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ON CERTAIN CLASS OF MEROMORPHIC HARMONIC
CONCAVE FUNCTIONS

IBTISAM ALDAWISH AND MASLINA DARUS

Abstract. In this paper, a class of meromorphic harmonic functions concave in the unit
disc is introduced. Coefficient bounds, distortion inequalities, extreme points, geometric
convolution, integral convolution for the functions belonging to this class are obtained.

1. Introduction

Conformal maps of the unit disc onto convex domain are a classical topic and many re-

sults are found related to this field. Recently, Avkhadiev and Wirths [4] discovered the confor-

mal mapping of a unit disc onto concave domains (the complements of convex closed sets).

This is interesting as not many problems are discussed thoroughly towards this approach.

Let U denote the open unit disc, where f has the form given by

f (z) = z +
∞∑

n=2
an zn (1)

that maps U conformally onto a domain whose complement with respect to C is convex and

that satisfies the normalization f (1) = ∞. Furthermore, they imposed on these functions

the condition that the opening angle of f (U) at infinity is less than or equal to απ, α ∈ (1,2].

These families of functions are denoted by C0(α). The class C0(α) is referred to as the class of

concave univalent functions and for a detailed discussion about concave functions we refer

to [3],[4],[5] and [8]. We observe that C0(2) contains the classes C0(α), α ∈ (1,2] and the class

C0(1) consists of all concave univalent functions normalized such that f (1) =∞ and f is given

by (1).

Recently, Chuaqui et al. [6] introduced the concept of meromorphic concave mappings.

A conformal mapping of meromorphic function on the unit disc U is said to be a concave

mapping if its image is the complement of a compact, convex set.
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If f has the form

f (z) = 1

z
+b0 +b1z +b2z2 +·· · ,

then a necessary and sufficient condition for f to be a concave mapping is

1+Re

{
z

f ′′(z)

f ′(z)

}
< 0, |z| < 1.

The subject of harmonic univalent functions is not that recent as it has been around since

1984 and perhaps was first established by Clunie and Sheil-Small [7]. In [14] there is more

comprehensive study on harmonic univalent functions.

The importance of these functions is due to their usage in the study of minimal surfaces

as well as in various problems related to engineering, operations research, applied Mathemat-

ics and perhaps of other areas of sciences [1]. A continuous function f = u + i v is a complex

valued harmonic function in a domain U ⊂ C if both u and v are real harmonic in U. In any

simply connected domain, we write f = h + ḡ where h and g are analytic in U. A necessary

and sufficient condition for f to be locally univalent and orientation preserving in U is that

|h′| > |g ′| in U (see [7]). Hengartner and Schober [10] investigated functions harmonic in the

exterior of the unit disc Ũ = {z : |z| > 1}. They showed that complex valued, harmonic, sense

preserving, univalent mapping f must admit the representation

f (z) = h(z)+ g (z)+ Al og |z|,

where h(z) and g (z) are defined by

h(z) =αz +
∞∑

n=1
an z−n , g (z) =βz̄ +

∞∑
n=1

bn z−n

for 0 ≤ |β| < |α|, A ∈C and z ∈ Ũ.

For z ∈U\{0}, let MH be the class of functions:

f (z) = h(z)+ g (z) = 1

z
+

∞∑
n=1

an zn +
∞∑

n=1
bn zn (2)

which are harmonic in the punctured unit disc U\{0}, where h(z) and g (z) are analytic in U\{0}

and U, respectively, and h(z) has a simple pole at the origin with residue 1 here (see [2]).

A function f ∈ MH is said to be in the subclass MS∗
H of meromorphically harmonic star-

like functions in U\{0} if it satisfies the condition

Re

{
− zh′(z)− zg ′(z)

h(z)+ g (z)

}
> 0, (z ∈U\{0}).
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Also, a function f ∈ MH is said to be in the subclass MCH of meromorphically harmonic

convex functions in U\{0} if it satisfies the condition

Re

{
−zh′′(z)+h′(z)− zg ′′(z)+ g ′(z)

h′(z)− g ′(z)

}
> 0, (z ∈U\{0}).

Note that the classes of harmonic meromorphic starlike functions and harmonic meromor-

phic convex functions have been studied by Jahangiri and Silverman [11], and Jahangiri [12,

13].

