TAMKANG JOURNAL OF MATHEMATICS Volume 39, Number 3, 239-246, Autumn 2008

0pt=0pt

ON THE GENERALIZED FUGLEDE-PUTNAM THEOREM

M. H. M. RASHID, M. S. M. NOORANI AND A. S. SAARI

Abstract. In this paper, we prove the following assertions:

(1) If the pair of operators (A, B^*) satisfies the Fuglede-Putnam Property and $S \in \text{ker}(\delta_{A,B})$, where $S \in \mathbf{B}(\mathcal{H})$, then we have

 $\|\delta_{A,B}X+S\|\geq \|S\|.$

- (2) Suppose the pair of operators (A, B^*) satisfies the Fuglede-Putnam Property. If $A^2 X = XB^2$ and $A^3 X = XB^3$, then AX = XB.
- (3) Let $A, B \in \mathbf{B}(\mathcal{H})$ be such that A, B^* are *p*-hyponormal. Then for any $X \in \mathcal{C}_2$, $AX XB \in \mathcal{C}_2$ implies $A^*X XB^* \in \mathcal{C}_2$.
- (4) Let $T, S \in \mathbf{B}(\mathcal{H})$ be such that T and S^* are quasihyponormal operators. If $X \in \mathbf{B}(\mathcal{H})$ and TX = XS, then $T^*X = XS^*$.

1. Introduction

Let \mathscr{H} denote a separable, infinite dimensional Hilbert space. Let $B(\mathscr{H})$, C_2 and C_1 denote the algebra of all bounded operators acting on \mathscr{H} , the Hilbert-Schmidt class and the trace class in $B(\mathscr{H})$ respectively. It is known that C_2 and C_1 each form a two-sided * – ideal in $B(\mathscr{H})$ and C_2 is itself a Hilbert space with inner product

$$\langle X, Y \rangle = \sum \langle X e_i, Y e_i \rangle = tr(XY^*),$$

where $\{e_i\}$ is any orthonormal basis of \mathcal{H} and tr(.) is the natural trace on \mathbb{C}_1 . The Hilbert-Schmidt norm of $X \in \mathcal{C}_2$ is given by $||X||_2$.

For operators $A, B \in \mathbf{B}(\mathcal{H})$, the generalized derivation $\delta_{A,B}(X)$ as an operator on $\mathbf{B}(\mathcal{H})$ is defined as follows:

$$\delta_{A,B}(X) = AX - XB$$

for all $X \in \mathbf{B}(\mathcal{H})$. When A = B, we simply write δ_A for $\delta_{A,A}$.

In [3], Anderson proved that if $N \in \mathbf{B}(\mathcal{H})$ is normal, *S* is an operator such that NS = SN, then for all $X \in \mathbf{B}(\mathcal{H})$

$$\|\delta_N X + S\| \ge \|S\|,$$

Received April 30, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 47A10, 47B20, 47B47, 47A30.

Key words and phrases. Normal derivation, quasihyponormal, Hilbert Schmidt operator, *p*-hyponormal, Fuglede-Putnam Theorem.

where $\|.\|$ is the usual operator norm. Thus in the sense of [3, Definition 1.2], Anderson's result says that the range of δ_N is orthogonal to the kernel of δ_N , which is just the commutant $\{N\}'$ of N.

Kittaneh [10] extended this result to an arbitrary unitarily invariant norm (for more information about this norm the reader should refer to [10]), and he proved the following theorem.

Theorem 1.1. If the operator $A, B \in \mathbf{B}(\mathcal{H})$ are normal, then for all $X, S \in \mathbf{B}(\mathcal{H})$ such that AS = SB we have

$$|||AX - XB + S||| \ge |||S|||.$$

Recall that an operator T in $\mathbf{B}(\mathcal{H})$ is called normal if $T^*T = TT^*$ and p-hyponormal if $(T^*T)^p \ge (TT^*)^p$, where $0 . In particular 1-hyponormal is called hyponormal and <math>\frac{1}{2}$ -hyponormal is called semi-hyponormal. The Löwner-Heinz inequality implies that if T is p - hyponormal, then it is q - hyponormal for any $0 < q \le p$. Let T = U|T| be the polar decomposition of T, where U is partial isometry. Then |T| is a positive square root of T^*T and ker $T = \ker |T| = \ker U$, where ker(T) denotes the kernel of T. Aluthge [2] introduced the operator $\widetilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ which is called the Aluthge transform, and also shown to satisfy the following result.

