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ON THE GENERALIZED FUGLEDE-PUTNAM THEOREM

M. H. M. RASHID, M. S. M. NOORANI AND A. S. SAARI

Abstract. In this paper, we prove the following assertions:

(1) Ifthe pair of operators (A, B*) satisfies the Fuglede-Putnam Property and S € ker(d 4 g), where S € B(#), then

we have
164,8X+SI=1SI.

Suppose the pair of operators (A, B*) satisfies the Fuglede-Putnam Property. If A2X = XB% and A3 X = XB3,
then AX = XB.

B

(3) Let A, B € B(#) be such that A, B* are p-hyponormal. Then for any X € 6,, AX — XB € 6, implies A* X —
XB* €6,.

(4) Let T,S € B(#) be such that T and S* are quasihyponormal operators. If X € B(#) and TX = XS, then
T*X = XS*.

1. Introduction

Let # denote a separable, infinite dimensional Hilbert space. Let B(#°), C, and C; denote
the algebra of all bounded operators acting on /7, the Hilbert-Schmidt class and the trace
class in B(#) respectively. It is known that C; and C; each form a two-sided * — ideal in B(#°)
and C; is itself a Hilbert space with inner product

(X,Y)=) (Xe;,Ye;)=tr(XY"),

where {e;} is any orthonormal basis of /# and #r(.) is the natural trace on C;. The Hilbert-
Schmidt norm of X € %6 is given by || X||».
For operators A, B € B(#), the generalized derivation 0 4 g(X) as an operator on B(#) is

defined as follows:
0aB(X)=AX-XB

for all X € B(#°). When A = B, we simply write § 4 for 6 4 4.
In [3], Anderson proved that if N € B(/#) is normal, S is an operator such that NS = SN,
then for all X € B(A)
168X+ Sl =1SI,
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where ||.|| is the usual operator norm. Thus in the sense of [3, Definition 1.2], Anderson’s result
says that the range of § y is orthogonal to the kernel of § i, which is just the commutant {N}'
of N.

Kittaneh [10] extended this result to an arbitrary unitarily invariant norm (for more infor-
mation about this norm the reader should refer to [10]), and he proved the following theorem.

Theorem 1.1. If the operator A, B € B(A#°) are normal, then for all X, S € B(/) such that
AS = SB we have
[I|IAX = XB + S| = |IISIll.

Recall that an operator T in B(#) is called normal if T*T = TT* and p-hyponormal if
(T*T)P = (TT*)?, where 0 < p < 1. In particular 1-hyponormal is called hyponormal and
%-hyponormal is called semi-hyponormal. The Léwner-Heinz inequality implies that if T is
p—hyponormal, then itis g — hyponormal for any 0 < g < p. Let T = U|T| be the polar
decomposition of T, where U is partial isometry. Then |T| is a positive square root of T*T
and ker T = ker|T| = ker U, where ker(T) denotes the kernel of T. Aluthge [2] introduced the
operator T = |T I% Ul TI% which is called the Aluthge transform, and also shown to satisfy the
following result.

Theorem 1.2. Let A = U|A| be the polar decomposition of a p-hyponormal for0 < p <1
and U is unitary. Then the following assertion holds:

(1) A= |A|%U|AI% isp+ %-hyponormal ifo<p< %

2 A= IAI% UIAI% is hyponormal if% <p<l

According to [13], T € B(#) is called dominant if ran(T — zI) < ran(T — zI)*, for all z €
o(T), where ran(T) and o(T) denotes the range and the spectrum of T
It has been shown in [4, Theorem 3.4] that if A, B* and S are operators in B(#) such that
B* is p-hyponormal or log-hyponormal, A is dominant and AS = SB, then for all X € B(#)
we have
|AX — XB+ S| =|S].

2. Main Results

We begin by the following definition of the orthogonality in the sense of Anderson [3, Def-
inition 1.2] which generalize the idea of orthogonality in Hilbert space.

Definition 2.1. Let C be the field of complex numbers and let X be a normed linear space.
If |x— Ayl = [ Ay| for all A € C whenever x, y € X, then x is said to be orthogonal to y. Let U
and W be two subspace in X. If [x + yll = || yll, for all x € U and for all y € W, then U is said to
be orthogonal to W.



