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ON CORRECTED BULLEN-SIMPSON’S 3/8 INEQUALITY

I. FRANJIĆ AND J. PEČARIĆ

Abstract. The aim of this paper is to derive corrected Bullen-Simpson’s 3/8 inequality, starting

from corrected Simpson’s 3/8 and corrected Maclaurin’s formula. By corrected we mean formulae

that approximate the integral not only with the values of the function in certain points but also

with the value of the first derivative in end points of the interval. These formulae will have a

higher degree of exactness than formulae derived in [3].

1. Introduction

For any convex function f : [0, 1] → R, the following pair of inequalities, usually

referred in literature as Hadamard’s inequalities, holds:

f
(1

2

)

≤
∫ 1

0

f(t)dt ≤ f(0) + f(1)

2
. (1.1)

If f is concave, inequalities are reversed.

In [1], it was shown by a simple geometric argument that for a convex function f the

following inequality is valid:

0 ≤
∫ 1

0

f(t)dt − f
(1

2

)

≤ f(0) + f(1)

2
−

∫ 1

0

f(t)dt. (1.2)

An elementary analytic proof of (1.1) and (1.2), but stated on the interval [−1, 1], was

given in [2]. Another interesting result of a similar type was given in that same paper.

Namely, provided f is 4-convex, we have:

0 ≤
∫ 1

0

f(t)dt − 1

8

[

3f
(1

6

)

+ 2f
(1

2

)

+ 3f
(5

6

)]

≤ 1

8

[

f(0) + 3f
(1

3

)

+ 3f
(2

3

)

+ f(1)
]

−
∫ 1

0

f(t)dt. (1.3)
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This implies that Maclaurin’s quadrature rule is more accurate than Simpson’s 3/8

quadrature rule. This inequality is sometimes called Bullen-Simpson’s 3/8 inequality

and was generalized for a class of (2k)-convex functions in [3].

The aim of this paper is to derive similar type inequalities, only this time starting

from corrected Simpson’s 3/8 and corrected Maclaurin’s formula. By corrected we mean

formulae that approximate the integral not only with the values of the function in certain

points but also with the value of the first derivative in end points of the interval. These

formulae will have a higher degree of exactness than formulae derived in [3].

Using identities named the extended Euler formulae (see [4]), corrected Euler- Simp-

son’s 3/8 formulae were derived in [5].

Theorem 1. Let f : [0, 1] → R be such that f (n−1) is a continuous function of

bounded variation on [0, 1], for some n ≥ 1. Then

∫ 1

0

f(t)dt =
1

80

[

13f(0) + 27f
(1

3

)

+ 27f
(2

3

)

+ 13f(1)
]

− T S
n (f) + σ1

n(f), (1.4)

and

∫ 1

0

f(t)dt =
1

80

[

13f(0) + 27f
(1

3

)

+ 27f
(2

3

)

+ 13f(1)
]

− T S
n−1(f) + σ2

n(f), (1.5)

where T S
0 (f) = T S

1 (f) = 0,

T S
2 (f) = T S

3 (f) = T S
4 (f) = T S

5 (f) =
1

120
[f ′(1) − f ′(0)]

and, for m ≥ 6

T S
m(f) =

1

120
[f ′(1) − f ′(0)] +

1

80

[m/2]
∑

k=3

B2k

(2k)!
(34−2k − 1)

[

f (2k−1)(1) − f (2k−1)(0)
]

, (1.6)

where [m/2] is the greatest integer less than or equal to m/2. Further

σ1
n(f) =

1

80n!

∫ 1

0

GS
n(t)df (n−1)(t),

and

σ2
n(f) =

1

80n!

∫ 1

0

FS
n (t)df (n−1)(t),

where, for t ∈ R,

GS
n(t) = 27B∗

n

(1

3
− t

)

+ 27B∗

n

(2

3
− t

)

+ 26B∗

n(1 − t), n ≥ 1 (1.7)

FS
1 (t) = GS

1 (t), FS
n (t) = GS

n(t) − GS
n(0), n ≥ 2.
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Applying the same idea, corrected Euler-Maclaurin’s formulae were derived. This

was done in [6].