Theorem 1.2. Let A = U|A| be the polar decomposition of a *p*-hyponormal for 0 and*U*is unitary. Then the following assertion holds:

- (1) $\widetilde{A} = |A|^{\frac{1}{2}} U|A|^{\frac{1}{2}}$ is $p + \frac{1}{2}$ -hyponormal if 0 .
- (2) $\widetilde{A} = |A|^{\frac{1}{2}} U|A|^{\frac{1}{2}}$ is hyponormal if $\frac{1}{2} \le p < 1$.

According to [13], $T \in \mathbf{B}(\mathcal{H})$ is called dominant if $ran(T - zI) \subseteq ran(T - zI)^*$, for all $z \in \sigma(T)$, where ran(T) and $\sigma(T)$ denotes the range and the spectrum of *T*.

It has been shown in [4, Theorem 3.4] that if *A*, B^* and *S* are operators in $\mathbf{B}(\mathcal{H})$ such that B^* is *p*-hyponormal or log-hyponormal, *A* is dominant and AS = SB, then for all $X \in \mathbf{B}(\mathcal{H})$ we have

$$\|AX - XB + S\| \ge \|S\|$$

2. Main Results

We begin by the following definition of the orthogonality in the sense of Anderson [3, Definition 1.2] which generalize the idea of orthogonality in Hilbert space.

Definition 2.1. Let \mathbb{C} be the field of complex numbers and let *X* be a normed linear space. If $||x - \lambda y|| \ge ||\lambda y||$ for all $\lambda \in \mathbb{C}$ whenever $x, y \in X$, then *x* is said to be orthogonal to *y*. Let *U* and *W* be two subspace in *X*. If $||x + y|| \ge ||y||$, for all $x \in U$ and for all $y \in W$, then *U* is said to be orthogonal to *W*.

240

Definition 2.2. Let $A, B \in \mathbf{B}(\mathcal{H})$. We say that the pair (A, B^*) satisfies the Fuglede-Putnam Property, if whenever $S \in \text{ker}(\delta_{A,B})$, where $S \in \mathbf{B}(\mathcal{H})$ implies that $S \in \text{ker}(\delta_{A^*,B^*})$.

Theorem 2.3. Let $A, B, X \in \mathbf{B}(\mathcal{H})$. If the pair of operators (A, B^*) satisfies the Fuglede-Putnam Property and $S \in \text{ker}(\delta_{A,B})$, where $S \in \mathbf{B}(\mathcal{H})$ then we have

$$\|\delta_{A,B}X + S\| \ge \|S\|.$$

Proof. Since the pair (A, B^*) satisfies the Fuglede-Putnam Property, it follows that \overline{ranS} reduces A, ker^{\perp} S reduces B. Let $A_1 = A|_{\overline{ranS}}$, $B_1 = B|_{\ker^{\perp}S}$ and let $S_1 : \ker^{\perp}S \longrightarrow \overline{ranS}$ be the quasi-affinity defined by setting $S_1x = Sx$ for each $x \in \ker^{\perp}S$. Then $\delta_{A_1,B_1}(S_1) = 0 = \delta_{A_1^*,B_1^*}(S_1)$, and it follows that $0 \notin \sigma(A_1)$ and $0 \notin \sigma(B_1)$.

Since the pair (A, B^*) satisfies the Fuglede-Putnam Property, then $\delta_{A,B}(AS) = 0$ implies $A_1^* B_1^* S_1^* = A_1 S_1 B_1^{*-1} = A_1 A_1^* S_1$, then A_1 is normal, similarly B_1 is normal.

Then, with respect to the orthogonal decompositions $\mathcal{H} = \overline{ranS} \oplus (\overline{ranS})$ and $\mathcal{H} = \ker^{\perp} S \oplus \ker S$, *A* and *B* can be respectively represented as $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$, $B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}$.

