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ON CERTAIN NEW CAUCHY-TYPE FRACTIONAL
INTEGRAL INEQUALITIES AND OPIAL-TYPE FRACTIONAL

DERIVATIVE INEQUALITIES

ARIF M. KHAN, AMIT CHOUHAN AND SATISH SARASWAT

Abstract. The aim of this paper is to establish several new fractional integral and deriva-
tive inequalities for non-negative and integrable functions. These inequalities related to
the extension of general Cauchy type inequalities and involving Saigo, Riemann-Louville
type fractional integral operators together with multiple Erdelyi-Kober operator. Further-
more the Opial-type fractional derivative inequality involving H-function is also estab-
lished. The generosity of H-function could leads to several new inequalities that are of
great interest of future research.

1. Introduction

In last few years the fractional integral and derivative inequalities and their applications

have been addressed extensively by several authors like Anastassiou [1, 2], Beesack [3], Hand-

ley et al. [8], Opial [10] etc., by using the Riemann Liouville fractional integrals and Opial type

fractional Derivatives. Researchers have great interest in this field due to vast applications

of these inequalities in fractional differential equation in establishing the uniqueness of the

solution of initial value problems, giving upper bounds to their solutions.

In the presented paper authors established certain theorems based on general Cauchy

type inequality, involving Riemann-Liouville fractional integral operators, Saigo operator and

multiple Erdely-Kober operator, then finally in last section Opial type fractional derivative

inequality involving H-function is established, which is capable of yielding various results in

the theory of Opial type integral inequalities.

2. Preliminaries and definitions

In this section, we will present some definitions that will be used in the proof of our main

results.
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Definition 2.1. If a and b are positive real numbers, satisfying a + b = 1 and f and g are

monotonic functions defined on (0,∞), then Cauchy’s general inequality [9] is defined as

a f (x)+bg
(
y
)= [

f (x)
]a[

g
(
y
)]b (2.1)

Definition 2.2. The standard Riemann-Liouville fractional integral [12] of order α ∈ C for

function f : (0,∞) → R is given as

Iα f (t ) = Iα0+ f (t ) = 1

Γ (α)

∫ t

0
(t − x)α−1 f (x)d x, R (α)>0 (2.2)

provided that integral on the right-hand side converges.

Definition 2.3. Saigo [11] defined the fractional integration operator as follows:

Iα,β,η
0+ f (x) = x−α−β

Γ(α)

∫ x

0
(x − t )α−1

2F 1(α+β,−η;α;1− t

x
) f (t )d t (2.3)

where α ∈ C,Re (α) > 0,βand ηare real numbers and f (x) is a real valued and continuous

function defined on the interval (0,∞).

For β=−α, in (2.3), we get Riemann - Liouville operator (2.2).

Definition 2.4. Erdelyi [6] defined the space of functions C∗
α∗ for arbitrary real number α∗

with set of real valued function C
′
[0,∞), as follows:

C∗
α∗ =

{
f (x) = xq g (x) ; q <α∗, g (x) ∈C

′
[0,∞)

}
(2.4)

whereα∗ = mi n
1≤k≤m (βτk ) with m ∈ z+,β> 0, k = 1, . . . ,m;τ1,τ2,τ3, . . . ,τm be arbitrary real num-

bers.

Definition 2.5. Erdelyi [6] also defined the linear space of function Cα for arbitrary real num-

bers α, with set of real valued functions C
′
[0,∞), as follows:

Cα =
{

f (x) = xp f̃ (x) : p >α , f̃ (x) ∈C
′
[0,∞)

}
(2.5)

where α = max
1≤k≤m [−β(

γk +1
)
], m ∈ z+,β > 0,k = 1, . . . ,m;γ1,γ2,γ3, . . . ,γm be arbitrary real

numbers.

