggested two generalizations of

Hicks’ original two variable elasticity concept.

The first concept, called Hicks elasticity of substitution, is defined as follows.

Let f (x1, . . . , xn) be a production function. Then Hicks elasticity of substitution of the i−th

production variable with respect to the j−th production variable is given by

Hi j (x)=−

1

xi fi
+

1

x j f j

fi i
(

fi

)2
−

2 fi j

fi f j
+

f j j
(

f j

)2

(

x ∈R
n
+, i , j = 1, . . . ,n, i 6= j

)

,

where fi = ∂ f /∂xi , fi j = ∂2 f /∂xi∂x j .

L. Losonczi [16] classified homogeneous production functions of 2 variables, having con-

stant Hicks elasticiy of substitution. Then, the classification of L. Losonczi was extended to n

variables by B-Y. Chen [6].

The second concept, investigated by R.G.D. Allen and H. Uzawa [20], is the following:

Let f be a production function. Then Allen elasticity of substitution of the i−th produc-

tion variable with respect to the j−th production variable is defined by

Ai j (x) =−
x1 f1 +x2 f2 +·· ·+xn fn

xi x j

Di j

D

(

x = (x1, . . . , xn)∈Rn
+, i , j = 1, . . . ,n, i 6= j

)

,

where D is the determinant of the matrix

M
(

f
)

=















0 f1 . . . fn

f1 f11 . . . f1n

...
... . . .

...

fn fn1 . . . fnn















(1.2)
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and Di j is the co-factor of the element fi j in the determinant D (D 6= 0 is assumed). M
(

f
)

is

called the Allen’s matrix and we call det
(

M
(

f
))

the Allen determinant.

It is a simple calculation to show that in case of two variables Hicks elasticity of substitu-

tion coincides with Allen elasticity of substitution.

In this paper, by analogy to the Hessian Determinant Formula given by B.-Y. Chen in [10]

for composite functions of the form f (x)= F (h1 (x1)+·· ·+hn (xn)), we give an explicit formula

for Allen determinant of the composite functions of the form

f (x) = F (h1 (x1)×·· ·×hn (xn)) . (1.3)

We classify the composite functions given by (1.3) using their Allen determinants. Some geo-

metric applications of Allen determinants are also given.

2. Allen determinant formula and classification of composite functions

Throughout this article, we assume that h1, . . . ,hn :R−→R are thrice differentiable func-

tions and F : I ⊂ R−→ R is a twice differentiable function with F ′ (u) 6= 0 such that I ⊂ R is an

interval of positive length.

The following provides an explicit formula for the Allen determinant of a composite func-

tion given by (1.3).

Allen Determinant Formula. The determinant of the Allen matrix M
(

f
)

of the composite

function f = F (h1 (x1)×·· ·×hn (xn)) is given by

det
(

M
(

f
))

=−un+1
(

F ′
)n+1

n
∑

j=1

(

h′
1

h1

)′

...

(

h′

j−1

h j−1

)′ (
h′

j

h j

)2 (

h′

j+1

h j+1

)′

...

(

h′
n

hn

)′

, (2.1)

where h′

j
=

dh j

dx j
and F ′ = F ′ (u) for u =h1 (x1)×·· ·×hn (xn) .

Proof. Let f be a twice differentiable composite function given by

f (x) = F (h1 (x1)×·· ·×hn (xn)) , (2.2)

where x = (x1, . . . , xn)∈Rn . It follows from (2.2) that

fi =
∂ f

∂xi
=

h′

i

hi
uF ′, fi j =

∂2 f

∂xi∂x j
=

h′

i
h′

j

hi h j
u

[

F ′
+uF ′′

]

, 1 ≤ i 6= j ≤n, (2.3)

and

fi i =
∂2 f

∂x2
i

=
h′′

i

hi
uF ′

+

(

h′

i

hi

)2

u2F ′′. (2.4)
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By using (2.3) and (2.4), the determinant of Allen matrix M
(

f
)

of the composite function given

by (2.2) is

det
(

M
(

f
))

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
h′

1

h1
uF ′ h′

2

h2
uF ′ ...

h′
n

hn
uF ′

h′
1

h1
uF ′ h′′

1

h1
uF ′+

(

h′
1

h1

)2
u2F ′′ h′

1h′
2

h1h2
u

[

F ′+uF ′′
]

...
h′

1h′
n

h1hn
u

[

F ′+uF ′′
]

h′
2

h2
uF ′ h′

1h′
2

h1h2
u

[

F ′+uF ′′
] h′′

2

h2
uF ′+

(

h′
2

h2

)2
u2F ′′ ...

h′
2h′

n

h2hn
u

[

F ′+uF ′′
]

...
...

