MULTIPLE SOLUTIONS OF BOUNDARY VALUE PROBLEM

YONGJIN LI, XIAOBAO SHU AND YUANTONG XU

Abstract. By means of variational structure and Z_{2} group index theory, we obtain multiple
solutions of boundary value problems for second-order ordinary differential equations solutions of boundary value problems for second-order ordinary differential equations

$$
\begin{cases}-\left(r u^{\prime}\right)^{\prime}+q u=\lambda f(t, u), & 0<t<1 \\ u^{\prime}(0)=0=\gamma u(1)+u^{\prime}(1), & \text { where } \gamma \geq 0\end{cases}
$$

1. Introduction

Lynn H. Erbe and Ronald M. Mathsen [6] study the following boundary value problem: $-\left(r u^{\prime}\right)^{\prime}+q u=\lambda f(t, u), 0<t<1, \alpha u(0)-\beta u^{\prime}(0)=0=\gamma u(1)+\delta u^{\prime}(1)$, where $\lambda>0$ is a parameter, $\alpha, \beta, \gamma, \delta \geq 0$ and $\alpha \delta+\alpha \gamma+\beta \gamma>0, f \in C((0,1) \times R, R), r \in$ $C([0,1],(0, \infty))$ and $q \in C([0,1],[0, \infty))$.

In this paper we are interested in the study of boundary value problems

$$
\begin{cases}-\left(r u^{\prime}\right)^{\prime}+q u=\lambda f(t, u), & 0<t<1 \tag{1.1}\\ u^{\prime}(0)=0=\gamma u(1)+u^{\prime}(1), & \text { where } \gamma \geq 0\end{cases}
$$

By means of variational structure and Z_{2} group index theory, we obtain multiple solutions of boundary value problems for (1.1).

Let E be a real Banach space, $S_{\rho}=\{x \in E:\|x\|=\rho\}$ be the unit sphere of E. A mapping I from E to R will be called a functional. We all know that a critical point of I is a point where $I^{\prime}\left(x_{0}\right)=0$ and a critical value of I is a number c such that $I\left(x_{0}\right)=c$ for some critical point x_{0}. Next, we recall the definition of the Palais-Smale condition.

Definition 1.1. Let $I \in C^{1}(E, R)$, we say that f satisfies the Palais-Smale condition if every sequence $\left\{x_{n}\right\} \subset E$ such that $\left\{I\left(x_{n}\right)\right\}$ is bounded and $I^{\prime}\left(x_{n}\right) \rightarrow 0(n \rightarrow \infty)$ has a converging subsequence.

We let $K=\left\{x \in E: I^{\prime}(x)=0\right\}, K_{c}=\left\{x \in E: I^{\prime}(x)=0, I(x)=c\right\}$ and $I_{c}=\{x \in E: I(x) \leq c\}$. \sum denote the set $\{\mathrm{A}: \mathrm{A}$ is a symmetric closed subset of $E\}$, where symmetry means that $x \in A$ implies $-x \in A$. The Z_{2} index is defined as following.
Received November 4, 2004; revised June 22, 2005.
2000 Mathematics Subject Classification. 34B15, 34B05, 65K10, 34B24.
Key words and phrases. Variational structure, Z_{2} group index theory, boundary value problems, critical points.
Supported by grant 10471155 from NNSF of China, by grant 031608 from NSF of Guangdong, and by the Foundation of Sun Yat-sen University Advanced Research Centre.

Definition 1.2.([5]) A function $i: \sum \rightarrow Z_{+} \bigcup\{+\infty\}$ is called Z_{2}-index, if for $A \in \sum$, $i(A)$ is defined by
(1) If $A=\emptyset, i(A)=0$.
(2) If $A \neq \varnothing$, there exists a positive number m and a continuous odd map $\varphi: A \rightarrow$ $R^{m} \backslash\{0\}$, then define $i(A)$ to be the minimum of this kind of m. i.e

$$
i(A)=\min \left\{m \in Z_{+}: \text {there is a continuous odd } \operatorname{map} \varphi: A \rightarrow R^{m} \backslash\{0\}\right\}
$$

(3) If $A \neq \emptyset$, and there is none positive integer satisfies (2), define $i(A)=+\infty$.