Definition 2.6. A multiple Erdelyi-Kober operator of Riemann - Liouville type is defined in

the form, [6]

I (γk ),(δk )

(βk ),(λk ),m
f (x) = 1

x

∫ x

0
H m,0

m,m

 t

x

∣∣∣∣∣∣
(
γk +δk +1− 1

βk
, 1
βk

)m

1(
γk +1− 1

λk
, 1
λk

)m

1

 f (t )d t (2.6)
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where m ∈ z+;βk ,λk ,δk ,γk > 0,k = 1, . . . ,m;γ1,γ2,γ3, . . . ,γm be arbitrary real numbers. Fur-

thermore,
m∑

k=1

1

λk
=

m∑
k=1

1

βk

and f (x) ∈ Cα, α = max
1≤k≤m

{−λk
(
γk +1

)}
. Here H m,n

p, q [x] is H-function due to Fox [7], in-

troduced and defined via a Mellin-Barnes type integral for integers m,n, p, q such that 0 ≤
m ≤ q,0 ≤ n ≤ p, for ai ,b j ∈ C with C, the set of complex numbers and for αi ,β j ∈ R+ =

(0,∞) ,
(
i = 1,2, . . . ., p; j = 1,2. . . , q

)
, as

H m,n
p,q (z) ≡ H m.n

p,q

[
z
∣∣∣ ( ai ,αi )1,p

( b j ,β j )1,q

]
= 1

2πi

∫
L

H m,n
p,q (s) z−sd s (2.7)

with

H m.n
p,q (s) ≡H m.n

p,q

[
(ai ,αi )1,p

( b j ,β j )1,q

∣∣∣s ]
=

∏m
j=1Γ(b j + β j s)

∏n
i=1Γ(1−ai − αi s)∏p

i=n+1Γ(ai +αi s)
∏q

j=m+1Γ(1−b j −β j s)
(2.8)

Asymptotic expansions and analytic continuations of the H-function have been discussed

by Braaksma [4].

Definition 2.7. Canavati [5] defined the generalized v-fractional Riemann-Liouville integral

for x, x0 ∈ [a,b] such that x = x0, x0 is fixed, v = 1, for the function f ∈C ([a,b]) , as follows

(
I x0

v f
)

(x) = 1

Γ (v)

∫ x

x0

(x − t )v−1 f (t )d t , x0 = x = b. (2.9)

Further the generalized v-fractional derivative [5] of f over [x0,b] is given as

Dv
x0

f := DI x0
1−α f (n) ( f (n) := Dn f

)
. (2.10)

where n= [v] the integral part, v > 0 and α= v −n (0 <α< 1).

Furthermore, Anastassiou [1] defined subspace C v
x0

([a,b])of C n([a,b]) for f ∈ C v
x0

([a,b]); as

follows:

C v
x0

([a,b]) = {
f ∈C n ([a,b]) : I x0

1−αDn f ∈C 1 ([x0,b])
}

. (2.11)

3. Cauchy type fractional integral inequalities

Theorem 1. If a and b are positive real numbers satisfying a+b = 1 and f and g are monotonic

functions defined on [0,∞) , then for all α,β ∈ C , Re (α) > 0,Re
(
β
) > 0, t > 0, the following

inequality holds
atβ

Γ
(
β+1

) Iα f (t )+ btα

Γ (α+1)
Iβg (t ) ≥ Iβg b(t) Iα f a(t ) (3.1)
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Proof. Multiplying both side of Cauchy general inequality (2.1) by (t−x)α−1

Γ(α) and integrating

with respect to x, between the limits 0 to t, we get

a

Γ(α)

∫ t

0
(t − x)α−1 f (x)d x + b

Γ(α)
g

(
y
)∫ t

0
(t −x)α−1d x

≥ [
g

(
y
)]b 1

Γ(α)

∫ t

0
(t −x)α−1[ f (x)

]ad x

By using (2.2), we obtained

aIα f (t )+ bg
(
y
)

Iα (1) ≥ [g
(
y
)
]b Iα[ f (t )]a (3.2)

multiplying both sides of equation (3.2) by (t−y)β−1

Γ(β) and integrating w.r.t.to y, between the lim-

its 0 to t and finally by virtue of (2.2), we obtained inequality (3.1).