... ...
...

h′
n

hn
uF ′ h′

1h′
n

h1hn
u

[

F ′+uF ′′
] h′

2h′
n

h2hn
u

[

F ′+uF ′′
]

...
h′′

n

hn
uF ′+

(

h′
n

hn

)2
u2F ′′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.5)

Now we apply Gauss elimination method for the determinant from the formula (2.5). We

replace the second column by second column minus
h′

1

h1

(

1+ u F′′

F ′

)

times the first column; then

we derive

det
(

M
(

f
))

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
h′

1

h1
uF ′ h′

2

h2
uF ′ ...

h′
n

hn
uF ′

h′
1

h1
uF ′

(

h′
1

h1

)′

uF ′ h′
1h′

2

h1h2
u

[

F ′+uF ′′
]

...
h′

1h′
n

h1hn
u

[

F ′+uF ′′
]

h′
2

h2
uF ′ 0

h′′
2

h2
uF ′+

(

h′
2

h2

)2
u2F ′′ ...

h′
2h′

n

h2hn
u

[

F ′+uF ′′
]

...
...

... ...
...

h′
n

hn
uF ′ 0

h′
2h′

n

h2hn
u

[

F ′+uF ′′
]

...
h′′

n

hn
uF ′+

(

h′
n

hn

)2
u2F ′′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By similar elementary transformations, we get

det
(

M
(

f
))

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
h′

1

h1
uF ′ h′

2

h2
uF ′ ...

h′
n

hn
uF ′

h′
1

h1
uF ′

(

h′
1

h1

)′

uF ′ 0 ... 0

h′
2

h2
uF ′ 0

(

h′
2

h2

)′

uF ′ ... 0

...
...

... ...
...

h′
n

hn
uF ′ 0 0 ...

(

h′
n

hn

)′

uF ′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.6)

After calculating the determinant from the formula (2.6) , we finally obtain

det
(

M
(

f
))

=−un+1
(

F ′
)n+1

n
∑

j=1

(

h′
1

h1

)′

...

(

h′

j−1

h j−1

)′ (
h′

j

h j

)2 (

h′

j+1

h j+1

)′

...

(

h′
n

hn

)′

,

which completes the proof. ���

Since it is assumed that F ′ 6= 0, the Allen Determinant Formula follows immediately

Corollary 2.1. Let f = F (h1 (x1)× ·· · ×hn (xn)) be a twice differentiable composite function.

Then the singularity of Allen’s matrix of f only depends on the functions h1, . . . ,hn .
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Next result completely classifies the composite functions in the form

f = F (h1 (x1)×·· ·×hn (xn))

whose Allen’s matrices are singular.

Theorem 2.2. Let F (u) be a twice differentiable function with F ′ (u) 6= 0 and let f be a compos-

ite function given by

f = F (h1 (x1)×·· ·×hn (xn)) ,

where h1, . . . ,hn are thrice differentiable and nonzero functions. Then the Allen matrix M
(

f
)

of f is singular if and only if f is one of the following:

(i) f = F
(

γeα1x1+α2x2 ×h3 (x3)×·· ·×hn (xn)
)

, where γ,α1,α2 are nonzero constants;

(ii) f = F
(

γ
(

x1 +β1

)α1
×·· ·×

(

xn +βn

)αn
)

, where γ,αi are nonzero constants satisfying α1 +

·· ·+αn = 0 and βi some constants.