Theorem 2. Let f : [0, 1] → R be such that f (n−1) is a continuous function of

bounded variation on [0, 1], for some n ≥ 1. Then

∫ 1

0

f(t)dt =
1

80

[

27f
(1

6

)

+ 26f
(1

2

)

+ 27f
(5

6

)]

− T D
n (f) + τ1

n(f), (1.8)

and
∫ 1

0

f(t)dt =
1

80

[

27f
(1

6

)

+ 26f
(1

2

)

+ 27f
(5

6

)]

− T D
n−1(f) + τ2

n(f), (1.9)

where T D
0 (f) = T D

1 (f) = 0,

T D
2 (f) = T D

3 (f) = T D
4 (f) = T D

5 (f) = − 1

240
[f ′(1) − f ′(0)]

and for m ≥ 6

T D
m (f) = − 1

240
[f ′(1) − f ′(0)]

+
1

80

[m/2]
∑

k=3

B2k

(2k)!
(1 − 21−2k)(1 − 34−2k)

[

f (2k−1)(1) − f (2k−1)(0)
]

. (1.10)

Further,

τ1
n(f) =

1

80n!

∫ 1

0

GD
n (t)df (n−1)(t),

and

τ2
n(f) =

1

80n!

∫ 1

0

FD
n (t)df (n−1)(t)

where for t ∈ R and n ≥ 1,

GD
n (t) = 27B∗

n

(1

6
− t

)

+ 26B∗

n

(1

2
− t

)

+ 27B∗

n

(5

6
− t

)

, (1.11)

FD
n (t) = GD

n (t) − GD
n (0).

Here, as in the rest of the paper, we write
∫ 1

0
g(t)dϕ(t) to denote the Riemann-Stieltjes

integral with respect to a function ϕ : [0, 1] → R of bounded variation, and
∫ 1

0 g(t)dt for

the Riemann integral.

Finally, we’ll say a few words about Bernoulli polynomials since they play an im-

protant role in this paper. Bernoulli polynomials Bk(t), k ≥ 0, are uniquely determined

by the following identities

B′

k(t) = kBk−1(t), k ≥ 1; B0(t) = 1 (1.12)
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and

Bk(t + 1) − Bk(t) = ktk−1, k ≥ 0. (1.13)

We have

B0(t) = 1, B1(t) = t − 1

2
, B2(t) = t2 − t +

1

6
, B3(t) = t3 − 3

2
t2 +

1

2
t

B4(t) = t4 − 2t3 + t2 − 1

30
, B5(t) = t5 − 5

2
t4 +

5

3
t3 − 1

6
t. (1.14)

B∗

k(t), k ≥ 0, are periodic functions of period 1 such that

B∗

k(t) = Bk(t), 0 ≤ t < 1.

Bk = Bk(0) are Bernoulli numbers. From (1.13) it follows that

Bk(1) = Bk(0) = Bk, k ≥ 2.

For further details on Bernoulli polynomials and Bernoulli numbers see [7] or [8].

2. Corrected Bullen-Simpson’s 3/8 Formulae of Euler Type

For k ≥ 1 and t ∈ R, we define functions

Gk(t) = GS
k (t) + GD

k (t), Fk(t) = FS
k (t) + FD

k (t),

where GS
k (t), GD

k (t), FS
k (t) and FD

k (t) are defined as in Introduction. So,

Gk(t) = 27B∗

k

(1

6
− t

)

+ 27B∗

k

(1

3
− t

)

+ 26B∗

k

(1

2
− t

)

+27B∗

k

(2

3
− t

)

+ 27B∗

k

(5

6
− t

)

+ 26B∗

k(1 − t), k ≥ 1,

F1(t) = G1(t), Fk(t) = Gk(t) − Gk(0), k ≥ 2.

Introduce notation B̃k = Gk(0). By direct calculation we get

B̃2 = 2/3 and B̃3 = B̃4 = B̃5 = 0.

Using the properties of Bernoulli polynomials, it is easy to check that B̃2k−1 = 0,

k ≥ 2, no matter which symmetrical linear combination they were obtained by. The

reason these specific coefficients were chosen is because they give B̃4 = 0 and that is an

interesting case to study.

