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ON THE GENERALIZED FUGLEDE-PUTNAM THEOREM

M. H. M. RASHID, M. S. M. NOORANI AND A. S. SAARI

Abstract. In this paper, we prove the following assertions:

(1) If the pair of operators (A,B∗) satisfies the Fuglede-Putnam Property and S ∈ ker(δA,B ), where S ∈ B(H ), then

we have

‖δA,B X +S‖ ≥ ‖S‖.

(2) Suppose the pair of operators (A,B∗) satisfies the Fuglede-Putnam Property. If A2 X = X B2 and A3 X = X B3,

then AX = X B .

(3) Let A,B ∈ B(H ) be such that A,B∗ are p-hyponormal. Then for any X ∈ C2, AX − X B ∈ C2 implies A∗X −
X B∗ ∈C2.

(4) Let T,S ∈ B(H ) be such that T and S∗ are quasihyponormal operators. If X ∈ B(H ) and T X = X S, then

T∗X = X S∗.

1. Introduction

Let H denote a separable, infinite dimensional Hilbert space. Let B(H ), C2 and C1 denote
the algebra of all bounded operators acting on H , the Hilbert-Schmidt class and the trace
class in B(H ) respectively. It is known that C2 and C1 each form a two-sided ∗− ideal in B(H )
and C2 is itself a Hilbert space with inner product

〈X ,Y 〉 =∑〈X ei ,Y ei 〉 = tr(X Y ∗),

where {ei } is any orthonormal basis of H and tr(.) is the natural trace on C1. The Hilbert-
Schmidt norm of X ∈C2 is given by ‖X ‖2.

For operators A,B ∈ B(H ), the generalized derivation δA,B (X ) as an operator on B(H ) is
defined as follows:

δA,B (X ) = AX −X B

for all X ∈ B(H ). When A = B , we simply write δA for δA,A .
In [3], Anderson proved that if N ∈ B(H ) is normal, S is an operator such that N S = SN ,

then for all X ∈ B(H )
‖δN X +S‖ ≥ ‖S‖,
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where ‖.‖ is the usual operator norm. Thus in the sense of [3, Definition 1.2], Anderson’s result
says that the range of δN is orthogonal to the kernel of δN , which is just the commutant {N }′

of N .
Kittaneh [10] extended this result to an arbitrary unitarily invariant norm (for more infor-

mation about this norm the reader should refer to [10]), and he proved the following theorem.

Theorem 1.1. If the operator A,B ∈ B(H ) are normal, then for all X ,S ∈ B(H ) such that
AS = SB we have

|||AX −X B +S||| ≥ |||S|||.

Recall that an operator T in B(H ) is called normal if T ∗T = T T ∗ and p-hyponormal if
(T ∗T )p ≥ (T T ∗)p , where 0 < p ≤ 1. In particular 1-hyponormal is called hyponormal and
1
2 -hyponormal is called semi-hyponormal. The Löwner-Heinz inequality implies that if T is
p −hy ponor mal , then it is q −hy ponor mal for any 0 < q ≤ p. Let T = U |T | be the polar
decomposition of T , where U is partial isometry. Then |T | is a positive square root of T ∗T
and kerT = ker |T | = kerU , where ker(T ) denotes the kernel of T . Aluthge [2] introduced the

operator T̃ = |T | 1
2 U |T | 1

2 which is called the Aluthge transform, and also shown to satisfy the
following result.

Theorem 1.2. Let A = U |A| be the polar decomposition of a p-hyponormal for 0 < p < 1
and U is unitary. Then the following assertion holds:

(1) Ã = |A| 1
2 U |A| 1

2 is p + 1
2 -hyponormal if 0 < p < 1

2 .

(2) Ã = |A| 1
2 U |A| 1

2 is hyponormal if 1
2 ≤ p < 1.