Remark 1. For α=β in equation (3.1), we obtained

aIα f (t )+bIαg (t ) = Γ (1+α) t−αIα f a (t ) Iαg b (t ) . (3.3)

Theorem 2. If a and b are positive real numbers satisfying a+b = 1 and f and g are monotonic

functions defined over [0,∞), then for all α,β,η,γ ∈C ,Re (α) > 0,Re
(
γ
)> 0, t > 0 the following

inequality holds

a
Γ (1−δ+σ)

Γ (1−δ)Γ
(
1+γ+σ

) t−δIα,β,η
0+ f (t )+b

Γ
(
1−β+η

)
Γ

(
1−β

)
Γ

(
1+α+η

) t−βIγ,δ,σ
0+ g (t )

≥ Iα,β,η
0+ f a (t ) Iγ,δ,σ

0+ g b (t ) (3.4)

Proof. Multiplying both sides of equation (2.1) by t−α−β
Γ(α) (t − x)α−1

2F1
(
α+β,−η;α;1− x

t

)
then

integrating w.r.t. x from 0 to t and by virtue of (2.3), we have

aIα,β,η
0+ f (t )+ bg

(
y
)

Iα,β,η
0+ (1) ≥ g b (

y
)

Iα,β,η
0+ f a (t )

now multiplying both sides of above equation by t−γ−δ(t−y)
γ−1

Γ(γ) 2F1(γ+δ,−σ,γ;1− y
t ) then inte-

grating w.r.t. y from 0 to t and by virtue of (2.3), we obtained inequality (3.4).

Remark 2. If α= γ,β= δ and η=σ, inequality (3.4) becomes

aIα,β,η
0+ f (t )+bIα,β,η

0+ g (t ) ≥ Γ
(
1−β

)
Γ

(
1+α+η

)
t+β

Γ
(
1−β+η

) Iα,β,η
0+ f a (t ) Iα,β,η

0+ g b (t ) . (3.5)

Remark 3. Putting β=−α, in inequality (3.4) we obtained inequality (3.3).
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Theorem 3. If a and b are positive real numbers, satisfying a+b = 1 and f (x) , g (x) ∈Cα,m,n ∈
z+;λk ,βk ,δk ,γk > 0 where, βk ,λk ,δk ,γk be arbitrary real numbers with

m∑
k=1

1

λk
=

m∑
k=1

1

βk
,α= max

1≤k≤m

[−λk
(
γk +1

)]
then the following inequality holds

aI (γk ),(δk )

(βk )(λk ),m

[
f (t )

]
I (γk )(δk )

(βk )(λk ),n
(1)+bI (γk )(δk )

(βk )(λk ),m
(1) I (γk )(δk )

(βk )(λk ),n

[
g (t )

]
≥ I (γk )(δk )

(βk )(λk ),m

[
f (t )

]a I (γk )(δk )

(βk )(λk ),n

[
g (t )

]b (3.6)

where k = 1, . . . ,m for operator I (γk ),(δk )

(βk )(λk ),m
[.] and k = 1, . . . ,n for operator I (γk ),(δk )

(βk )(λk ),n
[.].

Proof. Multiply both side of general Cauchy inequality (2.1) by

1
t H m,0

m,m

 x
t

∣∣∣∣∣∣
(
γk +δk +1− 1

βk
, 1
βk

)m

1(
γk +1− 1

λk
, 1
λk

)m

1

∣∣∣∣∣∣
 then integrating with the limits 0 to t and using equation

(2.6), we get

aI (γk )(δk )

(βk )(λk ),m
f (t )+ bg

(
y
)

I (γk )(δk )

(βk )(λk ),m
(1) ≥ [

g (y)
]b I (γk )(δk )

(βk )(λk ),m

[
f (t )

]a

now multiply both side by 1
t H n,0

n,n

 y
t

∣∣∣∣∣∣
(
γk +δk +1− 1

βk
, 1
βk

)n

1(
γk +1− 1

λk
, 1
λk

)n

1

∣∣∣∣∣∣
 and integrating with the limits

0 to t , we obtained (3.6).

