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MULTIPLE SOLUTIONS OF BOUNDARY VALUE PROBLEM

YONGJIN LI, XIAOBAO SHU AND YUANTONG XU

Abstract. By means of variational structure and Z2 group index theory, we obtain multiple

solutions of boundary value problems for second-order ordinary differential equations

(
−(ru

′)′ + qu = λf(t, u), 0 < t < 1

u
′(0) = 0 = γu(1) + u

′(1), where γ ≥ 0.

1. Introduction

Lynn H. Erbe and Ronald M. Mathsen [6] study the following boundary value prob-
lem: −(ru′)′ + qu = λf(t, u), 0 < t < 1, αu(0) − βu′(0) = 0 = γu(1) + δu′(1), where
λ > 0 is a parameter, α, β, γ, δ ≥ 0 and αδ + αγ + βγ > 0, f ∈ C((0, 1) × R, R), r ∈
C([0, 1], (0,∞)) and q ∈ C([0, 1], [0,∞)).

In this paper we are interested in the study of boundary value problems
{−(ru′)′ + qu = λf(t, u), 0 < t < 1,

u′(0) = 0 = γu(1) + u′(1), where γ ≥ 0.
(1.1)

By means of variational structure and Z2 group index theory, we obtain multiple
solutions of boundary value problems for (1.1).

Let E be a real Banach space, Sρ = {x ∈ E : ‖x‖ = ρ} be the unit sphere of E. A
mapping I from E to R will be called a functional. We all know that a critical point of
I is a point where I ′(x0) = 0 and a critical value of I is a number c such that I(x0) = c

for some critical point x0. Next, we recall the definition of the Palais-Smale condition.

Definition 1.1. Let I ∈ C1(E, R), we say that f satisfies the Palais-Smale condition
if every sequence {xn} ⊂ E such that {I(xn)} is bounded and I ′(xn) → 0(n → ∞) has
a converging subsequence.

We let K = {x ∈ E : I ′(x) = 0}, Kc = {x ∈ E : I ′(x) = 0, I(x) = c} and
Ic = {x ∈ E : I(x) ≤ c}. ∑

denote the set { A: A is a symmetric closed subset of E},
where symmetry means that x ∈ A implies −x ∈ A. The Z2 index is defined as following.
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Definition 1.2.([5]) A function i :
∑ → Z+

⋃ {+∞} is called Z2-index, if for A ∈ ∑
,

i(A) is defined by

(1) If A = Ø, i(A) = 0.
(2) If A 6= Ø, there exists a positive number m and a continuous odd map ϕ : A →

Rm \ {0}, then define i(A) to be the minimum of this kind of m. i.e

i(A) = min{m ∈ Z+ : there is a continuous odd map ϕ : A → Rm\{0}}.

(3) If A 6= Ø, and there is none positive integer satisfies (2), define i(A) = +∞.

Denote i1(I) = lim
c→−0

i(Ic) and i2(I) = lim
c→−∞

i(Ic).

We know that if A ∈ ∑
and if there exists an odd homeomorphism of n-sphere onto

A then i(A) = n + 1; If X is a Hilbert space, and E is an n−dimensional subspace of
X , and A ∈ ∑

is such that A ∩ E⊥ = Ø then i(A) ≤ n. The following Lemma plays an
important role in proving our main results.

Lemma 1.3.([5]) Let I ∈ C1(X, R1) be an even functional which satisfies the Palais-

Smale condition and I(0) = 0. Then

(1) If there exists an m dimensional subspace E of X and ρ > 0 with

sup
x∈E

T
Sρ

I(x) < 0, we have i1(I) ≥ m;

(2) If there exists a j dimensional subspace Ẽ of X with

inf
x∈ eE⊥

I(x) > −∞, we have i2(I) ≤ j;

(3) If m ≥ j, (1) and (2) hold, then I at least has 2(m − j) distinct critical points.