Now assume that the operators $S, X : \ker^{\perp} S \oplus \ker S \longrightarrow \overline{ranS} \oplus (\overline{ranS})^{\perp}$ have the matrix representations $\begin{pmatrix} S_1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$.

Then

$$\|\delta_{A,B}(X) + S\| = \| \begin{pmatrix} \delta_{A_1,B_1}(X_1) + S_1 * \\ * & * \end{pmatrix} \| \ge \|\delta_{A_1,B_1}(X_1) + S_1\| = \|S\|,$$

which completes the proof of the theorem.

Next, we prove some commutativity results. Al-Moadjil [1] proved that if N is a normal operator such that $N^2 X = XN^2$ and $N^3 X = XN^3$ for some $X \in \mathbf{B}(\mathcal{H})$, then NX = XN. Kittaneh [7] generalize this results for subnormal operators by taking A and B^* subnormal operators. This result was also generalized by Bachir [4] by taking A is a dominant operator and B^* is P-hyponormal operators. In this note, we generalize this result for any pair (A, B^*) satisfying the Fuglede-Putnam Property.

Theorem 2.4. Let $A, B, X \in \mathbf{B}(\mathcal{H})$ and let the pair of operators (A, B^*) satisfies the Fuglede-Putnam Property. If $A^2X = XB^2$ and $A^3X = XB^3$, then AX = XB.

Proof. Let Y = AX - XB, then

$$A^{2}Y = A^{3}X - A^{2}XB = XB^{3} - XB^{3} = 0,$$

 $YB^{2} = AXB^{2} - XB^{3} = A^{3}X - A^{3}X = 0.$

and

$$AYB = A^2XB - AXB^2 = XB^3 = A^3X = 0.$$

Hence $A(AY - YB) = A^2Y - AYB = 0$ and $(AY - YB)B = AYB - YB^2 = 0$. This yields that $AY - YB \in \text{ker}(\delta_{A,B}) \cap ran(\delta_{A,B}) = \{0\}$, therefore AY - YB = 0. Hence $Y \in$ $ker(\delta_{A,B}) \cap ran(\delta_{A,B}) = \{0\}$ is obtained by Theorem 2.3, this implies that Y = 0. That is, AX = XB.

Kittaneh [7] proved that if $A, B \in \mathbf{B}(\mathcal{H})$ such that $A^2 = B^2$, $A^3 = B^3$, ker $A \subset \text{ker } A^*$ and ker $B \subset \text{ker } B^*$, then A = B. This results can be generalized to any pair (A, B^*) that satisfies the Fuglede-Putnam Property as follows.

Corollary 2.5. Let $A, B \in \mathbf{B}(\mathcal{H})$. If the pair of operators (A, B^*) satisfies the Fuglede-Putnam Property and $A^2 = B^2$ and $A^3 = B^3$, then A = B.

Proof. This is an immediate consequence of Theorem 2.3 and Theorem 2.4.

Remark 2.6. Algebraic manipulations and induction show that the powers 2 and 3 in Theorem 2.4 and Corollary 2.5 can be replaced by any two relatively prime powers *n* and *m*.

In order to obtain our next result, we require some lemmas.

Lemma 2.7. Let $T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix}$ be a quasihyponormal operator on $\mathcal{H} = M \oplus M^{\perp}$, where M is a T-invariant such that the restriction $T_1 = T|_M$ is normal. Then the range of S is included in ker T_1 . In particular, if T is injective, every normal part of T reduces T.

Proof. Let *P* be the orthogonal projection onto *M*. Then we have

$$PT^*TP = \begin{pmatrix} T_1^*T_1 & 0\\ 0 & 0 \end{pmatrix} \le P|T^2|P \qquad \text{(since } T \text{ is quasihyponormal)}$$
$$\le \begin{pmatrix} (T_1^{*2}T_1^2)^{\frac{1}{2}} & 0\\ 0 & 0 \end{pmatrix} \qquad \text{(by Hansen's inequality)}$$
$$= \begin{pmatrix} T_1^*T_1 & 0\\ 0 & 0 \end{pmatrix} \qquad \text{(since } T_1 \text{ is normal).}$$