ON THE GENERALIZED FUGLEDE-PUTNAM THEOREM 241

Definition 2.2. Let A, B € B(#). We say that the pair (A, B*) satisfies the Fuglede-Putnam
Property, if whenever S € ker(6 4 5), where S € B(#) implies that S € ker(6 4+ p+).

Theorem 2.3. Let A,B,X € B(A). If the pair of operators (A, B*) satisfies the Fuglede-
Putnam Property and S € ker (6 4,g), where S € B(A) then we have

164,8X+SI=1SI.

Proof. Since the pair (A, B*) satisfies the Fuglede-Putnam Property, it follows that ranS
reduces A, ker™ S reduces B. Let Ay = Al B1 = BlygL g andlet S : kert S — ranS be the
quasi-affinity defined by setting S; x = Sx foreach x € ker® S. Then 04,8, (51)=0= 51“1"31‘ (S1),
and it follows that 0 ¢ 0 (A;) and 0 ¢ o (B1).

Since the pair (A, B*) satisfies the Fuglede-Putnam Property, then § 4 g (AS) = 0 implies A} B S} =
AlSlB{“l = A1 A} S1, then A, is normal, similarly B; is normal.
Then, with respect to the orthogonal decompositions # = ranS ® (ranS) and .# = ker* S &
ker S, A and B can be respectively represented as A = (Al 0 ), B= (Bl 0 )

0 A 0 By
Now assume that the operators S, X : kert SekerS — ranSe (ranS)* have the matrix repre-

sentations 510 and X1 X
00 X3 X4)

Then

04,8, (X1) + 51 *
*

164,8(X)+SI=I ( *) I =164,,8 (X1)+ Sl =1Sl,

which completes the proof of the theorem.

Next, we prove some commutativity results. Al-Moadjil [1] proved that if N is a normal op-
erator such that N2X = XN? and N3X = X N3 for some X € B(#), then NX = XN. Kittaneh
[7] generalize this results for subnormal operators by taking A and B* subnormal operators.
This result was also generalized by Bachir [4] by taking A is a dominant operator and B* is
P-hyponormal operators. In this note, we generalize this result for any pair (A, B*) satisfying
the Fuglede-Putnam Property.

Theorem 2.4. Let A, B, X € B(#) and let the pair of operators (A, B*) satisfies the Fuglede-
Putnam Property. If A>X = XB? and A®X = X B3, then AX = XB.

Proof. Let Y = AX — XB, then
A%Y = A3X - A>XB=XB*-XB®=0,
YB?2=AXB>-XB3=A3Xx-A%Xx=0,

and
AYB=A*’XB- AXB*=XxB®=4A%Xx=0.

Hence A(AY - YB)= A2Y — AYB=0and (AY - YB)B=AYB-YB?=0.
This yields that AY — YB € ker(64,5) N ran(d ) = {0}, therefore AY — YB = 0. Hence Y €
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ker(6 4,8) Nran(d 4,5) = {0} is obtained by Theorem 2.3, this implies that Y = 0. Thatis, AX =
XB.

Kittaneh [7] proved that if A, B € B(#) such that A?> = B?, A% = B3, ker A c ker A* and
ker B c ker B*, then A = B. This results can be generalized to any pair (A, B*) that satisfies the
Fuglede-Putnam Property as follows.

Corollary 2.5. Let A, B € B(#). Ifthe pair of operators (A, B*) satisfies the Fuglede-Putnam
Property and A? = B?> and A3 = B3, then A= B.

Proof. This is an immediate consequence of Theorem 2.3 and Theorem 2.4.

Remark 2.6. Algebraic manipulations and induction show that the powers 2 and 3 in The-
orem 2.4 and Corollary 2.5 can be replaced by any two relatively prime powers n and m.

In order to obtain our next result, we require some lemmas.
n S
0T
a T-invariant such that the restriction T, = T|y; is normal. Then the range of S is included in
ker Ty. In particular, if T is injective, every normal part of T reduces T.