Denote $i_{1}(I)=\lim _{c \rightarrow-0} i\left(I_{c}\right)$ and $i_{2}(I)=\lim _{c \rightarrow-\infty} i\left(I_{c}\right)$.
We know that if $A \in \sum$ and if there exists an odd homeomorphism of n-sphere onto A then $i(A)=n+1$; If X is a Hilbert space, and E is an n-dimensional subspace of X, and $A \in \sum$ is such that $A \cap E^{\perp}=\varnothing$ then $i(A) \leq n$. The following Lemma plays an important role in proving our main results.

Lemma 1.3.([5]) Let $I \in C^{1}\left(X, R^{1}\right)$ be an even functional which satisfies the PalaisSmale condition and $I(0)=0$. Then
(1) If there exists an m dimensional subspace E of X and $\rho>0$ with

$$
\sup _{x \in E \cap S_{\rho}} I(x)<0, \text { we have } i_{1}(I) \geq m
$$

(2) If there exists a dimensional subspace \widetilde{E} of X with

$$
\inf _{x \in \widetilde{E}^{\perp}} I(x)>-\infty, \text { we have } i_{2}(I) \leq j ;
$$

(3) If $m \geq j$, (1) and (2) hold, then I at least has $2(m-j)$ distinct critical points.

2. Main Results

Theorem 2.1. Let $f, r(t)$ and $q(t)$ be the function satisfying the following conditions:
(1) $f \in C\left([0,1] \times R^{1}, R^{1}\right)$;
(2) $0<m \leq q(t) \leq M$ for all $t \in[0,1]$;
(3) There exists $\alpha>0$, such that $f(t, \alpha)=0$ and $f(t, u)>0, \forall u \in(0, \alpha)$;
(4) $f(t, u)$ is odd in u;
(5) $r \in C^{1}[0,1]$ and $0 \leq r(t)-q(t) \leq N$.

Then for any integer n, there exists λ_{n}, such that (1.1) has at least $2 n$ nontrivial solutions in $C^{2}[0,1]$ whenever $\lambda \geq \lambda_{n}$.

Proof. Set $h:[0,1] \times R^{1} \rightarrow R^{1}$

$$
h(t, u)=\left\{\begin{array}{lr}
f(t, \alpha), & u>\alpha \\
f(t, u), & |u| \leq \alpha \\
f(t,-\alpha), & u<-\alpha
\end{array}\right.
$$

Let us consider the functional defined on $H_{0}^{1}(0,1)$

$$
\begin{equation*}
I(u)=\int_{0}^{1}\left[\frac{1}{2} r(t)\left|u^{\prime}(t)\right|^{2}+\frac{1}{2} q(t)|u(t)|^{2}-\lambda G(t, u)\right] d t+\frac{r(1)}{2} \gamma u^{2}(1), u \in H_{0}^{1}(0,1) \tag{2.1}
\end{equation*}
$$

where $G(t, u)=\int_{0}^{u} h(t, v) d v$.
The norm $\|$.$\| and inner product (,) can be defined respectively by$

$$
\|u\|=\left(\int_{0}^{1}\left(\left|u^{\prime}(t)\right|^{2}+|u(t)|^{2}\right) d t\right)^{\frac{1}{2}} ; \quad(u, v)=\int_{0}^{1}\left(u^{\prime}(t) v^{\prime}(t)+u(t) v(t)\right) d t
$$

Thus $H_{0}^{1}(0,1)=W_{0}^{1,2}(0,1)$ will be a Hilbert space.
Let $E=H_{0}^{1}(0,1)$, since $h(t, u)$ is an odd continuous map in u, we know that $I \in$ $C^{1}(E, R)$ is even in u and $I(0)=0$.