Now, let f : [0, 1] → R be such that f (n−1) exists on [0, 1] for some n ≥ 1. Introduce

the following notation

D(0, 1) =
1

160

[

13f(0) + 27f
(1

6

)

+ 27f
(1

3

)

+ 26f
(1

2

)

+ 27f
(2

3

)

+ 27f
(5

6

)

+ 13f(1)
]

.
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Define T0(f) = 0 and for 1 ≤ m ≤ n

Tm(f) =
1

2
[T S

m(f) + T D
m (f)],

where T S
m(f) and T D

m (f) are given by (1.6) and (1.10), respectively. So, we have T1(f) =
0,

T2(f) = T3(f) = T4(f) = T5(f) =
1

480
[f ′(1) − f ′(0)]

and, for m ≥ 6,

Tm(f) =
1

480
[f ′(1) − f ′(0)]

+
1

80

[m/2]
∑

k=3

B2k

(2k)!
· 2−2k(34−2k − 1)

[

f (2k−1)(1) − f (2k−1)(0)
]

.

In the next theorem we establish two formulae which play the key role in this paper.
We call them corrected Bullen-Simpson’s 3/8 formulae of Euler type.

Theorem 3. Let f : [0, 1] → R be such that f (n−1) is a continuous function of

bounded variation on [0, 1], for some n ≥ 1. Then

∫ 1

0

f(t)dt = D(0, 1) − Tn(f) + R̃1
n(f), (2.1)

and
∫ 1

0

f(t)dt = D(0, 1) − Tn−1(f) + R̃2
n(f), (2.2)

where

R̃1
n(f) =

1

160n!

∫ 1

0

Gn(t)df (n−1)(t),

and

R̃2
n(f) =

1

160n!

∫ 1

0

Fn(t)df (n−1)(t).

Proof. Indentity (2.1) is produced after adding formulae (1.4) and (1.8), and dividing
them by 2. Identity (2.2) is obtained from (1.5) and (1.9) analogously.

Remark 1. Interval [0, 1] is used for simplicity and involves no loss in generality. In
what follows, Theorem 3 and others will be applied, without comment, to any interval
that is convenient.

It is easy to see that if f : [a, b] → R is such that f (n−1) is continuous of bounded
variation on [a, b], for some n ≥ 1, then

∫ b

a

f(t)dt = D(a, b) − T̃n(f) +
(b − a)n

160n!

∫ b

a

Gn

( t − a

b − a

)

df (n−1)(t)



140 I. FRANJIĆ AND J. PEČARIĆ

and
∫ b

a

f(t)dt = D(a, b) − T̃n−1(f) +
(b − a)n

160n!

∫ b

a

Fn

( t − a

b − a

)

df (n−1)(t),

where

D(a, b) =
b − a

160

[

13f(a) + 27f
(5a + b

6

)

+ 27f
(2a + b

3

)

+ 26f
(a + b

2

)

+27f
(a + 2b

3

)

+ 27f
(a + 5b

6

)

+ 13f(b)
]

,

T̃0(f) = T̃1(f) = 0,

T̃2(f) = T̃3(f) = T̃4(f) = T̃5(f) =
(b − a)2

480
[f ′(b) − f ′(a)]

and for m ≥ 6

T̃m(f) =
(b − a)2

480
[f ′(b) − f ′(a)]

+
1

80

[m/2]
∑

k=3

(b − a)2k

(2k)!
· 2−2k(34−2k − 1)B2k[f (2k−1)(b) − f (2k−1)(a)].

Remark 2. Suppose that f : [0, 1] → R is such that f (n) exists and is integrable on
[0, 1], for some n ≥ 1. In this case (2.1) holds with

R̃1
n(f) =

1

160n!

∫ 1

0

Gn(t)f (n)(t)dt,

while (2.2) holds with

R̃2
n(f) =

1

160n!

∫ 1

0

Fn(t)f (n)(t)dt.

Remark 3. For n = 6, (2.2) yields

∫ 1

0

f(t)dt − D(0, 1) +
1

480
[f ′(1) − f ′(0)] =

1

115200

∫ 1

0

F6(t)df
(5)(t).

From this identity it is clear that corrected Bullen-Simpson’s 3/8 formula of Euler type
is exact for all polynomials of order ≤ 5.