Lemma 2.7. Let T = ( ) be a quasihyponormal operator on 7 = M & M+, where M is

Proof. Let P be the orthogonal projection onto M. Then we have

T, 0
PT*TP= ( 10 ! 0) < P|T?P (since T is quasihyponormal)
%2 2y 1
< ((Tl 0T1)2 8) (by Hansen’s inequality)
T T; 0
=["17! (since Tj is normal).
0 0
5 XY . . 2 1
Let |T| = v* 7 be the matrix representation of |7°| on H = M @ M—. Then we have X =
T} T.
Since
T2 = 720 72 [ XP4YY* XY+YZ\ (TPATE TYPTS
B T\ZYPHYEX YRY +Z2) T \STTTE S* S+ TR TE)
Hence

X2+ YY* =TT = (T} T)? = X2

This implies that Y = 0. Thus we have

TYTy) 0 TYT)  TFS
T*|=|"1 >T*T=|"1 1 ,
17”1 ( 0 Zz) S*Ty S*S+ T, T»)
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and hence T;'S = 0. Thus the range of S is included in ker T} = ker Ty. If T is injective, then so
is T1. Thus the second statement of lemma follows from [6, Lemma 10].

Lemma 2.8. If T is a quasihyponormal operator, then every normal part of T reduces T.

Proof. If T is invertible, then T is hyponormal. Hence the assertion holds by Stampfli re-
sult [12]. Now, we assume that T is not invertible. Let M be a normal part of T. By Lemma 2.7

. NS . .
T is of the form (0 0) on M & M+, where N is normal and ranS c ker N. It is easy to see that

7272 _ N?*N? N?*NS
S*N*N? S*N*NS
and
(T T2 = (N*N)?+ N*SS*N N*NN*S+N*SS*S
S*NN*N+S*SS*N S*NN*S+S5*SS*S
Then
—N*SS*N —N*SS§*S
2% 2 _ k2 _
0sT"T°—(T"T) (—S*SS*N —S*SS*S)'
This implies that S = 0.

Theorem 2.9. Let T € B(A#) be a quasihyponormal operator. Let L € B(#) be self-adjoint
which satisfies TL=LT*. Then T*L=LT.

Proof. First, we will show that If TL=LT* =0, then T*L = LT = 0. Since ker T reduces
T, TL=0implies that ranL cker T c ker T*. Hence ranT cker T. Therefore we have T*L =
LT =0
Next, we prove the case TL # 0. Assume that T is quasihyponormal. Using the decomposition
4 = ranL @ ker L, the operators L and T can be represented as follows.

(Lo .. (Ty S
L‘(o 0)’T‘(o Tz)’

where L, is self-adjoint with ker L; = {0} and T; is also quasihyponormal. The assumption
TL=LT* implies that Ty L = L; Tl*. Since ker T; reduces T; and Ly, they are of the form T; =
Ty 00and Ly = Ly @ Ly on ranL = ker|T|eker T;. Hence Ty, is an injective quasihyponormal
operator and Ly is self-adjoint operator which satisfies T11L1; = L1 T7;. But this implies that
T11 is normal. Hence T; = T7; @ 0 is also normal. By Fuglede-Putnam Theorem, we see that
T/ Ly = L; T1. since T} is normal, S =0, so we have T*L=LT.

Corollary 2.10. Let T € B(#) be a quasihyponormal operator. If X e B(#) and TX = XT*,
then T*X = XT.

Proof. Let X = Y + iZ be the cartesian decomposition of X. Then TX = XT* implies
that TY =Y T* and TZ = ZT*. By Theorem 2.9, we have T*Y = YT and T*Z = ZT. Hence
TX=XT*.
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Corollary 2.11. Let T,S € B(#) be such that T and S* are quasihyponormal operators. If
XeB(AH) and TX = XS, then T*X = XS*.

T X
Proof. Let A= ( 0 SO*) and B = (O ) on ./ & # . Then A is quasihyponormal operator on

00
H & A that satisfies
_(0TX) (0XS) _ .
AB—(O 0)_(0 0)—BA,

by Corollary 2.10, we have A* B = BA and therefore T* X = XS*.