First, we will show that the critical points of the $I(u)$ are the solutions of (1.1) in $C^{2}[0,1]$.

By

$$
\begin{align*}
& I(u+s v) \\
= & I(u)+s\left\{\int_{0}^{1}\left[r(t) u^{\prime}(t) v^{\prime}(t)+q(t) u(t) v(t)-\lambda h(t, u+\theta(t) s v) v(t)\right] d t+r(1) \gamma u(1) v(1)\right\} \\
& +\frac{s^{2}}{2}\left\{\int_{0}^{1}\left(r(t)\left|v^{\prime}(t)\right|^{2}+q(t)|v(t)|^{2}\right) d t+r(1) \gamma v^{2}(1)\right\} \quad \forall u, v \in E, 0<\theta<1 \tag{2.2}
\end{align*}
$$

We have

$$
\begin{equation*}
\left(I^{\prime}(u), v\right)=\int_{0}^{1}\left[r(t) u^{\prime}(t) v^{\prime}(t)+q(t) u(t) v(t)-\lambda h(t, u(t)) v\right] d t+r(1) \gamma u(1) v(1), \forall u, v \in E \tag{2.3}
\end{equation*}
$$

By $I^{\prime}(u)=0$, one gets

$$
\begin{equation*}
\int_{0}^{1}\left[r(t) u^{\prime}(t) v^{\prime}(t)+q(t) u(t) v(t)-\lambda h(t, u(t)) v\right] d t+r(1) \gamma u(1) v(1)=0 \tag{2.4}
\end{equation*}
$$

for all $v \in E$.
On the other hand

$$
\begin{align*}
& \int_{0}^{1} r(t) u^{\prime}(t) v^{\prime}(t) d t+\int_{0}^{1} \frac{d}{d t}\left(r(t) \frac{d u}{d t}\right) v d t \\
= & \int_{0}^{1} r(t) u^{\prime}(t) v^{\prime}(t) d t+\left.u^{\prime}(t) v(t) r(t)\right|_{0} ^{1}-\int_{0}^{1} r(t) u^{\prime}(t) d v(t) \\
= & r(1) v(1) u^{\prime}(1)-r(0) u^{\prime}(0) v(0) . \tag{2.5}
\end{align*}
$$

So, it is easy to see that

$$
\begin{aligned}
& \int_{0}^{1} v\left[\frac{d}{d t}\left(r(t) \frac{d u}{d t}\right)-q(t) u(t)+\lambda h(t, u(t))\right] d t \\
= & r(1) v(1)\left(u^{\prime}(1)+\gamma u(1)\right)-r(0) u^{\prime}(0) v(0)=0 .
\end{aligned}
$$

Hence we obtain

$$
-\left(r u^{\prime}\right)^{\prime}+q u=\lambda h(t, u)
$$

Thus the critical points of the $I(u)$ are the solutions of (1.1) in $C^{2}[0,1]$.
Next, we show that $I(u)$ is bounded from below.
Since $h(t, u(t))=0$ whenever $|u(t)| \geq \alpha$, we have

$$
\int_{0}^{1} G(t, u(t))=\int_{0}^{1} \int_{0}^{u(t)} h(t, v) d v d t \leq \int_{0}^{1} \int_{-\alpha}^{\alpha}|h(t, v)| d v d t
$$

Let $\mathrm{c}=\int_{-\alpha}^{\alpha}|h(t, v)| d v d t$, then

$$
I(u)=\int_{0}^{1}\left[\frac{1}{2} q(t)\left(\left|u^{\prime}(t)\right|^{2}+|u(t)|^{2}\right)+\frac{1}{2}(r(t)-q(t))\left|u^{\prime}(t)\right|^{2}-\lambda G(t, u)\right] d t+\frac{r(1)}{2} \gamma u^{2}(1) .
$$