4. Opial type fractional derivative inequalities

Theorem 4. Let f ∈ C v
x0

([a, b]) , v = 1 and f (i ) (x0) = 0, i = 0,1, . . . ,n −1, n = [v] ; x, x0 ∈ [a,b] :

x = x0. Let p, q > 1 such that 1
p + 1

q = 1, then the following inequality holds

∫ x

x0

∣∣ f (w)
∣∣ ∣∣(Dv

0 f
)

(w)
∣∣d w ≤ 2−1/q (x −x0)(pv−p+2)/p

Γ (v) (
(
pv −p +1

)(
pv −p +2

)
)1/p

×
[∫ x

x0

(
t w+αH M ,N+1

P+1,Q+1

(
tσ

∣∣∣∣ (−ω,σ) ,
(
a j ,α j

)
1,P(

b j ,β j
)

1,Q , (−ω−α,σ)

))q

d t

] 2
q

(4.1)

where, f (x) = xw

∣∣∣∣H M ,N
P,Q

(
xσ

∣∣∣∣ (a j ,α j )1,P

(b j ,β j )1,Q

)∣∣∣∣.
Proof. Let ∣∣ f (x)

∣∣ = ∣∣∣∣xw H M ,N
P,Q

(
xσ

∣∣∣∣ (a j ,α j )1,P

(b j ,β j )1,Q

)∣∣∣∣≤ 1

Γ (v)

∫ x

x0

(x − t )v−1| Dv
x0

f (t ) |d t
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≤ 1

Γ (v)

(∫ x

x0

[
(x − t )v−1]p

d t

)1/p(∫ x

x0

[∣∣Dv
x0

f
∣∣ (t )

]q d t

)1/q

= 1

Γ (v)

(x −x0)(pv−p+1)/p

(pv −p +1)1/p

(∫ x

x0

[∣∣Dv
x0

f
∣∣ (t )

]q d t

)1/q

(4.2)

on setting

z (x) =
(∫ x

x0

(|Dv
x0

f |(t ))q d t

)
, (z (x0) = 0) (4.3)

then d
d x z (x) = z ′ (x) = (∣∣Dv

x0
f
∣∣ (x)

)q , i.e.,

∣∣Dv
x0

f
∣∣ (x) = (z ′ (x))1/q = xω+αH M ,N+1

P+1,Q+1

(
xσ

∣∣∣∣ (−ω,σ),(a j ,α j )1,P

(b j ,β j )1,Q (−ω−α,σ)

)
(4.4)

now by virtue of (4.2) and (4.4), we have

∣∣ f (w)
∣∣ ∣∣Dv

x0
f
∣∣ (w) = 1

Γ (v)

(ω− x0)(pv−p+1)/p

(pv −p +1)1/p

[{∫ ω

x0

(∣∣Dv
x0

f
∣∣ (t )

)q d t

}
× z ′ (ω)

]1/q

,

x0 =ω= x, further integrating over [x0, x], we get∫ x

x0

∣∣ f (w)
∣∣ ∣∣Dv

x0
f
∣∣ (w)d w

= 1

Γ(v) (pv −p +1)1/p

∫ x

x0

(w − x0)(pv−p+1)/p(
z (w) .z ′(w)

)1/q d w

≤ 1

Γ (v) (pv −p +1)1/p

(∫ x

x0

(w −x0)(pv−p+1)d w

)1/p(∫ x

x0

z (w) z ′(w)d w

)1/q

= (x − x0)(pv−p+2)/p

Γ(v)
[(

pv −p +1
)

(pv −p +2)
]1/p

.
[z (x)]2/q

21/q

now using equation (4.3), we obtained

∣∣ f (w)
∣∣ ∣∣Dv

x0
f
∣∣ (w) = 2−1/q (x −x0)

(pv−p+2)/p

Γ (v)
[(

pv −p +1
)

(pv −p +2)
]1/p

[∫ x

x0

(∣∣Dv
x0

f
∣∣ (t )

)q d t

]2/q

finally using equation (4.4), we arrived at (4.1).
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