MULTIPLE SOLUTIONS OF BOUNDARY VALUE PROBLEM

YONGJIN LI, XIAOBAO SHU AND YUANTONG XU

Abstract. By means of variational structure and Z_2 group index theory, we obtain multiple solutions of boundary value problems for second-order ordinary differential equations

 $\begin{cases} -(ru')' + qu = \lambda f(t, u), & 0 < t < 1 \\ u'(0) = 0 = \gamma u(1) + u'(1), & \text{where } \gamma \geq 0. \end{cases}$

1. Introduction

Lynn H. Erbe and Ronald M. Mathsen [6] study the following boundary value problem: $-(ru')' + qu = \lambda f(t, u), 0 < t < 1, \alpha u(0) - \beta u'(0) = 0 = \gamma u(1) + \delta u'(1)$, where $\lambda > 0$ is a parameter, $\alpha, \beta, \gamma, \delta \ge 0$ and $\alpha \delta + \alpha \gamma + \beta \gamma > 0, f \in C((0, 1) \times R, R), r \in C([0, 1], (0, \infty))$ and $q \in C([0, 1], [0, \infty))$.

In this paper we are interested in the study of boundary value problems

$$\begin{cases} -(ru')' + qu = \lambda f(t, u), & 0 < t < 1, \\ u'(0) = 0 = \gamma u(1) + u'(1), & \text{where } \gamma \ge 0. \end{cases}$$
(1.1)

By means of variational structure and Z_2 group index theory, we obtain multiple solutions of boundary value problems for (1.1).

Let *E* be a real Banach space, $S_{\rho} = \{x \in E : ||x|| = \rho\}$ be the unit sphere of *E*. A mapping *I* from *E* to *R* will be called a functional. We all know that a critical point of *I* is a point where $I'(x_0) = 0$ and a critical value of *I* is a number *c* such that $I(x_0) = c$ for some critical point x_0 . Next, we recall the definition of the Palais-Smale condition.

Definition 1.1. Let $I \in C^1(E, R)$, we say that f satisfies the Palais-Smale condition if every sequence $\{x_n\} \subset E$ such that $\{I(x_n)\}$ is bounded and $I'(x_n) \to 0 (n \to \infty)$ has a converging subsequence.

We let $K = \{x \in E : I'(x) = 0\}$, $K_c = \{x \in E : I'(x) = 0, I(x) = c\}$ and $I_c = \{x \in E : I(x) \le c\}$. \sum denote the set $\{A: A \text{ is a symmetric closed subset of } E\}$, where symmetry means that $x \in A$ implies $-x \in A$. The Z_2 index is defined as following.

Supported by grant 10471155 from NNSF of China, by grant 031608 from NSF of Guangdong, and by the Foundation of Sun Yat-sen University Advanced Research Centre.

Received November 4, 2004; revised June 22, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 34B15, 34B05, 65K10, 34B24.

Key words and phrases. Variational structure, Z_2 group index theory, boundary value problems, critical points.

Definition 1.2.([5]) A function $i: \sum \to Z_+ \bigcup \{+\infty\}$ is called Z_2 -index, if for $A \in \sum$, i(A) is defined by

- (1) If $A = \emptyset, i(A) = 0$.
- (2) If $A \neq \emptyset$, there exists a positive number m and a continuous odd map $\varphi : A \rightarrow \varphi$ $\mathbb{R}^m \setminus \{0\}$, then define i(A) to be the minimum of this kind of m. i.e

 $i(A) = \min\{m \in \mathbb{Z}_+ : \text{ there is a continuous odd map } \varphi : A \to \mathbb{R}^m \setminus \{0\}\}.$

(3) If $A \neq \emptyset$, and there is none positive integer satisfies (2), define $i(A) = +\infty$.

Denote $i_1(I) = \lim_{c \to -0} i(I_c)$ and $i_2(I) = \lim_{c \to -\infty} i(I_c)$.

We know that if $A \in \sum$ and if there exists an odd homeomorphism of *n*-sphere onto A then i(A) = n + 1; If X is a Hilbert space, and E is an n-dimensional subspace of X, and $A \in \sum$ is such that $A \cap E^{\perp} = \emptyset$ then $i(A) \leq n$. The following Lemma plays an important role in proving our main results.