This work is an attempt to give a connection between harmonic function and meromor-

phic concave functions by introducing a class M HC0 of meromorphic harmonic concave

functions.

Definition 1.1. Let M HC0 denote the class of meromorphic harmonic concave functions f of

the form (2) such that

1+Re

{
z f ′′(z)

f ′(z)

}
< 0, |z| < 1. (3)

The article is organized as follows: In section 2, we study a sufficient condition for functions

f = h + g , where h and g given by (2) to be in the class M HC0. In section 3, we obtain distor-

tion bounds, characterize the extreme points for functions in M HC0. In section 4, we define

convolution properties for functions belonging to the class M HC0.

2. Coefficient Conditions

In this section, sufficient coefficient condition for a function f ∈ MH to be in M HC0 is

derived.

Theorem 2.1. Let f = h + g be of the form (2). If

∞∑
n=1

n2 (|an |+ |bn |) ≤ 1, (4)

then, f is harmonic univalent, sense preserving in U\{0}.

Proof. First, for 0 < |z1| ≤ |z2| < 1, we have∣∣ f (z1)− f (z2)
∣∣≥ |h(z1)−h(z2)|− ∣∣g (z1)− g (z2)

∣∣
≥ |z1 − z2|

|z1||z2|
− |z1 − z2|

∞∑
n=1

(|an |+ |bn |) |zn−1
1 +·· ·+ zn−1

2 |

> |z1 − z2|
|z1||z2|

[
1−|z2|2

∞∑
n=1

n (|an |+ |bn |)
]

> |z1 − z2|
|z1||z2|

[
1−

∞∑
n=1

n2 (|an |+ |bn |)
]

.
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The last expression is non negative by (4) and f is univalent in U\{0}.

To show that f is sense preserving in U\{0}, we need to show that |h′(z)| ≥ |g ′(z)| in U\{0}.

|h′(z)| ≥ 1

|z|2 −
∞∑

n=1
n|an ||z|n−1

= 1

r 2 −
∞∑

n=1
n|an |r n−1 > 1−

∞∑
n=1

n|an |

≥ 1−
∞∑

n=1
n2|an |

≥
∞∑

n=1
n2|bn | >

∞∑
n=1

n|bn |r n−1

=
∞∑

n=1
n|bn ||z|n−1 ≥ |g ′(z)|.

Thus, this completes the proof of the theorem.

Theorem 2.2. Let f = h+g be of the form (2). Then f ∈ M HC0 if and only if the inequality (4)

holds for the coefficient f = h + g .

Proof. Suppose that inequality (4) holds. By using the fact Rew < 0 ↔ ∣∣ w+1
w−1

∣∣< 1. So it suffices

to show that
∣∣ w+1

w−1

∣∣< 1. We have

=

∣∣∣∣∣∣∣
1+ zh′′(z)−zg ′′(z)

h′(z)−g ′(z)
+1

1+ zh′′(z)−zg ′′(z)

h′(z)−g ′(z)
−1

∣∣∣∣∣∣∣
=

∣∣∣∣∣2(h′(z)− g ′(z))+ zh′′(z)− zg ′′(z)

zh′′(z)− zg ′′(z)

∣∣∣∣∣
=

∣∣∣∣∣
2
z2 +∑∞

n=1 n(n −1)an zn−1 − 2
z2 +2

∑∞
n=1 nan zn−1 −∑∞

n=1 n(n −1)bn zn−1 −2
∑∞

n=1 nbn zn−1

2
z2 +∑∞

n=1 n(n −1)an zn−1 −∑∞
n=1 n(n −1)bn zn−1

∣∣∣∣∣
=

∣∣∣∣∣
∑∞

n=1 n(n +1)an zn−1 −∑∞
n=1 n(n +1)bn zn−1

2
z2 +∑∞

n=1 n(n −1)an zn−1 −∑∞
n=1 n(n −1)bn zn−1

∣∣∣∣∣
<

∑∞
n=1 n(n +1)|an |+∑∞

n=1 n(n +1)|bn |
2−∑∞

n=1 n(n −1)|an |−∑∞
n=1 n(n −1)|bn |

.