2. Main Results

Theorem 2.1. Let f , r(t) and q(t) be the function satisfying the following condi-

tions:

(1) f ∈ C([0, 1] × R1, R1);
(2) 0 < m ≤ q(t) ≤ M for all t ∈ [0, 1];

(3) There exists α > 0, such that f(t, α) = 0 and f(t, u) > 0, ∀u ∈ (0, α);
(4) f(t, u) is odd in u;

(5) r ∈ C1[0, 1] and 0 ≤ r(t) − q(t) ≤ N .

Then for any integer n, there exists λn, such that (1.1) has at least 2n nontrivial
solutions in C2[0, 1] whenever λ ≥ λn.
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Proof. Set h : [0, 1] × R1 → R1

h(t, u) =





f(t, α), u > α,

f(t, u), |u| ≤ α,

f(t,−α), u < −α

Let us consider the functional defined on H1
0 (0, 1)

I(u) =

∫ 1

0

[
1

2
r(t)|u′(t)|2 +

1

2
q(t)|u(t)|2 − λG(t, u)]dt +

r(1)

2
γu2(1), u ∈ H1

0 (0, 1), (2.1)

where G(t, u) =
∫ u

0
h(t, v)dv.

The norm ‖ . ‖ and inner product ( , ) can be defined respectively by

‖u‖ =
(∫ 1

0

(|u′(t)|2 + |u(t)|2)dt
) 1

2

; (u, v) =

∫ 1

0

(u′(t)v′(t) + u(t)v(t))dt.

Thus H1
0 (0, 1) = W

1,2
0 (0, 1) will be a Hilbert space.

Let E = H1
0 (0, 1), since h(t, u) is an odd continuous map in u, we know that I ∈

C1(E, R) is even in u and I(0) = 0.

First, we will show that the critical points of the I(u) are the solutions of (1.1) in
C2[0, 1].

By

I(u+sv)

= I(u)+s
{∫ 1

0

[r(t)u′(t)v′(t)+q(t)u(t)v(t)−λh(t, u+θ(t)sv)v(t)]dt+r(1)γu(1)v(1)
}

+
s2

2

{ ∫ 1

0

(r(t)|v′(t)|2 + q(t)|v(t)|2)dt + r(1)γv2(1)
}

∀u, v ∈ E, 0 < θ < 1. (2.2)

We have

(I ′(u), v)=

∫ 1

0

[r(t)u′(t)v′(t)+q(t)u(t)v(t)−λh(t, u(t))v]dt+r(1)γu(1)v(1), ∀u, v∈E. (2.3)

By I ′(u) = 0, one gets
∫ 1

0

[r(t)u′(t)v′(t) + q(t)u(t)v(t) − λh(t, u(t))v]dt + r(1)γu(1)v(1) = 0 (2.4)

for all v ∈ E.
On the other hand

∫ 1

0

r(t)u′(t)v′(t)dt +

∫ 1

0

d

dt
(r(t)

du

dt
)vdt

=

∫ 1

0

r(t)u′(t)v′(t)dt + u′(t)v(t)r(t)|10 −
∫ 1

0

r(t)u′(t)dv(t)

= r(1)v(1)u′(1) − r(0)u′(0)v(0). (2.5)
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So, it is easy to see that

∫ 1

0

v[
d

dt
(r(t)

du

dt
) − q(t)u(t) + λh(t, u(t))]dt

= r(1)v(1)(u′(1) + γu(1)) − r(0)u′(0)v(0) = 0.

Hence we obtain

−(ru′)′ + qu = λh(t, u)

Thus the critical points of the I(u) are the solutions of (1.1) in C2[0, 1].

Next, we show that I(u) is bounded from below.

Since h(t, u(t)) = 0 whenever |u(t)| ≥ α, we have

∫ 1

0

G(t, u(t)) =

∫ 1

0

∫ u(t)

0

h(t, v)dvdt ≤
∫ 1

0

∫ α

−α

|h(t, v)|dvdt

Let c =
∫ α

−α
|h(t, v)|dvdt, then

I(u) =

∫ 1

0

[
1

2
q(t)(|u′(t)|2 + |u(t)|2) +

1

2
(r(t) − q(t))|u′(t)|2 − λG(t, u)]dt +

r(1)

2
γu2(1).