Lemma 1.3.([5]) Let $I \in C^1(X, \mathbb{R}^1)$ be an even functional which satisfies the Palais-Smale condition and I(0) = 0. Then

(1) If there exists an m dimensional subspace E of X and $\rho > 0$ with

$$\sup_{x \in E \bigcap S_{\rho}} I(x) < 0, \ we \ have \ i_1(I) \ge m;$$

(2) If there exists a j dimensional subspace \widetilde{E} of X with

$$\inf_{x\in \widetilde{E}^{\perp}} I(x) > -\infty, \ we \ have \ i_2(I) \le j;$$

(3) If $m \ge j$, (1) and (2) hold, then I at least has 2(m-j) distinct critical points.

2. Main Results

Theorem 2.1. Let f, r(t) and q(t) be the function satisfying the following conditions:

(1) $f \in C([0,1] \times R^1, R^1);$ (2) $0 < m \le q(t) \le M$ for all $t \in [0, 1]$; (3) There exists $\alpha > 0$, such that $f(t, \alpha) = 0$ and f(t, u) > 0, $\forall u \in (0, \alpha)$; (4) f(t, u) is odd in u;

(5) $r \in C^1[0,1]$ and $0 \le r(t) - q(t) \le N$.

Then for any integer n, there exists λ_n , such that (1.1) has at least 2n nontrivial solutions in $C^2[0,1]$ whenever $\lambda \geq \lambda_n$.

Proof. Set $h: [0,1] \times \mathbb{R}^1 \to \mathbb{R}^1$

$$h(t,u) = \begin{cases} f(t,\alpha), & u > \alpha, \\ f(t,u), & |u| \le \alpha, \\ f(t,-\alpha), & u < -\alpha \end{cases}$$

Let us consider the functional defined on $H_0^1(0,1)$

$$I(u) = \int_0^1 \left[\frac{1}{2}r(t)|u'(t)|^2 + \frac{1}{2}q(t)|u(t)|^2 - \lambda G(t,u)\right]dt + \frac{r(1)}{2}\gamma u^2(1), \ u \in H_0^1(0,1), \ (2.1)$$

where $G(t,u)=\int_0^u h(t,v)dv.$ The norm $\|$. $\|$ and inner product (,) can be defined respectively by

$$||u|| = \left(\int_0^1 (|u'(t)|^2 + |u(t)|^2) dt\right)^{\frac{1}{2}}; \quad (u,v) = \int_0^1 (u'(t)v'(t) + u(t)v(t)) dt.$$

Thus $H_0^1(0,1) = W_0^{1,2}(0,1)$ will be a Hilbert space. Let $E = H_0^1(0,1)$, since h(t,u) is an odd continuous map in u, we know that $I \in (T,T)$. $C^1(E, R)$ is even in u and I(0) = 0.

First, we will show that the critical points of the I(u) are the solutions of (1.1) in $C^{2}[0,1].$

By

$$I(u+sv) = I(u) + s \left\{ \int_0^1 [r(t)u'(t)v'(t) + q(t)u(t)v(t) - \lambda h(t, u+\theta(t)sv)v(t)]dt + r(1)\gamma u(1)v(1) \right\} + \frac{s^2}{2} \left\{ \int_0^1 (r(t)|v'(t)|^2 + q(t)|v(t)|^2)dt + r(1)\gamma v^2(1) \right\} \quad \forall u, v \in E, 0 < \theta < 1.$$
(2.2)

We have

$$(I'(u), v) = \int_0^1 [r(t)u'(t)v'(t) + q(t)u(t)v(t) - \lambda h(t, u(t))v] dt + r(1)\gamma u(1)v(1), \ \forall u, v \in E. \ (2.3)$$

By I'(u) = 0, one gets

$$\int_{0}^{1} [r(t)u'(t)v'(t) + q(t)u(t)v(t) - \lambda h(t, u(t))v]dt + r(1)\gamma u(1)v(1) = 0$$
(2.4)

for all $v \in E$.