The mostrecent generalization of the Fuglede-Putnam theorem was obtained by Uchiyama
and Tanahashi [15] and can be stated as follows.

Theorem 2.12. Let T, S € B(A#) be such that T and S* are p-hyponormal operators. If
XeB(AH) and TX = XS, then T*X = XS*.

As an application of the above results we have

Lemma2.13. Let V, A and X be operators inB(A). IfV is an isometry, A* is p-hyponormal,
and X is one-one, then VX = X A implies A is unitary.

Proof. By Corollary 11, VX = XA implies that V* X = XA*. Multiply the first equation on
the left by V* to get X = V* A* A. Therefore, X = XA* A. Let X = UP be the polar decompo-
sition of X, then U is unitary and P is one-one. But this implies that 1 = A*A. Since A* is
p-hyponormal and A* A = 1, it follows that A is normal and hence unitary.

An attempt to generalize Theorem [7, Theorem 1] to the hyponormal case was made by T.
Furuta [5], who obtained the following result.

Theorem 2.14. If A and B* are hyponormal operators in B(#€), then for any X € 6,, AX —
XB € 6, implies A*X — XB* € 6.

In the following theorem, we relax the hypotheses on A and B* in Theorem 2.14 to p-
hyponormality.

Theorem 2.15. Let A, B € B(#) be such that A, B* are p-hyponormal. Then for any X € 6>,
AX — XB €6, implies A*X — XB* € 6.

Proof. Let A, B* be p-hyponormal for p = % and let U|B| be the the polar decomposition
of B. Then it follows from [2] that the Aluthge transform B* of B is hyponormal and satisfies

|B| < |B| < |B*| (1.1)

and
AY-YBe%, 1.2)
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,where Y = XU|B| % Using the decomposition 4 = ker Y1 ekerY, we see that A, B, Y are of

the form
(A T) 5 (B10) ., ("0
A‘(o Ag)’B_(S Bg)'y_(o 0)’

where, Aj is p-hyponormal, B is hyponormal and Y7 is one-one mapping with dense range.
It follows from equation 1.2 that
AT -Y1B; €(€2. (1.3)

Hence A;, By are normal by [11, Theorem 10], so that T = 0 by [15, Lemma 12] and S = 0 by
[6]. Thus |B| = |B;| @ J, for some positive operator J, by equation 1.1 and [15, Lemmal3] that
Un Ur2 X11 X2
U= ( 0 Uzz)' Let X = (le X22
decomposition # = ker Yl ekerY. Then, Y = XUIBI% implies that Y; = X713 UHIBII% and
hence ker By c ker Y7 = {0}. This shows that B; is one-one (hence, it has dense range), so that
U2 =0 and B = B) @ Bs, for some co-p-hyponormal operator B3 by [15, Lemma 13]. Since,

) be a 2 x 2 matrix representation of X with respect to the

’

Y; 0
00

1
J=v=xuisi = [ 1] (UulBllz 0

X21 Xo2 0 Uso | As3| 2

we have the following statements.

X12 U22|Bg|% =0; hence Xlng =0 because Bg = U22|Bg|.

X12U11|1By I% =0; hence X;2 = 0 because U;;|B; I% has dense range.

ng U22|Bg|% =0; hence ngBg =0.

The assumption AX — XB € 6, imply that

A1X11 —XHBl € ng, Xlng = A1X12 =0and ngBg = A2X22 =0. Since A1 and Bl are normal we
have A} Xi, — X11B; € %>, by Fuglede-Putnam Theorem. The p-hyponormality of B} shows
that ranB; c Bs. Also we have ker A, c ker A from the fact A, is p-hyponormal. Hence, we
also have X1, B; = A} X12 = 0 and X, B; = A X2, = 0. This implies that AX — XB € 6>.

Next, we prove the case where 0 < p < % Let Y be as above. Then B* is p + %-hyponormal
and satisfies AX — XB € %6». Use the same argument as above. We obtain B=B®Byon A=
ker Yt okerY and A= A; ® A,, where B isan injective normal operator and A; is also normal.
Hence, we have B = By @ B3 for some p-hyponormal B;. Again using the same argument as
above we obtain the result.
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