Proof. Let f = F (h1 (x1)×·· ·×hn (xn)) be a twice differentiable composite function. Let us

assume that the Allen matrix M
(

f
)

of f is singular. Then, by Allen Determinant formula, we

get

0 =det
(

M
(

f
))

=−un+1
(

F ′
)n+1

n
∑

j=1

(

h′
1

h1

)′

...

(

h′

j−1

h j−1

)′ (
h′

j

h j

)2 (

h′

j+1

h j+1

)′

...

(

h′
n

hn

)′

, (2.7)

where u = h1 (x1)×·· ·×hn (xn) . Because of F ′ (u) 6= 0, the equation (2.7) takes the form:

n
∑

j=1

(

h′
1

h1

)′

...

(

h′

j−1

h j−1

)′ (
h′

j

h j

)2 (

h′

j+1

h j+1

)′

...

(

h′
n

hn

)′

= 0. (2.8)

Case (i): At least one of
(

h′
1

h1

)′

, . . . ,
(

h′
n

hn

)′

vanishes. Without loss of generality, we may assume

that
(

h′
1

h1

)′

= 0. Hence from (2.8) we get

(

h′
1

h1

)2 (

h′
2

h2

)′ (
h′

3

h3

)′

...

(

h′
n

hn

)′

= 0. (2.9)

Without loss of generality, we may assume from (2.9) that
(

h′
2

h2

)′

= 0. Thus we have

h1 (x1)= γ1eα1x1 , h2 (x2) =γ2eα2x2 ,

for some nonzero constants α1,α2,γ1,γ2. This gives case (i) of the theorem.

Case (ii):
(

h′
1

h1

)′

, . . . ,
(

h′
n

hn

)′

are nonzero. Then from (2.8), by dividing with the product
(

h′
1

h1

)′

...
(

h′
n

hn

)′

,

we write
(

h′
1

h1

)2

(

h′
1

h1

)′
+·· ·+

(

h′
n

hn

)2

(

h′
n

hn

)′
= 0. (2.10)
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Taking the partial derivative of (2.10) with respect to xi , we obtain

2−

(

h′

i

hi

)

(

h′

i

hi

)′′

[

(

h′

i

hi

)′
]2

= 0. (2.11)

By solving (2.11), we find

hi = γi

(

xi +βi

)αi ,

for some nonzero constantsγi ,αi satisfyingα1+·· ·+αn = 0 and some constantsβi . Therefore,

we complete first part of the proof.

The converse can be verified directly.

3. Some applications of Allen determinants to production models

In economics, goods that are completely substitutable with each other are called perfect

substitutes. Mathematically, a production function is a perfect substitute if it is of the form:

f (x1, . . . , xn) =
n
∑

i=1

ai xi ,

where a1, . . . , an are nonzero constants [12].

In 1928, C. W. Cobb and P. H. Douglas introduces in [13] a famous two-factor production

function

Y = bLkC 1−k ,

where b presents the total factor productivity, Y the total production, L the labor input and C

the capital input. This function is nowadays called Cobb-Douglas production function. In its

generalized form the Cobb-Douglas production function may be expressed as

f (x1, . . . , xn) =γx
α1

1 ...x
αn
n ,

where γ,α1, . . . ,αn > 0.

Corollary 3.1. Let h1 (x1) , . . . ,hn (xn) be thrice differentiable functions with hi (xi ) 6= γi eαi xi for

i = 1, . . . ,n and F (u) = u. Then the Allen matrix M
(

f
)

of composite function f (x) = F (h1 (x1)

×·· ·×hn (xn)) is singular if and only if, up to suitable translations of x1, . . . , xn ,

f (x)= γx
α1

1 · · ·x
αn
n ,

where γi ,αi are some nonzero constants satisfying α1 +·· ·+αn = 0.
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Proof. Let f = F (h1 (x1)×·· ·×hn (xn)) be a twice differentiable composite function. First, let

us assume that the Allen matrix M
(

f
)

is singular. Under hypothesis of the theorem, it follows

from Theorem 2.2 that

hi = γi x
αi

i
, i = 1, . . . ,n

for some nonzero constants γi ,αi satisfying α1 +·· ·+αn = 0. Thus, in our case, it means that

f (x)= γx
α1

1 ×·· ·×x
αn
n .