On the other hand

$$\int_{0}^{1} r(t)u'(t)v'(t)dt + \int_{0}^{1} \frac{d}{dt}(r(t)\frac{du}{dt})vdt$$

=
$$\int_{0}^{1} r(t)u'(t)v'(t)dt + u'(t)v(t)r(t)|_{0}^{1} - \int_{0}^{1} r(t)u'(t)dv(t)$$

=
$$r(1)v(1)u'(1) - r(0)u'(0)v(0).$$
 (2.5)

So, it is easy to see that

$$\int_0^1 v \left[\frac{d}{dt} (r(t) \frac{du}{dt}) - q(t)u(t) + \lambda h(t, u(t)) \right] dt$$

= $r(1)v(1)(u'(1) + \gamma u(1)) - r(0)u'(0)v(0) = 0.$

Hence we obtain

$$-(ru')' + qu = \lambda h(t, u)$$

Thus the critical points of the I(u) are the solutions of (1.1) in $C^{2}[0, 1]$.

Next, we show that I(u) is bounded from below. Since h(t, u(t)) = 0 whenever $|u(t)| \ge \alpha$, we have

$$\int_0^1 G(t, u(t)) = \int_0^1 \int_0^{u(t)} h(t, v) dv dt \le \int_0^1 \int_{-\alpha}^{\alpha} |h(t, v)| dv dt$$

Let $c = \int_{-\alpha}^{\alpha} |h(t, v)| dv dt$, then

$$I(u) = \int_0^1 \left[\frac{1}{2}q(t)(|u'(t)|^2 + |u(t)|^2) + \frac{1}{2}(r(t) - q(t))|u'(t)|^2 - \lambda G(t, u)\right]dt + \frac{r(1)}{2}\gamma u^2(1).$$

Since $0 < m \le q(t) \le M$ and $0 \le r(t) - q(t) \le N$ and $\gamma \ge 0$, we have

$$I(u) \ge \frac{m}{2} \left[\int_0^1 (|u'(t)|^2 + |u(t)|^2) dt \right] - \int_0^1 \lambda G(t, u(t)) dt$$

Thus

$$I(u) \ge \frac{m}{2} \|u\|^2 - \lambda c, \quad \forall u \in E.$$
(2.6)

Hence I(u) is bounded from below. Thus $i_2(I) = 0$.

Third, we will verify that I(u) satisfies the Palais-Smale condition. Suppose that $u_n \subset E$ with $c_1 \leq I(u_n) \leq c_2$ and $I'(u_n) \to 0$ as $n \to \infty$. Then we have

$$\sup\left\{\int_{0}^{1} [r(t)u_{n}'(t)v'(t) + q(t)u_{n}(t)v(t) - \lambda h(t, u_{n})v(t) + \gamma r(1)u_{n}(1)v(1)]dt\right\} \to 0, (2.7)$$

as $n \to \infty$, for all $u, v \in E$, ||v|| = 1.

By

$$I(u) \geq \frac{m}{2} \|u\|^2 - \lambda c$$

we have

$$||u_n|| \leq c_3$$
 for some c_3

Thus $||u_n||$ is bounded in $H_0^1(0,1)$. Since $H_0^1(0,1)$ is reflexive, $\{u_n\}$ has a weak converging subsequence $\{u_{n_k}\}$. By [8], we know the convergence is uniform in C([0,1], R),

152

By (2.7) and standard arguments, we have $\{u_{n_k}\}$ is a converging sequence in $H_0^1(0, 1)$, hence I(u) satisfies the Palais-Smale condition.

Fourth, we show that Theorem 2.1 holds by Lemma 1.3. Denote $\beta_k(t) = \frac{\sqrt{2}}{k\pi} \cos k\pi t$, $k = 1, 2, 3, \dots, n, \dots$ Then

$$\int_{0}^{1} |\beta_{k}(t)|^{2} dt = \frac{1}{k^{2}\pi^{2}}$$
$$\int_{0}^{1} |\beta_{k}'(t)|^{2} dt = 1$$

Consider the n-dimensional subspace

$$E_n = span\{\beta_1(t), \beta_2(t), \dots, \beta_n(t)\}$$

It is easy to see that E_n is the subset of X symmetric with respect to the origin. For $\rho > 0$, we have

$$E_n \bigcap S_{\rho} = \left\{ \sum_{k=0}^n b_k \beta_k : \sum_{k=0}^n b_k^2 (1 + \frac{1}{k^2 \pi^2}) = \rho^2 \right\}$$