3. Main Result

Before we state our main result, we will need to prove some properties of functions
Gk and Fk. Notice that it is enough to know the values of those functions on the interval
[0, 1

2 ], since Gk(t + 1
2 ) = Gk(t).
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direct calculations show that

G1(t) = F1(t) =







−160t + 13, 0 < t ≤ 1/6

−160t + 40, 1/6 < t ≤ 1/3

−160t + 67, 1/3 < t ≤ 1/2

(3.1)

G2(t) =







160t2 − 26t + 2/3, 0 ≤ t ≤ 1/6

160t2 − 80t + 29/3, 1/6 ≤ t ≤ 1/3

160t2 − 134t + 83/3, 1/3 ≤ t ≤ 1/2

(3.2)

F2(t) = G2(t) − 2/3 =







160t2 − 26t, 0 ≤ t ≤ 1/6
160t2 − 80t + 9, 1/6 ≤ t ≤ 1/3

160t2 − 134t + 27, 1/3 ≤ t ≤ 1/2

(3.3)

G3(t) = F3(t) =







−160t3 + 39t2 − 2t, 0 ≤ t ≤ 1/6

−160t3 + 120t2 − 29t + 9/4, 1/6 ≤ t ≤ 1/3
−160t3 + 201t2 − 83t + 45/4, 1/3 ≤ t ≤ 1/2

(3.4)

G4(t) = F4(t) =







160t4 − 52t3 + 4t2, 0 ≤ t ≤ 1/6

160t4 − 160t3 + 58t2 − 9t + 1/2, 1/6 ≤ t ≤ 1/3

160t4 − 268t3 + 166t2 − 45t + 9/2, 1/3 ≤ t ≤ 1/2

(3.5)

G5(t) = F5(t)

=







−160t5 + 65t4 − 20/3 · t3, 0 ≤ t ≤ 1/6

−160t5 + 200t4 − 290/3 · t3 + 45/2 · t2 − 5/2 · t + 5/48, 1/6 ≤ t ≤ 1/3
−160t5 + 335t4 − 830/3 · t3 + 225/2 · t2 − 45/2 · t + 85/48, 1/3 ≤ t ≤ 1/2

(3.6)

Lemma 1. For k ≥ 3, function G2k−1(t) has no zeros in the interval (0, 1
4 ). The

sign of this function is determined by

(−1)kG2k−1(t) > 0, 0 < t <
1

4
. (3.7)

Proof. For k = 3, G5(t) is given by (3.6) and it is elementary to see that

G5(t) < 0, 0 < t < 1/4, (3.8)

so our first assertion is true for k = 3. Assuming the opposite, by induction, it follows
easily that the assertion is true for all k ≥ 4.

Further, if G2k−3(t) > 0, 0 < t < 1/4, then since

G′′

2k−1(t) = (2k − 1)(2k − 2)G2k−3(t)

it follows that G2k−1 is convex and hence G2k−1(t) < 0 on (0, 1/4). Similarly, we conclude

that if G2k−3(t) < 0, then G2k−1(t) > 0 on (0, 1/4). (3.7) now follows from (3.8).
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Corollary 1. For k ≥ 3, functions (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly

increasing on the interval (0, 1/4) and strictly decreasing on the interval (1/4, 1/2). Con-

sequently, 0 and 1/2 are the only zeros of F2k(t) on [0, 1/2] and

max
t∈[0,1]

|F2k(t)| = 22−2k(1 − 2−2k)(1 − 34−2k)|B2k|,

max
t∈[0,1]

|G2k(t)| = 21−2k(1 − 34−2k)|B2k|.

Proof. Since

[(−1)k−1F2k(t)]′ = [(−1)k−1G2k(t)]′ = (−1)k · 2k · G2k−1(t),

from Lemma 1 we conclude that (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly increasing
on (0, 1/4). It is easy to check that for k ≥ 2 and 0 ≤ t ≤ 1/2,

Gk(1/2 − t) = (−1)kGk(t) and Fk(1/2 − t) = (−1)kFk(t).

From there we conclude that (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly decreasing
on (1/4, 1/2). Further, F2k(0) = F2k(1/2) = 0, which implies |F2k(t)| achieves maximum
at t = 1/4 and thus, the first assertion is proved.

On the other hand,

max
t∈[0,1]

|G2k(t)| = max
{

|G2k(0)|,
∣

∣

∣
G2k

(1

4

)∣

∣

∣

}

= |G2k(0)|.