Since $0<m \leq q(t) \leq M$ and $0 \leq r(t)-q(t) \leq N$ and $\gamma \geq 0$, we have

$$
I(u) \geq \frac{m}{2}\left[\int_{0}^{1}\left(\left|u^{\prime}(t)\right|^{2}+|u(t)|^{2}\right) d t\right]-\int_{0}^{1} \lambda G(t, u(t)) d t
$$

Thus

$$
\begin{equation*}
I(u) \geq \frac{m}{2}\|u\|^{2}-\lambda c, \quad \forall u \in E \tag{2.6}
\end{equation*}
$$

Hence $I(u)$ is bounded from below. Thus $i_{2}(I)=0$.
Third, we will verify that $I(u)$ satisfies the Palais-Smale condition.
Suppose that $u_{n} \subset E$ with $c_{1} \leq I\left(u_{n}\right) \leq c_{2}$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then we have

$$
\begin{equation*}
\sup \left\{\int_{0}^{1}\left[r(t) u_{n}^{\prime}(t) v^{\prime}(t)+q(t) u_{n}(t) v(t)-\lambda h\left(t, u_{n}\right) v(t)+\gamma r(1) u_{n}(1) v(1)\right] d t\right\} \rightarrow 0 \tag{2.7}
\end{equation*}
$$

as $n \rightarrow \infty$, for all $u, v \in E,\|v\|=1$.
By

$$
I(u) \geq \frac{m}{2}\|u\|^{2}-\lambda c
$$

we have

$$
\left\|u_{n}\right\| \leq c_{3} \text { for some } c_{3}
$$

Thus $\left\|u_{n}\right\|$ is bounded in $H_{0}^{1}(0,1)$. Since $H_{0}^{1}(0,1)$ is reflexive, $\left\{u_{n}\right\}$ has a weak converging subsequence $\left\{u_{n_{k}}\right\}$. By [8], we know the convergence is uniform in $C([0,1], R)$,

By (2.7) and standard arguments, we have $\left\{u_{n_{k}}\right\}$ is a converging sequence in $H_{0}^{1}(0,1)$, hence $I(u)$ satisfies the Palais-Smale condition.

Fourth, we show that Theorem 2.1 holds by Lemma 1.3.
Denote $\beta_{k}(t)=\frac{\sqrt{2}}{k \pi} \cos k \pi t, k=1,2,3, \ldots, n, \ldots$. Then

$$
\begin{aligned}
& \int_{0}^{1}\left|\beta_{k}(t)\right|^{2} d t=\frac{1}{k^{2} \pi^{2}} \\
& \int_{0}^{1}\left|\beta_{k}^{\prime}(t)\right|^{2} d t=1
\end{aligned}
$$

Consider the n-dimensional subspace

$$
E_{n}=\operatorname{span}\left\{\beta_{1}(t), \beta_{2}(t), \ldots, \beta_{n}(t)\right\}
$$

It is easy to see that E_{n} is the subset of X symmetric with respect to the origin. For $\rho>0$, we have

$$
E_{n} \bigcap S_{\rho}=\left\{\sum_{k=0}^{n} b_{k} \beta_{k}: \sum_{k=0}^{n} b_{k}^{2}\left(1+\frac{1}{k^{2} \pi^{2}}\right)=\rho^{2}\right\}
$$

Let ρ with $0<\rho<\alpha$, for any $u \in E_{n} \bigcap S_{\rho}$, we have

$$
\max _{0 \leq t \leq 1} u(t) \leq \sum_{k=0}^{n} \frac{\sqrt{2}}{k \pi}\left|b_{k}\right| \leq\left(\sum_{k=0}^{n} b_{k}^{2}\left(1+\frac{1}{k^{2} \pi^{2}}\right)\right)^{\frac{1}{2}}=\|u\|=\rho<\alpha
$$

and

$$
\int_{0}^{1}(r(t)-q(t))|u(t)|^{2} d t \leq N \int_{0}^{1}|u(t)|^{2} d t \leq N\|u\|^{2}<N \rho^{2}
$$