Converse is easy to verify.

Remark 3.2. We have that for a generalized Cobb-douglas production function the values

of α1, . . . ,αn are positive constants. Hence, while Corollary 3.1 is correct in mathematical

perspective, in reality such a generealized Cobb-Douglas production function does not exist.

Corollary 3.3. Let h1 (x1) , . . . ,hn (xn) be thrice differentiable functions and let f be a composite

function given by

f (x)= ln(h1 (x1)×·· ·×hn (xn)) . (3.1)

Then the Allen matrix M
(

f
)

is singular if f is a perfect substitute.

Proof. Let f (x) = ln(h1 (x1)×·· ·×hn (xn)) be a twice differentiable composite function. If f is

a perfect substitute, then we write

f (x) = ln(h1 (x1)×·· ·×hn (xn))=
n
∑

i=1

ai xi , (3.2)

and it follows from (3.2) that

hi (xi )= eai xi , i = 1, . . . ,n.

It means from statement (i) of Theorem 2.2 that the Allen matrix M
(

f
)

is singular.

Remark 3.4. The converse of Corollary 3.3 is not always true.

4. Some geometric interpretations of Allen determinants

Let
(

N , g
)

be a Riemannian manifold. For more detailed properties of geometric struc-

tures on Riemannian manifolds, see [3, 14]. A Riemannian connection, also called Levi-Civita

connection, on the Riemannian manifold
(

N , g
)

is an affine connection which is compatible

with metric, i.e, ∇g = 0 and symmetric, i.e, ∇X Y −∇Y X = [X ,Y ] for any vector fields X and Y

on N , where [, ] is the Lie bracket.

The Riemannian curvature tensor R is given in terms of ∇ by

R (X ,Y ) Z =∇X∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z .
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A Riemannian manifold is called a flat space if its Riemann curvature tensor vanishes identi-

cally.

Let σ be a two dimensional subspace of the tangent space Tp N and let u, v ∈ σ be two

linearly independent vectors such that σ= Sp (u, v). Then the sectional curvature of σ at the

point p ∈ N is a real number defined by

K (u, v)= K (σ) =
g (R (u, v) v,u)

g (u,u) g (v, v)− g (u, v)2
.

The Ricci tensor of a Riemannian manifold N at a point p ∈ N is defined to be the trace of

the linear map Tp N −→ Tp N given by

w 7−→ R (w,u)v.

A Riemannian manifold is called Ricci-flat if its Ricci tensor vanishes identically.

One of the B.-Y. Chen’s geometric interpretations regarding h−homogeneous production

functions from [4, 5] is as follows

Theorem 4.1. An h−homogeneous production function f has flat production hypersurface if

and only if either f is a perfect substitute or it is of the form: f = (c1x1 +·· ·+cn xn)h , for some

constants c1, . . . ,cn .

Corollary 4.2. Let h1 (x1) , . . . ,hn (xn) , n ≥ 3, be thrice differentiable functions and let f be an

h−homogeneous composite function given by

f (x) = ln(h1 (x1)×·· ·×hn (xn)) .

If the graph of f is a flat space, then the Allen matrix M
(

f
)

is singular.

Proof. Let f (x) = ln(h1 (x1)×·· ·×hn (xn)) be an twice differentiable h−homogeneous com-

posite function. Let us assume that the graph of f is a flat space. Then, from Theorem 4.1, we

have that f is a perfect substitute. This means from Corollary 3.3 that the Allen matrix M
(

f
)

is singular.

Remark 4.3. Corollary 4.2 holds also in case the graph of f has vanishing sectional curvature

function.

Since Ricci-flat 3-manifolds are always flat, Corollary 4.2 follows immediately

Corollary 4.4. Let h1 (x1) ,h2 (x2) ,h3 (x3) be thrice differentiable functions and let f be an h−homogeneous

composite function given by

f (x) = ln(h1 (x1)×h2 (x2)×h3 (x3)) .

If the graph of f is Ricci-flat, then the Allen matrix M
(

f
)

is singular.
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