The proof is now complete.

Corollary 2. For k ≥ 3, we have

∫ 1

0

|F2k−1(t)|dt =

∫ 1

0

|G2k−1(t)|dt =
23−2k

k
(1 − 2−2k)(1 − 34−2k)|B2k|,

∫ 1

0

|F2k(t)|dt = |B̃2k| = 21−2k(1 − 34−2k)|B2k|
∫ 1

0

|G2k(t)|dt ≤ 2|B̃2k| = 22−2k(1 − 34−2k)|B2k|.

Proof. Using the properties of functions Gk, i.e. properties of Bernoulli polynomials,
we get

∫ 1

0

|G2k−1(t)|dt = 4
∣

∣

∣

∫ 1/4

0

G2k−1(t)dt
∣

∣

∣
=

2

k

∣

∣

∣
F2k

(1

4

)∣

∣

∣
,

which proves the first assertion. Since F2k(0) = F2k(1/2) = 0, from Corollary 1 we
conclude that F2k(t) does not change sign on (0, 1/2). Therefore,

∫ 1

0

|F2k(t)|dt = 2
∣

∣

∣

∫ 1/2

0

G2k(t)dt − 1

2
B̃2k

∣

∣

∣
= |B̃2k|,
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which proves the second assertion. Finally, we use the triangle inequality to obtain

∫ 1

0

|G2k(t)|dt ≤
∫ 1

0

|F2k(t)|dt + |B̃2k| = 2|B̃2k|,

which proves the third assertion.

Theorem 4. If f : [0, 1] → R is such that f (2k) is a continuous function on [0, 1],
for some k ≥ 3, then there exists a point η ∈ [0, 1] such that

R̃2
2k(f) =

2−2k

80(2k)!
(1 − 34−2k)B2k · f (2k)(η). (3.9)

Proof. We can rewrite R̃2
2k(f) as

R̃2
2k(f) =

(−1)k−1

160(2k)!
Jk, (3.10)

where

Jk =

∫ 1

0

(−1)k−1F2k(t)f (2k)(t)dt. (3.11)

From Corollary 1 we know that (−1)k−1F2k(t) ≥ 0, 0 ≤ t ≤ 1, so the claim follows from
the mean value theorem for integrals and Corollary 2.

Remark 4. For k = 3 formula (3.9) reduces to

R̃2
6(f) =

1

174182400
· f (6)(η).

Now, we prove our main result:

Theorem 5. Let f : [0, 1] → R be such that f (2k) is a continuous function on [0, 1]
for some k ≥ 3. If f is a (2k)-convex function, then for even k we have

0 ≤
∫ 1

0

f(t)dt − 1

80

[

27f
(1

6

)

+ 26f
(1

2

)

+ 27f
(5

6

)]

+ T D
2k−1(f) (3.12)

≤ 1

80

[

13f(0) + 27f
(1

3

)

+ 27f
(2

3

)

+ 13f(1)
]

− T S
2k−1(f) −

∫ 1

0

f(t)dt

while for odd k inequalities are reversed.

Proof. Denote the middle part and the right-hand side of (3.14) by LHS and DHS,
respectively. Then we have

LHS = τ2
2k(f)

and
RHS − LHS = −2R̃2

2k(f)
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where τ2
2k(f) and R̃2

2k(f) are defined as in Theorems 2 and 3. In [6], we proved that
under given assumptions on f , there exists a point ξ ∈ [0, 1] such that

τ2
2k(f) = − 1

80(2k)!
(1 − 21−2k)(1 − 34−2k)B2k · f (2k)(ξ). (3.13)

Recall that if f is (2k)-convex on [0, 1], then f (2k)(x) ≥ 0, x ∈ [0, 1]. Now, having in
mind that (−1)k−1B2k > 0 (k ∈ N), from (3.13) and (3.9) we get

LHS ≥ 0, RHS − LHS ≥ 0, for even k

LHS ≤ 0, RHS − LHS ≤ 0, for odd k

and thus the proof is complete.