By

$$
\int_{0}^{1} G(t, u) d t>0, \quad \forall u \in E_{n} \bigcap S_{\rho}
$$

and S_{ρ} is a compact subset in E_{n}. Let $Q_{n}=\inf _{u \in E_{n} \cap S_{\rho}} \int_{0}^{1} G(t, u) d t$, then $Q_{n}>0$. Choose $\lambda_{n}=\frac{1}{2}(3 M+N+r(1) \gamma) Q_{n}^{-1} \rho^{2}$, it is easy to see that

$$
\begin{aligned}
I(u) & =\int_{0}^{1}\left[\frac{1}{2} q(t)\left(\left|u^{\prime}(t)\right|^{2}+|u(t)|^{2}\right)+\frac{1}{2}(r(t)-q(t))\left|u^{\prime}(t)\right|^{2}-\lambda G(t, u)\right] d t+\frac{r(1)}{2} \gamma u^{2}(1) \\
& <\left(\frac{M}{2}+\frac{N}{2}+\frac{r(1)}{2} \gamma\right) \rho^{2}-\lambda Q_{n} \\
& =\frac{1}{2}(M+N+r(1) \gamma) \rho^{2}-\frac{1}{2}(3 M+N+r(1) \gamma) Q_{n}^{-1} \rho^{2} Q_{n} \\
& =-M \rho^{2}<0 .
\end{aligned}
$$

Whenever $\lambda \geq \lambda_{n}$ and $u \in E_{n} \bigcap S_{\rho}$.
Thus $i_{1}(I) \geq n$ and $i_{2}(I)=0$, by Lemma $1.3, I$ at least has $2(n-0)$ distinct critical points. Hence (1.1) has at least $2 n$ nontrivial solutions in $C^{2}[0,1]$ Whenever $\lambda \geq \lambda_{n}$.

References

[1] I. Addou and Shin-Hwa Wang, Exact multiplicity results for a p-Laplacian positone problem with concave-convex-concave nonlinearities, 2004(2004), 1-24.
[2] R. P. Agarwal and D. O'Regan, Existence theory for single and multiple solutions to singular positone boundary value problems, J. Differential Equations 175(2001), 393-414.
[3] G. Anello, A multiplicity theorem for critical points of functionals on reflexive Banach spaces, Arch. Math. 82(2004), 172-179.
[4] L. E. Bobisud, J. E. Calvert and W. D. Royalty, Some existence results for singular boundary value problems, Differential Integral Equations 6 (1993), 553-571.
[5] Chang Kung Ching, Critical Point Theory and Its Applications(Chinese), Shanghai Kexue Jishu Chubanshe, Shanghai, 1986.
[6] L. H. Erbe and R. M. Mathsen, Positive solutions for singular nonlinear boundary value problems, Nonlinear Anal. Ser. A: Theory Methods 46 (2001), 979-986.
[7] Guo Da Jun, V. Lakshmikantham, Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces, J. Math. Anal. Appl. 129 (1988), 211-222.
[8] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, 74. Springer-Verlag, New York, 1989.
[9] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, 65. by the American Mathematical Society, Providence, RI, 1986.
[10] Xu Yuan Tong and Guo Zhi-Ming, Applications of a Z_{p} index theory to periodic solutions for a class of functional differential equations, J. Math. Anal. Appl. 257 (2001), 189-205.
[11] Xu Yuan Tong, Subharmonic solutions for convex nonautonomous Hamiltonian systems, Nonlinear Anal. 28 (1997), 1359-1371.

Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China.
E-mail: stslyj@zsu.edu.cn
Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China.
E-mail: sxb0221@163.com
Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China.
E-mail: xyt@zsu.edu.cn