Since 0 < m ≤ q(t) ≤ M and 0 ≤ r(t) − q(t) ≤ N and γ ≥ 0, we have

I(u) ≥ m

2
[

∫ 1

0

(|u′(t)|2 + |u(t)|2)dt] −
∫ 1

0

λG(t, u(t))dt

Thus
I(u) ≥ m

2
‖u‖2 − λc, ∀u ∈ E. (2.6)

Hence I(u) is bounded from below. Thus i2(I) = 0.

Third, we will verify that I(u) satisfies the Palais-Smale condition.

Suppose that un ⊂ E with c1 ≤ I(un) ≤ c2 and I ′(un) → 0 as n → ∞. Then we have

sup
{∫ 1

0

[r(t)u′
n(t)v′(t) + q(t)un(t)v(t) − λh(t, un)v(t) + γr(1)un(1)v(1)]dt

}
→ 0, (2.7)

as n → ∞, for all u, v ∈ E, ‖v‖ = 1.

By

I(u) ≥ m

2
‖u‖2 − λc

we have
‖un‖ ≤ c3 for some c3.

Thus ‖un‖ is bounded in H1
0 (0, 1). Since H1

0 (0, 1) is reflexive, {un} has a weak

converging subsequence {unk
}. By [8], we know the convergence is uniform in C([0, 1], R),
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By (2.7) and standard arguments, we have {unk
} is a converging sequence in H1

0 (0, 1),

hence I(u) satisfies the Palais-Smale condition.

Fourth, we show that Theorem 2.1 holds by Lemma 1.3.

Denote βk(t) =
√

2
kπ

cos kπt, k = 1, 2, 3, . . . , n, . . .. Then

∫ 1

0

|βk(t)|2dt =
1

k2π2
,

∫ 1

0

|β′
k(t)|2dt = 1

Consider the n-dimensional subspace

En = span{β1(t), β2(t), . . . , βn(t)}

It is easy to see that En is the subset of X symmetric with respect to the origin. For

ρ > 0, we have

En

⋂
Sρ =

{ n∑

k=0

bkβk :

n∑

k=0

b2
k(1 +

1

k2π2
) = ρ2

}

Let ρ with 0 < ρ < α, for any u ∈ En

⋂
Sρ, we have

max
0≤t≤1

u(t) ≤
n∑

k=0

√
2

kπ
|bk| ≤

( n∑

k=0

b2
k(1 +

1

k2π2
)
) 1

2

= ‖u‖ = ρ < α

and

∫ 1

0

(r(t) − q(t))|u(t)|2dt ≤ N

∫ 1

0

|u(t)|2dt ≤ N‖u‖2 < Nρ2

By ∫ 1

0

G(t, u)dt > 0, ∀u ∈ En

⋂
Sρ

and Sρ is a compact subset in En. Let Qn = inf
u∈En

T
Sρ

∫ 1

0 G(t, u)dt, then Qn > 0. Choose

λn = 1
2 (3M + N + r(1)γ)Q−1

n ρ2, it is easy to see that

I(u) =

∫ 1

0

[
1

2
q(t)(|u′(t)|2 + |u(t)|2) +

1

2
(r(t) − q(t))|u′(t)|2 − λG(t, u)]dt +

r(1)

2
γu2(1)

< (
M

2
+

N

2
+

r(1)

2
γ)ρ2 − λQn

=
1

2
(M + N + r(1)γ)ρ2 − 1

2
(3M + N + r(1)γ)Q−1

n ρ2Qn

= −Mρ2 < 0.
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Whenever λ ≥ λn and u ∈ En

⋂
Sρ.

Thus i1(I) ≥ n and i2(I) = 0, by Lemma 1.3, I at least has 2(n − 0) distinct critical

points. Hence (1.1) has at least 2n nontrivial solutions in C2[0, 1] Whenever λ ≥ λn.
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