The last expression is bounded above by 1 if

∞∑
n=1

n(n +1)|an |+
∞∑

n=1
n(n +1)|bn | ≤ 2−

∞∑
n=1

n(n −1)|an |−
∞∑

n=1
n(n −1)|bn |,

which is equivalent to our condition

∞∑
n=1

n2 (|an |+ |bn |) ≤ 1.
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of the theorem.

Conversely, assume f ∈ M HC0, then we have∣∣∣∣∣∣∣
1+ zh′′(z)−zg ′′(z)

h′(z)−g ′(z)
+1

1+ zh′′(z)−zg ′′(z)

h′(z)−g ′(z)
−1

∣∣∣∣∣∣∣< 1

=
∣∣∣∣∣

∑∞
n=1 n(n +1)an zn−1 −∑∞

n=1 n(n +1)bn zn−1

2
z2 +∑∞

n=1 n(n −1)an zn−1 −∑∞
n=1 n(n −1)bn zn−1

∣∣∣∣∣< 1.

Letting |z|→ 1, we obtain the required condition (4).

3. Distortion bounds and extreme points

In this section, bounds and extreme points for functions belonging to the class M HC0

are estimated.

Theorem 3.1. If fk = hk + gk ∈ M HC0 and 0 < |z| = r < 1, then

| fk (z)| ≤ 1+ r 2

r
and

| fk (z)| ≥ 1− r 2

r
.

Proof. Let fk = hk + gk ∈ M HC0. Taking the absolute value of f we obtain

| fk | =
∣∣∣∣1

z
+

∞∑
n=1

an zn +
∞∑

n=1
bn zn

∣∣∣∣
≥ 1

r
−

∞∑
n=1

(|an |+ |bn |)r n ≥ 1

r
−

∞∑
n=1

(|an |+ |bn |)r

≥ 1

r
−

∞∑
n=1

n2 (|an |+ |bn |)r

≥ 1

r
− r = 1− r 2

r

| fk | =
∣∣∣∣1

z
+

∞∑
n=1

an zn +
∞∑

n=1
bn zn

∣∣∣∣
| fk | ≤

1

r
+

∞∑
n=1

(|an |+ |bn |)r n

≤ 1

r
+

∞∑
n=1

n2 (|an |+ |bn |)r n

≤ 1

r
+

∞∑
n=1

n2 (|an |+ |bn |)r

≤ 1+ r 2

r
.
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Now the theorem follows by applying (4).

Theorem 3.2. Let fk = hk + gk where hk and gk are given by (2). Set

hk,0 = gk,0 =
1

z

hk,n(z) = 1

z
+ 1

n2 zn ,

for n = 1,2,3, . . . and

gk,n = 1

z
+ 1

n2 zn

for n = 1,2,3, . . . .

Then, fk ∈ M HC0 if and only if fk can be expressed as

fk,n =
∞∑

n=0

(
λnhk,n(z)+γn gk,n(z)

)
,

whereλn ≥ 0,γn ≥ 0. and Σ∞
n=0(λn +γn) = 1. In particular, the extreme points of M HC0 are

{hk,n} and {gk,n}.

Proof. For functions fk = hk + gk , where hk and gk are given by (2), we have

fk,n(z) =
∞∑

n=0

(
λnhk,n(z)+γn gk,n(z)

)
=λ0hk,0 +γ0gk,0 +

∞∑
n=1

λn

(
1

z
+ 1

n2 zn
)
+

∞∑
n=1

γn

(
1

z
+ 1

n2 zn

)
=

∞∑
n=0

(λn +γn)
1

z
+

∞∑
n=1

1

n2

(
λn zn +γn zn

)
.

Now by Theorem 2.1,

∞∑
n=1

1

n2 n2λn + 1

n2 n2γn

=
∞∑

n=1
(λn +γn) = 1−λ0 −γ0 ≤ 1.

So fk ∈ M HC0.

Conversely, suppose that fk ∈ M HC0. Setting

λn = n2|an |, n ≥ 1

γn = n2|bn |, n ≥ 1.

We define

λ0 +γ0 = 1−
∞∑

n=1
λn −

∞∑
n=1

γn .