According to [13], T ∈ B(H ) is called dominant if r an(T − zI ) ⊆ r an(T − zI )∗, for all z ∈
σ(T ), where r an(T ) and σ(T ) denotes the range and the spectrum of T .

It has been shown in [4, Theorem 3.4] that if A , B∗ and S are operators in B(H ) such that
B∗ is p-hyponormal or log-hyponormal, A is dominant and AS = SB , then for all X ∈ B(H )
we have

‖AX −X B +S‖ ≥ ‖S‖.

2. Main Results

We begin by the following definition of the orthogonality in the sense of Anderson [3, Def-
inition 1.2] which generalize the idea of orthogonality in Hilbert space.

Definition 2.1. Let C be the field of complex numbers and let X be a normed linear space.
If ‖x −λy‖ ≥ ‖λy‖ for all λ ∈ C whenever x, y ∈ X , then x is said to be orthogonal to y . Let U
and W be two subspace in X . If ‖x + y‖ ≥ ‖y‖, for all x ∈U and for all y ∈W , then U is said to
be orthogonal to W .
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Definition 2.2. Let A,B ∈ B(H ). We say that the pair (A,B∗) satisfies the Fuglede-Putnam
Property, if whenever S ∈ ker(δA,B ), where S ∈ B(H ) implies that S ∈ ker(δA∗,B∗ ).

Theorem 2.3. Let A,B , X ∈ B(H ). If the pair of operators (A,B∗) satisfies the Fuglede-
Putnam Property and S ∈ ker(δA,B ), where S ∈ B(H ) then we have

‖δA,B X +S‖ ≥ ‖S‖.

Proof. Since the pair (A,B∗) satisfies the Fuglede-Putnam Property, it follows that r anS
reduces A, ker⊥ S reduces B . Let A1 = A|r anS , B1 = B |ker⊥ S and let S1 : ker⊥ S −→ r anS be the
quasi-affinity defined by setting S1x = Sx for each x ∈ ker⊥ S. Then δA1,B1 (S1) = 0 = δA∗

1 ,B∗
1

(S1),
and it follows that 0 ∉σ(A1) and 0 ∉σ(B1).
Since the pair (A,B∗) satisfies the Fuglede-Putnam Property, thenδA,B (AS) = 0 implies A∗

1 B∗
1 S∗

1 =
A1S1B∗−1

1 = A1 A∗
1 S1, then A1 is normal, similarly B1 is normal.

Then, with respect to the orthogonal decompositions H = r anS ⊕ (r anS) and H = ker⊥ S ⊕
kerS, A and B can be respectively represented as A =

(
A1 0
0 A2

)
, B =

(
B1 0
0 B2

)
.

Now assume that the operators S, X : ker⊥ S⊕kerS −→ r anS⊕ (r anS)⊥ have the matrix repre-

sentations

(
S1 0
0 0

)
and

(
X1 X2

X3 X4

)
.

Then

‖δA,B (X )+S‖ = ‖
(
δA1,B1 (X1)+S1 ∗

∗ ∗
)
‖ ≥ ‖δA1,B1 (X1)+S1‖ = ‖S‖,

which completes the proof of the theorem.

Next, we prove some commutativity results. Al-Moadjil [1] proved that if N is a normal op-
erator such that N 2X = X N 2 and N 3X = X N 3 for some X ∈ B(H ), then N X = X N . Kittaneh
[7] generalize this results for subnormal operators by taking A and B∗ subnormal operators.
This result was also generalized by Bachir [4] by taking A is a dominant operator and B∗ is
P-hyponormal operators. In this note, we generalize this result for any pair (A,B∗) satisfying
the Fuglede-Putnam Property.

Theorem 2.4. Let A,B , X ∈ B(H ) and let the pair of operators (A,B∗) satisfies the Fuglede-
Putnam Property. If A2X = X B 2 and A3X = X B 3, then AX = X B.