Let $|T^2| = \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix}$ be the matrix representation of $|T^2|$ on $H = M \oplus M^{\perp}$. Then we have $X = T_1^* T_1$.

$$|T^{2}|^{2} = T^{2*}T^{2} \qquad \qquad = \begin{pmatrix} X^{2} + YY^{*} & XY + YZ \\ ZY^{*} + Y^{*}X & Y^{*}Y + Z^{2} \end{pmatrix} = \begin{pmatrix} T_{1}^{*2}T_{1}^{2} & T_{1}^{*2}T_{1}S \\ S^{*}T_{1}^{*}T_{1}^{2} & S^{*}S + T_{2}^{*2}T_{2}^{2} \end{pmatrix}.$$

Hence

$$X^{2} + YY^{*} = T_{1}^{*2}T_{1}^{2} = (T_{1}^{*}T_{1})^{2} = X^{2}.$$

This implies that Y = 0. Thus we have

$$|T^{2}| = \begin{pmatrix} T_{1}^{*} T_{1}) & 0 \\ 0 & Z^{2} \end{pmatrix} \ge T^{*} T = \begin{pmatrix} T_{1}^{*} T_{1}) & T_{1}^{*} S \\ S^{*} T_{1} & S^{*} S + T_{2}^{*} T_{2}) \end{pmatrix},$$

and hence $T_1^*S = 0$. Thus the range of *S* is included in ker $T_1^* = \ker T_1$. If *T* is injective, then so is T_1 . Thus the second statement of lemma follows from [6, Lemma 10].

Lemma 2.8. If T is a quasihyponormal operator, then every normal part of T reduces T.

Proof. If *T* is invertible, then *T* is hyponormal. Hence the assertion holds by Stampfli result [12]. Now, we assume that *T* is not invertible. Let *M* be a normal part of *T*. By Lemma 2.7 *T* is of the form $\binom{N \ S}{0 \ 0}$ on $M \oplus M^{\perp}$, where *N* is normal and $ranS \subset \ker N$. It is easy to see that

$$T^{2*}T^2 = \begin{pmatrix} N^{2*}N^2 & N^{2*}NS\\ S^*N^*N^2 & S^*N^*NS \end{pmatrix}$$

and

$$(N^* T)^2 = \begin{pmatrix} (N^* N)^2 + N^* SS^* N & N^* NN^* S + N^* SS^* S \\ S^* NN^* N + S^* SS^* N & S^* NN^* S + S^* SS^* S \end{pmatrix}.$$

Then

$$0 \le T^{2*} T^2 - (T^* T)^2 = \begin{pmatrix} -N^* SS^* N - N^* SS^* S \\ -S^* SS^* N - S^* SS^* S \end{pmatrix}.$$

This implies that S = 0.

(

Theorem 2.9. Let $T \in \mathbf{B}(\mathcal{H})$ be a quasihyponormal operator. Let $L \in \mathbf{B}(\mathcal{H})$ be self-adjoint which satisfies $TL = LT^*$. Then $T^*L = LT$.

Proof. First, we will show that If $TL = LT^* = 0$, then $T^*L = LT = 0$. Since ker *T* reduces *T*, TL = 0 implies that $ranL \subset \ker T \subset \ker T^*$. Hence $\overline{ranT} \subset \ker T$. Therefore we have $T^*L = LT = 0$

Next, we prove the case $TL \neq 0$. Assume that *T* is quasihyponormal. Using the decomposition $\mathcal{H} = \overline{ranL} \oplus \ker L$, the operators *L* and *T* can be represented as follows.

$$L = \begin{pmatrix} L_1 & 0 \\ 0 & 0 \end{pmatrix}, T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix},$$

where L_1 is self-adjoint with ker $L_1 = \{0\}$ and T_1 is also quasihyponormal. The assumption $TL = LT^*$ implies that $T_1L_1 = L_1T_1^*$. Since ker T_1 reduces T_1 and L_1 , they are of the form $T_1 = T_{11} \oplus 0$ and $L_1 = L_{11} \oplus L_{22}$ on $\overline{ranL} = \overline{\ker |T|} \oplus \ker T_1$. Hence T_{11} is an injective quasihyponormal operator and L_{11} is self-adjoint operator which satisfies $T_{11}L_{11} = L_{11}T_{11}^*$. But this implies that T_{11} is normal. Hence $T_1 = T_{11} \oplus 0$ is also normal. By Fuglede-Putnam Theorem, we see that $T_1^*L_1 = L_1T_1$. since T_1 is normal, S = 0, so we have $T^*L = LT$.

