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SOME PROPERTIES OF DIFFERENTIAL OPERATOR ASSOCIATED
WITH GENERALIZED HYPERGEOMETRIC FUNCTIONS

ENTISAR EL-YAGUBI AND MASLINA DARUS

Abstract. In the present investigation, new subclasses of analytic functions in the open
unit disk which are defined using generalized derivative operator are introduced. Several
interesting properties of these classes are obtained.

1. Introduction

Let «f denote the class of functions of the form
o0
f@=z+) apz", (1.1)
n=2

which are analytic in the open unit disk U = {z: z € C, |z| < 1}. Also let % be the the subclass of

&/ consisting of all functions which are univalent in U. If f(z) € of satisfies

zf'(2)
e[ o]

T
<§ﬂ’ (zeU,0=sa<1,0<f=1), (1.2)

then f(z) is said to be strongly starlike of order § and type « in U, and denoted by S*(a, ). If
f(2) € of satisfies

Zf” (Z)
@ “)

then f(z) is said to be strongly convex of order  and type « in U, and denoted by C(a, §).

b2
arg(1+ <§’6’ (zeU,0=sa<1,0< =<1, (1.3)

It is obvious that f(z) € «f belongs to C(a, ) if and only if zf'(z) € S*(a, B). Further,
we note that S*(a, 1) = S*(a) and C(a, 1) = C(a) which are, respectively, starlike and convex
univalent functions of order a. Let &2 denote the class of functions of the form p(z) = 1+
p1(z) +--- analytic in U which satisfy the condition R®{p(z)} > 0.
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For two functions given by f(z) = ¥9°, a,z" and g(z) = Y77, b, z" be analytic in U. Then
the Hadamard product (or convolution) f * g of the two functions f, g is defined by

o0
f(R)xgz)=2z+ ) anb,z".
n=2
Recall that the function F is subordinate to G if there exists a function w, analytic in U, with
w(0) =0 and |w(z)| < 1 such that F(z) = G(w(z)), z € U. We denote this subordination by F(z) <
G(z). If G(z) is univalent in U, then the subordination is equivalent to F(0) = G(0) and F(U) c
GU).
For complex parameters a;, bj, (i = 1,...,r,j =1,...,5,bj € C\{0,—1,-2,...}), we shall use
the generalized hypergeometric function ,®(a;, bj; z)
X (a)n - (ar)y 2"
Ds(a;,bj;2) = —_——,
rese nX::O (bl)n(bs)n n!
where r < s+ 1;7,5 € Ng = NU {0}; z € U,N denotes the set of positive integers and (x), is the

Pochhammer symbol defined in terms of the Gamma function I’, by

I'(x+n) 1, n=0,
(x)n: =
I'(x) x(x+1---(x+n-1),n=1{1,2,3,...}.

Corresponding to a function %s(a;, bj; z) defined by
r9s(a;, bj;z) =z, Os(ai, bj; z). (1.4)
Dziok and Srivastava [1] introduced a convolution operator on «f such that
Hrsai,bj) ol — A,
is defined by

Frs(ai, bj) f(2) =r Ys(ai, bj; 2) * f(2)
X (a)p-1--(@)p-1 apz"

T L bpo - (b)pt (n—1)!

We now define the following operator 9/’17?22(@, bj)f : o/ — <f by the following Hadamard

product:

D30 (@0, b) [ (@) = 1 G(ai,bji2) « f(2),
1+ D)2, (@0,b) f (@) = A= (a+ A2 + D)@, *, Gslar, bji2) » ()

+(h +A2)z(@] *r Gs(ai, bj; 2) * f(2)), (1.5)
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DY (@i, b f(@) =D}, @y i, b)) f(2), (1.6)

n

b _ co ____ 2
where Py, = Z+350, 1+A,(n-1)+b"

From (1.5) and (1.6) we may easily deduce the following linear operator:
X [1+M+A)(n-1D+Db]" (@)n-1--(a@r)p-1 anz"

mb e
D@ bpf@ =2+ ) | T Bpr (b)py (n-1)V’

(1.7)

where A, 21, 20,m,beNg=1{0,1,2,...},a; €C,b; € C\{0,-1,-2,...}),
(i=1,...,r,j=1,...,s,and r =s+1;r,seNp.