Proof. Let Y = AX −X B , then

A2Y = A3X − A2X B = X B 3 −X B 3 = 0,

Y B 2 = AX B 2 −X B 3 = A3X − A3X = 0,

and
AY B = A2X B − AX B 2 = X B 3 = A3X = 0.

Hence A(AY −Y B) = A2Y − AY B = 0 and (AY −Y B)B = AY B −Y B 2 = 0.
This yields that AY −Y B ∈ ker(δA,B )∩ r an(δA,B ) = {0}, therefore AY −Y B = 0. Hence Y ∈
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ker(δA,B )∩ r an(δA,B ) = {0} is obtained by Theorem 2.3, this implies that Y = 0. That is, AX =
X B .

Kittaneh [7] proved that if A,B ∈ B(H ) such that A2 = B 2, A3 = B 3, ker A ⊂ ker A∗ and
kerB ⊂ kerB∗, then A = B . This results can be generalized to any pair (A,B∗) that satisfies the
Fuglede-Putnam Property as follows.

Corollary 2.5. Let A,B ∈ B(H ). If the pair of operators (A,B∗) satisfies the Fuglede-Putnam
Property and A2 = B 2 and A3 = B 3, then A = B.

Proof. This is an immediate consequence of Theorem 2.3 and Theorem 2.4.

Remark 2.6. Algebraic manipulations and induction show that the powers 2 and 3 in The-
orem 2.4 and Corollary 2.5 can be replaced by any two relatively prime powers n and m.

In order to obtain our next result, we require some lemmas.

Lemma 2.7. Let T =
(
T1 S
0 T2

)
be a quasihyponormal operator on H = M ⊕M⊥, where M is

a T -invariant such that the restriction T1 = T |M is normal. Then the range of S is included in
kerT1. In particular, if T is injective, every normal part of T reduces T .

Proof. Let P be the orthogonal projection onto M . Then we have

PT ∗T P =
(
T ∗

1 T1 0
0 0

)
≤ P |T 2|P (since T is quasihyponormal)

≤
(

(T ∗2
1 T 2

1 )
1
2 0

0 0

)
(by Hansen’s inequality)

=
(
T ∗

1 T1 0
0 0

)
(since T1 is normal).

Let |T 2| =
(

X Y
Y ∗ Z

)
be the matrix representation of |T 2| on H = M ⊕ M⊥. Then we have X =

T ∗
1 T1.

Since

|T 2|2 = T 2∗T 2 =
(

X 2 +Y Y ∗ X Y +Y Z
Z Y ∗+Y ∗X Y ∗Y +Z 2

)
=

(
T ∗2

1 T 2
1 T ∗2

1 T1S
S∗T ∗

1 T 2
1 S∗S +T ∗2

2 T 2
2

)
.

Hence

X 2 +Y Y ∗ = T ∗2
1 T 2

1 = (T ∗
1 T1)2 = X 2.

This implies that Y = 0. Thus we have

|T 2| =
(
T ∗

1 T1) 0
0 Z 2

)
≥ T ∗T =

(
T ∗

1 T1) T ∗
1 S

S∗T1 S∗S +T ∗
2 T2)

)
,
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and hence T ∗
1 S = 0. Thus the range of S is included in kerT ∗

1 = kerT1. If T is injective, then so
is T1. Thus the second statement of lemma follows from [6, Lemma 10].

Lemma 2.8. If T is a quasihyponormal operator, then every normal part of T reduces T .

Proof. If T is invertible, then T is hyponormal. Hence the assertion holds by Stampfli re-
sult [12]. Now, we assume that T is not invertible. Let M be a normal part of T . By Lemma 2.7

T is of the form

(
N S
0 0

)
on M ⊕M⊥, where N is normal and r anS ⊂ ker N . It is easy to see that

T 2∗T 2 =
(

N 2∗N 2 N 2∗N S
S∗N∗N 2 S∗N∗N S

)
and

(T ∗T )2 =
(

(N∗N )2 +N∗SS∗N N∗N N∗S +N∗SS∗S
S∗N N∗N +S∗SS∗N S∗N N∗S +S∗SS∗S

)
.