Remark 5. From (3.14) for k = 3 we get

0 ≤
∫ 1

0

f(t)dt − 1

80

[

27f
(1

6

)

+ 26f
(1

2

)

+ 27f
(5

6

)]

− 1

240
[f ′(1) − f ′(0)]

≤ 1

80

[

13f(0) + 27f
(1

3

)

+ 27f
(2

3

)

+ 13f(1)
]

− 1

120
[f ′(1) − f ′(0)] −

∫ 1

0

f(t)dt

Theorem 6. If f : [0, 1] → R is such that f (2k) is a continuous function on [0, 1]
and f is either (2k)-convex or (2k)-concave, for some k ≥ 3, then there exists a point

θ ∈ [0, 1] such that

R̃2
2k(f) = θ · 2−2k

40(2k)!
(1 − 2−2k)(1 − 34−2k)B2k[f (2k−1)(1) − f (2k−1)(0)]. (3.14)

Proof. Suppose f is (2k)-convex, so f (2k)(t) ≥ 0, 0 ≤ t ≤ 1. If Jk is given by (3.11),
using Corollary 1, we obtain

0 ≤ Jk ≤ (−1)k−1F2k

(1

4

)

·
∫ 1

0

f (2k)(t)dt.

which means that there must exist a point θ ∈ [0, 1] such that

Jk = θ · (−1)k−1 · 22−2k(1 − 2−2k)(1 − 34−2k)B2k[f (2k−1)(1) − f (2k−1)(0)].

When f is (2k)-concave, the statement follows similarly.

Now define

∆2k(f) =
2−2k

80(2k)!
· (1 − 34−2k)B2k[f (2k−1)(1) − f (2k−1)(0)].

Clearly,
R̃2

2k(f) = θ · (2 − 21−2k) · ∆2k(f).
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Theorem 7. Suppose that f : [0, 1] → R is such that f (2k+2) is a continuous function

on [0, 1] for some k ≥ 3. If f is either (2k)-convex and (2k + 2)-convex or (2k)-concave

and (2k+2)-concave, then the remainder R̃2
2k(f) has the same sign as the first meglected

term ∆2k(f) and

|R̃2
2k(f)| ≤ |∆2k(f)|.

Proof. We have
∆2k(f) = R̃2

2k(f) − R̃2
2k+2(f).

From Corollary 1 it follows that for all t ∈ [0, 1]

(−1)k−1F2k(t) ≥ 0 and (−1)k−1[−F2k+2(t)] ≥ 0,

so we conclude that R̃2
2k(f) has the same sign as −R̃2

2k+2(f). Therefore, ∆2k(f) must

have the same sign as R̃2
2k(f) and −R̃2

2k+2(f). Moreover, it follows that

|R̃2
2k(f)| ≤ |∆2k(f)| and |R̃2

2k+2(f)| ≤ |∆2k(f)|.

4. Some Inequalities Related to Corrected Bullen-Simpson’s 3/8 Formulae
of Euler Type

In this section, using formulae derived in Theorem 3, we shall prove a number of
inequalities for various classes of functions.

Theorem 8. Assume (p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞,
1
p + 1

q = 1. Let |f (n)|p : [0, 1] → R be R-integrable function for some n ≥ 1. Then we

have
∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1) + Tn−1(f)
∣

∣

∣
≤ K(n, p) · ‖f (n)‖p, (4.1)

and
∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1) + Tn(f)
∣

∣

∣
≤ K∗(n, p) · ‖f (n)‖p, (4.2)

where

K(n, p) =
1

160n!

[

∫ 1

0

|Fn(t)|qdt
]

1

q

and K∗(n, p) =
1

160n!

[

∫ 1

0

|Gn(t)|qdt
]

1

q

.

Proof. Applying the Hölder inequality we get

∣

∣

∣

1

160n!

∫ 1

0

Fn(t)f (n)(t)dt
∣

∣

∣
≤ 1

160n!

[

∫ 1

0

|Fn(t)|qdt
]

1

q · ‖f (n)‖p

Having in mind Remark 2, from (2.2) and the above inequality, we obtain (4.1). Similarly,
from (2.1) we obtain (4.2).
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Remark 6. Taking p = ∞ and n = 1, 2 in Theorem 8, i.e. (4.1) we get

∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1)
∣

∣

∣
≤ K(n,∞) · ‖f (n)‖∞,

where

K(1,∞) =
2401

57600
, K(2,∞) =

597 + 320
√

10

768000
.