It should be remarked that the linear operator (1.7) is a generalization of many operators
considered earlier. Let us see some of the examples:

For m = 0 the operator 2 le,,?lz (a;, bj) f reduces to the well-known Dziok- Srivastava oper-
ator [1]. For Ay = b =0, we get the Selvaraj derivative operator [2]. For m =0,r =2and s =1
we obtain the Hohlov derivative operator [3]. Forr =1,s =0,y =1,A; =1land A, = b =0,
we get the Salagean derivative operator [4]. For r =1,s =0,a; =1 and A, = b =0, we get the
generalized Salagean derivative operator introduced by Al-Oboudi [5]. For m =0,r =1,s =0
and a; = 6 +1 we obtain the Ruscheweyh derivative operator [6]. Forr =1,s=0and a; =6 +1
we obtain the derivative given by El-Yagubi and Darus [7]. For m = 0,r =2 and s = 1 and
ap = 1 we obtain the Carlson and Shaffer [8]. Forr =1,s=0,a; = 1 and 1, = 0 we get the Cétés
derivative operator [9].

Remark 1.1. It follows from the above definition that:

(1+ b)@ﬁ;ﬁ’b(ai, bj)f(z) = (1-(A1+A2) + b) (@Z:iz(ai, bj) * (pf{zf(Z))
+(M +22)2(@)") (ai, b)) = @} f(2), (1.8)

and
@@} (a1+1,b)f(2) = (a1 - DD, (@, b)) +2 @ (a,b)f@).  (1.9)

Now, we introduce the following classes in terms of the new operator & le ’5{2 (ai, bj):

Definition 1.1. For A =2 41 20,m,b € Ng = {0,1,2,...}, a; € C, bj € C\{0,-1,-2,...}), (i =
L..,r,j=1..,8r=s+L;rnseNypO0=sa<land0< <1, let {Sﬁ/{?fz(ai,bj;a,ﬁ) be the

class of functions f € of satisfying

2@} (ai, b)) f(2) )
-

P (@i, b)) f(2)

arg( < gﬁ (zel),

2@ (aibj)f(2)

where @Zf’j{z(ai, bj)f(2) € S*(a, B) and AL

23, @b f(2)
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Definition 1.2. For A = A; =20, m,be Ny ={0,1,2,...}, a; € C, bj € C\{0,-1,-2,..}), (i =
L...,r,j=1,...,5r<s+L;r,seNp,0<sa<land0< f < l,letcéi?’iz(ai,bj;a,ﬂ) be the class
of functions f € of satisfying

2@ (@i, b)) f (=) )
-
@ (ai, b)) f ()

1,

arg(1+ <gﬁ (zel),

2@} (aib)f(2)"

@, (aib)) (=)

where @Z:zz(ai, bj)f(z) € C(a,p) and 1 +

Clearly, f € %ff’f{z(ai, bj;a, B) if and only if zf’(2) € 5”/{?’/{’2 (ai,bj;a, B).
Note that ") (1,1;a, ) = S* (@, f), ) (L La, 1) = S* (@), €, (1,1;a,p) = Cla, p)
and %X;bﬂz(l, 1;a,1) = C(a).

Definition 1.3. For 12 > 11 2 0,m,b € Ny =1{0,1,2,...}, a; € C, bj € C\{0,-1,-2,...}), (i =
L..,r,j=1,...,8,r<s+1;rnseNp,0<y<land -1<=B<A=<],let Q;’:’iz(ai,bj;y;A,B)
be the class of functions f € o satisfying

1 (2@ (@i, bpf(2) 1+ Az

Y| <
1=y 2" (ai,bj)f(2) 1+Bz

(zel),

2@ (aib))f(2)
where @fﬁ'ﬁz (ai,bj) f(z) € S*(y; A, B) and Do T

2", (@ib)) f(2)

2. Main results
To derive our theorems, the following lemma will be required.

Lemma 2.1 (see [10]). Let B, v be complex numbers. Let ¢p € &2 be convex univalent in U with
¢0)=1andR{fP(z)+v}>0,zelU. Ifp(z)=1+p1z+ p2z2 +---isanalyticinU with p(0) =1,
then

zp'(2)