Let ρ with $0 < \rho < \alpha$, for any $u \in E_n \bigcap S_{\rho}$, we have

$$\max_{0 \le t \le 1} u(t) \le \sum_{k=0}^{n} \frac{\sqrt{2}}{k\pi} |b_k| \le \left(\sum_{k=0}^{n} b_k^2 (1 + \frac{1}{k^2 \pi^2})\right)^{\frac{1}{2}} = ||u|| = \rho < \alpha$$

and

$$\int_0^1 (r(t) - q(t)) |u(t)|^2 dt \le N \int_0^1 |u(t)|^2 dt \le N ||u||^2 < N\rho^2$$

By

$$\int_0^1 G(t, u) dt > 0, \quad \forall u \in E_n \bigcap S_\rho$$

and S_{ρ} is a compact subset in E_n . Let $Q_n = \inf_{u \in E_n \bigcap S_{\rho}} \int_0^1 G(t, u) dt$, then $Q_n > 0$. Choose $\lambda_n = \frac{1}{2}(3M + N + r(1)\gamma)Q_n^{-1}\rho^2$, it is easy to see that

$$\begin{split} I(u) &= \int_0^1 [\frac{1}{2}q(t)(|u'(t)|^2 + |u(t)|^2) + \frac{1}{2}(r(t) - q(t))|u'(t)|^2 - \lambda G(t, u)]dt + \frac{r(1)}{2}\gamma u^2(1) \\ &< (\frac{M}{2} + \frac{N}{2} + \frac{r(1)}{2}\gamma)\rho^2 - \lambda Q_n \\ &= \frac{1}{2}(M + N + r(1)\gamma)\rho^2 - \frac{1}{2}(3M + N + r(1)\gamma)Q_n^{-1}\rho^2 Q_n \\ &= -M\rho^2 < 0. \end{split}$$

Whenever $\lambda \geq \lambda_n$ and $u \in E_n \bigcap S_{\rho}$.

Thus $i_1(I) \ge n$ and $i_2(I) = 0$, by Lemma 1.3, I at least has 2(n-0) distinct critical points. Hence (1.1) has at least 2n nontrivial solutions in $C^2[0,1]$ Whenever $\lambda \ge \lambda_n$.

References

- [1] I. Addou and Shin-Hwa Wang, Exact multiplicity results for a p-Laplacian positone problem with concave-convex-concave nonlinearities, **2004**(2004), 1-24.
- [2] R. P. Agarwal and D. O'Regan, Existence theory for single and multiple solutions to singular positone boundary value problems, J. Differential Equations 175(2001), 393-414.
- [3] G. Anello, A multiplicity theorem for critical points of functionals on reflexive Banach spaces, Arch. Math. 82(2004), 172-179.
- [4] L. E. Bobisud, J. E. Calvert and W. D. Royalty, Some existence results for singular boundary value problems, Differential Integral Equations 6 (1993), 553-571.
- [5] Chang Kung Ching, Critical Point Theory and Its Applications(Chinese), Shanghai Kexue Jishu Chubanshe, Shanghai, 1986.
- [6] L. H. Erbe and R. M. Mathsen, Positive solutions for singular nonlinear boundary value problems, Nonlinear Anal. Ser. A: Theory Methods 46 (2001), 979-986.
- [7] Guo Da Jun, V. Lakshmikantham, Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces, J. Math. Anal. Appl. 129 (1988), 211-222.
- [8] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, 74. Springer-Verlag, New York, 1989.
- [9] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, 65. by the American Mathematical Society, Providence, RI, 1986.
- [10] Xu Yuan Tong and Guo Zhi-Ming, Applications of a Z_p index theory to periodic solutions for a class of functional differential equations, J. Math. Anal. Appl. 257 (2001), 189-205.
- [11] Xu Yuan Tong, Subharmonic solutions for convex nonautonomous Hamiltonian systems, Nonlinear Anal. 28 (1997), 1359-1371.

Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China. E-mail: stslyj@zsu.edu.cn

Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China.

E-mail: sxb0221@163.com

Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China. E-mail: xyt@zsu.edu.cn