Then

0 ≤ T 2∗T 2 − (T ∗T )2 =
(−N∗SS∗N −N∗SS∗S
−S∗SS∗N −S∗SS∗S

)
.

This implies that S = 0.

Theorem 2.9. Let T ∈ B(H ) be a quasihyponormal operator. Let L ∈ B(H ) be self-adjoint
which satisfies T L = LT ∗. Then T ∗L = LT .

Proof. First, we will show that If T L = LT ∗ = 0, then T ∗L = LT = 0. Since kerT reduces
T , T L = 0 implies that r anL ⊂ kerT ⊂ kerT ∗. Hence r anT ⊂ kerT . Therefore we have T ∗L =
LT = 0
Next, we prove the case T L 6= 0. Assume that T is quasihyponormal. Using the decomposition
H = r anL⊕kerL, the operators L and T can be represented as follows.

L =
(
L1 0
0 0

)
,T =

(
T1 S
0 T2

)
,

where L1 is self-adjoint with kerL1 = {0} and T1 is also quasihyponormal. The assumption
T L = LT ∗ implies that T1L1 = L1T ∗

1 . Since kerT1 reduces T1 and L1, they are of the form T1 =
T11⊕0 and L1 = L11⊕L22 on r anL = ker |T |⊕kerT1. Hence T11 is an injective quasihyponormal
operator and L11 is self-adjoint operator which satisfies T11L11 = L11T ∗

11. But this implies that
T11 is normal. Hence T1 = T11 ⊕0 is also normal. By Fuglede-Putnam Theorem, we see that
T ∗

1 L1 = L1T1. since T1 is normal, S = 0, so we have T ∗L = LT .

Corollary 2.10. Let T ∈ B(H ) be a quasihyponormal operator. If X ∈ B(H ) and T X = X T ∗,
then T ∗X = X T .

Proof. Let X = Y + i Z be the cartesian decomposition of X . Then T X = X T ∗ implies
that T Y = Y T ∗ and T Z = Z T ∗. By Theorem 2.9, we have T ∗Y = Y T and T ∗Z = Z T . Hence
T X = X T ∗.
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Corollary 2.11. Let T,S ∈ B(H ) be such that T and S∗ are quasihyponormal operators. If
X ∈ B(H ) and T X = X S, then T ∗X = X S∗.

Proof. Let A =
(
T 0
0 S∗

)
and B =

(
0 X
0 0

)
on H ⊕H . Then A is quasihyponormal operator on

H ⊕H that satisfies

AB =
(
0 T X
0 0

)
=

(
0 X S
0 0

)
= B A∗,

by Corollary 2.10, we have A∗B = B A and therefore T ∗X = X S∗.

The most recent generalization of the Fuglede-Putnam theorem was obtained by Uchiyama
and Tanahashi [15] and can be stated as follows.

Theorem 2.12. Let T,S ∈ B(H ) be such that T and S∗ are p-hyponormal operators. If
X ∈ B(H ) and T X = X S, then T ∗X = X S∗.

As an application of the above results we have

Lemma 2.13. Let V , A and X be operators in B(H ). If V is an isometry, A∗ is p-hyponormal,
and X is one-one, then V X = X A implies A is unitary.

Proof. By Corollary 11, V X = X A implies that V ∗X = X A∗. Multiply the first equation on
the left by V ∗ to get X = V ∗A∗A. Therefore, X = X A∗A. Let X =U P be the polar decompo-
sition of X , then U is unitary and P is one-one. But this implies that 1 = A∗A. Since A∗ is
p-hyponormal and A∗A = 1, it follows that A is normal and hence unitary.

An attempt to generalize Theorem [7, Theorem 1] to the hyponormal case was made by T.
Furuta [5], who obtained the following result.