W<(P(Z)$p(Z)<(p(Z), (ZE[U).

p(z) +

Theorem 2.2. Letp(z) be convex univalentinU with ¢(0) = 1 andR{Pp(2)} = 0. If f € o satisfies
the condition

1 (2@ @ b f )

—y| <@ (zeU),
1=y\ 9" @, b)) f (2)

then
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1 (2@ (@i, b)) 9f f(2)
L=v\ o) (a1, ) * 9} f(2)

-y <¢(2) (zel),

orl,=A1=0,mbeNy,a;€C,b; e C\{0,-1,-2,..),(i=1,...,r,j=1,...,5,r<s+1;1,s€Ny
J J
and0<y<1.

Proof. Let
m,b 1. b I
p(z): ]_ (Z(gll,lz(al,b])*(pﬂ.zf(z)) _ ’ (21)
1=v\ o (ai,bp « ¢} f(2)
where p € 22. By using equation (1.8) in (2.1) and differentiating logarithmically, we get
1 (z(@;’ij(m,bﬂ f@y )
L=v\ 2", b) f(2)
zp'(2)
- p(2) + P 2.2)

(1-Pp@+ (1= 1 +A2) + B +7) /(A + A2).

1 (z(@;";j;’(ai,bj)f(z))’

Since = T a2 - y) < ¢(z), and applying Lemma 2.1, it follows that p < ¢. Hence

1-y
the required result is obtained.

Theorem 2.3. Let¢(z) be convex univalent inU with ¢(0) = 1 andR{p(2)} = 0. If f € o satisfies

the condition

1 (z@ﬂjz(aﬁl,bj)f(z))’

- —y)<</>(z) (zeU),
1=y 27" (@ +1,bpf(2)

then

1 (z@;’jjz(a,-,bj)f(z))’

1-y\ 27" (a;,b)) f(2)

—y) < ¢(2) (zel),
]r;LZ

orl, =11 =0,mbeNy=1{0,1,2,...},a; €C,b; e C\{0,—-1,-2,..), (G=1,....,r, j=1,...,8 T <
I j J
s+1;r,seNpand0<y<1.

Proof. Let

-7l (2.3)

e L (z(@;’j;i’b(ai,bj)f(z))'
p(2) =

2% (ai, b f(2)
where p € 22. By using equation (1.9) in (2.3) and differentiating logarithmically, we get
1 (2@ (@ +1,b)f )

1=y 2" (a1 +1,b)f(2)

zp'(2)
1-1p@+@-D+y’

—y) =p(2)+ (2.4)
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since b
1 z(@ﬁh(al +1,b)) f(2)) o
-y < ¢(2),
1=yU 2" (@ +1,b)f(2)
then applying Lemma 2.1, it follows that p < ¢. Hence the required result is obtained.

Taking ¢p(z) = (1+ Az)/(1+ Bz), (-1 < B < A< 1) in Theorem 2.2 and in Theorem 2.3 we
have:

Corollary 2.4. For A, 211 =0,m,beNy,a; €C,bj € C\{0,-1,-2,...}),(i
=1,...,,j=1,...,5,r<s+1;r,seNgand0 <y <1 andR{a;} >1-7, we have

27" a;, bjsy; A B € 2" (ai,bjiv; A B),

and
b o b e
Qzll,/lz (al + 1) bj)Y; AyB) = Q;’?vﬂz(al,bj,/}/,A,B).
Also, by taking ¢(z) = (1+ 2)/(1 - 2))P, (0 < B <1) in Theorem 2.2 and in Theorem 2.3 we
have:
Corollary 2.5. For A\ = A1 20,m,beNy,a; € C,b; e C\{0,-1,-2,..}), (i =1,...,r,j=1,...,5,
r<s+1;rseNygand0<y<1andRia;} >1- B, we have
b b
5”/{:;; (@i, bj;y,p) < Sy (@i, b3y, B,
and
b e b .
S @ +1,bjy; B) < F4) (ar, by, B).
Corollary 2.6. ForA; 211 =20,m,beNy, a; €C,bj € C\{0,-1,-2,..}), (i =1,...,1,j =1,...,5,
r<s+1;,rseNy,0=<y<1andR{a;} >1-f, we have
b . b .
‘5/{?2 (ai,bj;y,p) < (g/{?,ﬂz(ai,bj,%ﬁ),
and
b e b .
%;?,Ag(al + 1rb])Y)ﬁ) = (g/{?,/lz(al’ b]:Yyﬁ)
Proof. We will proof the first relation and by the same method we can proof the second rela-
tion
f@e€ aibjiy, p) < 2f'(2) € #3 ai, bjiy, B)
b .
< zf' (9 e S (@i, b3y, B)
e D (@i, b)) (f'(2) € S* (7, )
© 2@} (ai,b)f(2) €S (1, p)
& 2" (ai,b)f(2) € Cy, p)
b .
o f(2)e€)") (ai, b}y, B).
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Theorem 2.7. Let p(z) be convex univalentinU with ¢(0) =1 andR{p(2)} = 0. If f € o satisfies
the condition