ON CERTAIN CLASS OF MEROMORPHIC HARMONIC CONCAVE FUNCTIONS 107

Therefore, f can be written as

fk (z) = 1

z
+ ∑

n=1
|an |zn +

∞∑
n=1

|bn |zn

= 1

z
+

∞∑
n=1

1

n2 λn zn +
∞∑

n=1

1

n2 γn zn

= 1

z
+

∞∑
n=1

(
hk,n(z)− 1

z

)
λn +

∞∑
n=1

(
gk,n(z)− 1

z

)
γn

=
∞∑

n=1
hk,nλn +

∞∑
n=1

gk,nγn + 1

z

(
1−

∞∑
n=1

λn −
∞∑

n=1
γn

)
=λ0hk,0 +γ0gk,o +

∞∑
n=1

hk,nλn +
∞∑

n=1
gk,nγn

=
∞∑

n=0

(
λnhk,n(z)+γn gk,n(z)

)
.

The proof is complete. Therefore {hk,n} and {gk,n} are extreme points.

4. Convolution properties

In this section, convolution, geometric convolution, integral convolution of the class

M HC0 are defined and studied.

For harmonic functions, fk and Fk defined as follows:

fk (z) = 1

z
+

∞∑
n=1

|an |zn +
∞∑

n=1
|bn |zn (5)

and

Fk = 1

z
+

∞∑
n=1

|An |zn +
∞∑

n=1
|Bn |zn , (6)

the convolution of fk and Fk is given by

( fk ⋆Fk )(z) = fk (z)⋆Fk (z)

= 1

z
+

∞∑
n=1

|an ||An |zn +
∞∑

n=1
|bn ||Bn |zn .

(7)

The geometric convolution of fk and Fk is given by

( fk ∗Fk )(z) = fk (z)∗Fk (z)

= 1

z
+

∞∑
n=1

√
|an An |zn +

∞∑
n=1

√
|bnBn |zn .

(8)

The integral convolution of fk and Fk is given by

( fk ⋄Fk )(z) = fk (z)⋄Fk (z)

= 1

z
+

∞∑
n=1

|an An |
n

zn +
∞∑

n=1

|bnBn |
n

zn .
(9)
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Theorem 4.1. Let fk ∈ M HC0 and Fk ∈ M HC0. Then the convolution fk ⋆Fk ∈ M HC0.

Proof. For fk and Fk as given by (5) and (6), then the convolution fk ⋆Fk is given by (7). We

wish to show that the coefficients of fk ⋆Fk satisfy the required condition given in Theorem

2.1. For Fk ∈ M HC0 we note that |An | ≤ 1 and |Bn | ≤ 1. Now for convolution function fk ⋆Fk

we obtain

∞∑
n=1

n2|an ||An |+
∞∑

n=1
n2|bn ||Bn |

≤
∞∑

n=1
n2|an |+

∞∑
n=1

n2|bn |

≤ 1.

Therefore fk ⋆Fk ∈ M HC0, this proves the required result.

Theorem 4.2. If fk and Fk of the form (5) and (6) belong to the class M HC0, then the geomet-

ric convolution fk ∗Fk also belongs to the class M HC0.

Proof. Since fk ,Fk ∈ M HC0, it follows that

∞∑
n=1

n2 (|an |+ |bn |) ≤ 1

∞∑
n=1

n2 (|An |+ |Bn |) ≤ 1.

Hence, by Cauchy-Schwartz’s inequality, it is noted that,

∞∑
n=1

n2
(√

|an An |+
√
|bnBn |

)
≤ 1.

The proof is complete.

Theorem 4.3. If fk and Fk of the form (5) and (6) belong to the class M HC0, then the integral

convolution fk ⋄Fk also belongs to the class M HC0.

Proof. Since fk ,Fk ∈ M HC0, it follows that |An | ≤ 1 and |Bn | ≤ 1. Then f ⋄F ∈ M HC0, because

∞∑
n=1

n2 |an An |
n

+
∞∑

n=1
n2 |bnBn |

n

≤
∞∑

n=1
n2 |an |

n
+

∞∑
n=1

n2 |bn |
n

≤
∞∑

n=1
n2|an |+

∞∑
n=1

n2|bn | ≤ 1,

this proves the required result.
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