Taking p = 1 and n = 1, 2, we get

∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1)
∣

∣

∣
≤ K(n, 1) · ‖f (n)‖1,

where

K(1, 1) =
41

480
, K(2, 1) =

169

51200
.

Comparison of these estimates and estimates obtained in [3] in Remarks 9 and 10
shows that ours are better in all cases except for n = 2 and p = ∞.

Moreover, for p = ∞ and n = 3, 4, 5 we obtain

∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1) +
1

480
[f ′(1) − f ′(0)]

∣

∣

∣
≤ K(n,∞) · ‖f (n)‖∞,

where

K(3,∞) =
48693 + 3133

√
241

3932160000
, K(4,∞) =

1

1179648
, K(5,∞) =

1

22118400
,

and for p = 1 and n = 3, 4, 5 we get

∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1) +
1

480
[f ′(1) − f ′(0)]

∣

∣

∣
≤ K(n, 1) · ‖f (n)‖1,

where

K(3, 1) =
1053 + 187

√
561

110592000
, K(4, 1) =

1

614400
, K(5, 1) =

1

9437184
.

Finally, for p = 2 we get

∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1)
∣

∣

∣
≤ K(n, 2) · ‖f (n)‖2,

where

K(1, 2) =

√
534

480
, K(2, 2) =

√
5

960
,

and
∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1) +
1

480
[f ′(1) − f ′(0)]

∣

∣

∣
≤ K(n, 2) · ‖f (n)‖2,
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where

K(3, 2) =

√
1155

1209600
, K(4, 2) =

√
210

14515200
, K(5, 2) =

√
116655

5748019200
.

Remark 7. Note that K∗(1, p) = K(1, p), for 1 < p ≤ ∞, since G1(t) = F1(t). Also,
for 1 < p ≤ ∞, we can easily calculate K(1, p). Namely,

K(1, p) =
1

480

[39q+1 + 40q+1 + 41q+1

120(q + 1)

]
1

q

.

In the limit case when p → 1, that is when q → ∞, we have

lim
p→1

K(1, p) =
41

480
= K(1, 1).

Now we use formula (2.1) and a Grüss type inequality to obtain estimations of cor-

rected Bullen-Simpson’s 3/8 formulae in terms of oscillation of derivatives of a function.
To do this, we need the following two technical lemmas. The first one was proved in [9]
and the second one is the key result from [10].

Lemma 2. Let k ≥ 1 and γ ∈ R. Then

∫ 1

0

B∗

k(γ − t)dt = 0.

Lemma 3. Let F, G : [0, 1] → R be two integrable functions. If

m ≤ F (t) ≤ M, 0 ≤ t ≤ 1

and
∫ 1

0

G(t)dt = 0,

then
∣

∣

∣

∫ 1

0

F (t)G(t)dt
∣

∣

∣
≤ M − m

2
·
∫ 1

0

|G(t)|dt. (4.3)

Theorem 9. Let f : [0, 1] → R be such that f (n) exists and is integrable on [0, 1],
for some n ≥ 1. Suppose

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,

for some constants mn and Mn. Then

∣

∣

∣

∫ 1

0

f(t)dt − D(0, 1) + Tn(0, 1)
∣

∣

∣
≤ Cn(Mn − mn) (4.4)
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where

C1 =
2401

115200
, C2 =

320
√

30 + 187
√

561

27648000
,

C3 =
48693 + 3133

√
241

7864320000
, C4 =

1

2359296
,

C2k−1 =
2−2k

20(2k)!
(1 − 2−2k)(1 − 34−2k)|B2k|, k ≥ 3,

C2k =
2−2k

80(2k)!
(1 − 34−2k)|B2k|, k ≥ 3.

Proof. Lemma 2 ensures that the second condition of Lemma 3 is satisfied. Having
in mind Remark 2, apply inequality (4.3) to obtain the estimate for |R̃1

n(f)|. Now our
statement follows easily from Corollary 2 for n ≥ 5 and direct calculation for n = 1, 2, 3, 4.
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matics with Applications 46 (2003), 1325-1336.

Faculty of Food Technology and Biotechnology, Department of mathematics, University of Za-
greb, Pierottijeva 6, 10000 Zagreb, Croatia.

E-mail: ifranjic@pbf.hr

Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.

E-mail: pecaric@hazu.hr