1 (z(@mz(ai,bﬂ f@y

—y)<(p(z) 0=y<1,zel),
1=v\ 2" (a;,b))f(2)

then

1 (z(@ﬂ;ﬁz(a,-,bj)lfc(z))’

—Y)<(P(Z) 0<y<1;z€el),
1=y 2" (a;,b))Fe(2)

where F, be the generalised Bernardi-Libera-Livington integral operator defined by [11]-[13].

F.(2) = C;l foz (U de (e>—1),
:z+r§2;ilcanz”. (2.5)
Proof. From (2.5), we have
2@ (ai, bj)Fe(2)) = (c+ DD, (ai,bj)f(2)— ey (ai b)) Fe(2). 2.6)

Now, let )
1 (2@ (ai,bj)F(2))
p(z) = Tt —y), @.7)

1=y 9" (@i, bj)Fe(2)

where p € 22. Then by using (2.6) in (2.7), we obtain

(c+ 12" (ai, b f(2)
(I-ypR)+c+y= ’ : (2.8)

D (@i, b Fe(2)

Differentiating both sides of (2.8) logarithmically, we get

zp'(2) 1 Z(@ﬁﬁz(di, b)) f(2))
p(z) + -

c+y+(1-yp@ 1-y @ﬁﬁz(ai,bj)f(z)
since
1 (2@ (ai,b)f(2)

1=v\ 9™ (@i, b)) f(2)

- ’}’) < (p(z)’

then applying Lemma 2.1, it follows that p < ¢. Hence the required result is obtained.
Now, by letting ¢(z) = (1+ Az)/(1+ Bz), (-1 < B < A) in Theorem 2.4, we have
Corollary 2.8. For A, =1, =0,m,beNy,a; €C,b; € C\{0,-1,-2,...}), (i

=1,...,rj=1,...,5,r<s+1;r,seNg,c>-yand0<y<1. IffeQﬂ’Zz(ai,bj;y;A,B), then
F.€ Qﬂ’f{z(ai,bl-;y; A, B), where F, given by (2.5).
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Also, by taking ¢(z) = (1 + 2)/(1 - )P, 0< B <1)in Theorem 2.4, we have

Corollary 2.9. For A, 211 20,m,beNp,a; €C,bj € C\{0,-1,-2,..}1), i =1,...,1, j=1,...,5,
r<s+1;r,seNpc>-,0<f<land0<y<]l. Iffe&”ﬁ’fz(ai,bj;y,ﬁ), then F, Ey/{ﬁ'fz(ai,
bj; v, B) where F. given by (2.5).

Corollary 2.10. ForA; = A1 =0,m,beNy,a; €C,bj € C\{0,-1,-2,..}), (i =1,...,1r, j=1,...,5,

rSs+1;r,s€N0,c>—[5,0<,BS1and0§y<1.Iff€‘€/{"’b (ai, bj;y, ), thenFcecg/{"’b

a;
ly/lZ 1v/12( v

bj; vy, B), where F. given by (2.5).
Proof. Let

f@ e (@i,bjiy,p) < zf' (@) € A (ai, by, b)
& Fe(zf'(2) € #") (@i, bjy, )
& 2(Fe(2)) € ™) (ai bjsy, B)
o Fe(2) € ‘gﬁ’i(ﬂi,bﬁ% B).

Note: Some other work related to differential operators and hypergeometric functions can be
found in [14]-[16].
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