Theorem 2.14. If A and B∗ are hyponormal operators in B(H ), then for any X ∈C2, AX −
X B ∈C2 implies A∗X −X B∗ ∈C2.

In the following theorem, we relax the hypotheses on A and B∗ in Theorem 2.14 to p-
hyponormality.

Theorem 2.15. Let A,B ∈ B(H ) be such that A,B∗ are p-hyponormal. Then for any X ∈C2,
AX −X B ∈C2 implies A∗X −X B∗ ∈C2.

Proof. Let A,B∗ be p-hyponormal for p ≥ 1
2 and let U |B | be the the polar decomposition

of B . Then it follows from [2] that the Aluthge transform B̃∗ of B is hyponormal and satisfies

|B̃ | ≤ |B | ≤ |B̃∗| (1.1)

and

AY −Y B̃ ∈C2 (1.2)
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, where Y = XU |B | 1
2 . Using the decomposition H = kerY ⊥⊕kerY , we see that A, B̃ ,Y are of

the form

A =
(

A1 T
0 A2

)
, B̃ =

(
B1 0
S B2

)
,Y =

(
Y1 0
0 0

)
,

where, A1 is p-hyponormal, B∗
1 is hyponormal and Y1 is one-one mapping with dense range.

It follows from equation 1.2 that
A1Y1 −Y1B1 ∈C2. (1.3)

Hence A1,B1 are normal by [11, Theorem 10], so that T = 0 by [15, Lemma 12] and S = 0 by
[6]. Thus |B | = |B1|⊕ J , for some positive operator J , by equation 1.1 and [15, Lemma13] that

U =
(
U11 U12

0 U22

)
. Let X =

(
X11 X12

X21 X22

)
be a 2× 2 matrix representation of X with respect to the

decomposition H = kerY ⊥ ⊕ kerY . Then, Y = XU |B | 1
2 implies that Y1 = X11U11|B1| 1

2 and
hence kerB1 ⊂ kerY1 = {0}. This shows that B1 is one-one (hence, it has dense range), so that
U12 = 0 and B = B1 ⊕B3, for some co-p-hyponormal operator B3 by [15, Lemma 13]. Since,(

Y1 0
0 0

)
= Y = XU |B | 1

2 =
(

X11 X12

X21 X22

)(
U11|B1| 1

2 0

0 U22|A33| 1
2

)
,

we have the following statements.

X12U22|B3| 1
2 = 0; hence X12B3 = 0 because B3 =U22|B3|.

X12U11|B1| 1
2 = 0; hence X12 = 0 because U11|B1| 1

2 has dense range.

X22U22|B3| 1
2 = 0; hence X22B3 = 0.

The assumption AX −X B ∈C2 imply that
A1X11−X11B1 ∈C2, X12B3 = A1X12 = 0 and X22B3 = A2X22 = 0. Since A1 and B1 are normal we
have A∗

1 X11 − X11B∗
1 ∈ C2, by Fuglede-Putnam Theorem. The p-hyponormality of B∗

3 shows
that r anB∗

3 ⊂ B3. Also we have ker A2 ⊂ ker A∗
2 from the fact A2 is p-hyponormal. Hence, we

also have X12B∗
3 = A∗

1 X12 = 0 and X22B∗
3 = A∗

2 X22 = 0. This implies that AX −X B ∈C2.
Next, we prove the case where 0 < p ≤ 1

2 . Let Y be as above. Then B̃∗ is p + 1
2 -hyponormal

and satisfies AX −X B̃ ∈C2. Use the same argument as above. We obtain B̃ = B1 ⊕B2 on H =
kerY ⊥⊕kerY and A = A1⊕A2, where B1 is an injective normal operator and A1 is also normal.
Hence, we have B = B1 ⊕B3 for some p-hyponormal B∗

3 . Again using the same argument as
above we obtain the result.
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