Corollary 2.10. Let $T \in \mathbf{B}(\mathcal{H})$ be a quasihyponormal operator. If $X \in \mathbf{B}(\mathcal{H})$ and $TX = XT^*$, then $T^*X = XT$.

Proof. Let X = Y + iZ be the cartesian decomposition of *X*. Then $TX = XT^*$ implies that $TY = YT^*$ and $TZ = ZT^*$. By Theorem 2.9, we have $T^*Y = YT$ and $T^*Z = ZT$. Hence $TX = XT^*$.

Corollary 2.11. Let $T, S \in \mathbf{B}(\mathcal{H})$ be such that T and S^* are quasihyponormal operators. If $X \in \mathbf{B}(\mathcal{H})$ and TX = XS, then $T^*X = XS^*$.

Proof. Let $A = \begin{pmatrix} T & 0 \\ 0 & S^* \end{pmatrix}$ and $B = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$ on $\mathcal{H} \oplus \mathcal{H}$. Then *A* is quasihyponormal operator on $\mathcal{H} \oplus \mathcal{H}$ that satisfies

$$AB = \begin{pmatrix} 0 & TX \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & XS \\ 0 & 0 \end{pmatrix} = BA^*,$$

by Corollary 2.10, we have $A^*B = BA$ and therefore $T^*X = XS^*$.

The most recent generalization of the Fuglede-Putnam theorem was obtained by Uchiyama and Tanahashi [15] and can be stated as follows.

Theorem 2.12. Let $T, S \in \mathbf{B}(\mathcal{H})$ be such that T and S^* are p-hyponormal operators. If $X \in \mathbf{B}(\mathcal{H})$ and TX = XS, then $T^*X = XS^*$.

As an application of the above results we have

Lemma 2.13. Let V, A and X be operators in $\mathbf{B}(\mathcal{H})$. If V is an isometry, A^* is p-hyponormal, and X is one-one, then VX = XA implies A is unitary.

Proof. By Corollary 11, VX = XA implies that $V^*X = XA^*$. Multiply the first equation on the left by V^* to get $X = V^*A^*A$. Therefore, $X = XA^*A$. Let X = UP be the polar decomposition of X, then U is unitary and P is one-one. But this implies that $1 = A^*A$. Since A^* is p-hyponormal and $A^*A = 1$, it follows that A is normal and hence unitary.

An attempt to generalize Theorem [7, Theorem 1] to the hyponormal case was made by T. Furuta [5], who obtained the following result.

Theorem 2.14. If A and B^* are hyponormal operators in $\mathbf{B}(\mathcal{H})$, then for any $X \in \mathcal{C}_2$, $AX - XB \in \mathcal{C}_2$ implies $A^*X - XB^* \in \mathcal{C}_2$.

In the following theorem, we relax the hypotheses on A and B^* in Theorem 2.14 to p-hyponormality.

Theorem 2.15. Let $A, B \in \mathbf{B}(\mathcal{H})$ be such that A, B^* are p-hyponormal. Then for any $X \in \mathcal{C}_2$, $AX - XB \in \mathcal{C}_2$ implies $A^*X - XB^* \in \mathcal{C}_2$.

Proof. Let *A*, *B*^{*} be *p*-hyponormal for $p \ge \frac{1}{2}$ and let U|B| be the the polar decomposition of *B*. Then it follows from [2] that the Aluthge transform $\widetilde{B^*}$ of *B* is hyponormal and satisfies

$$|\widetilde{B}| \le |B| \le |\widetilde{B^*}| \tag{1.1}$$

and

$$AY - Y\widetilde{B} \in \mathscr{C}_2 \tag{1.2}$$

, where $Y = XU|B|^{\frac{1}{2}}$. Using the decomposition $\mathcal{H} = \ker Y^{\perp} \oplus \ker Y$, we see that A, \tilde{B}, Y are of the form

$$A = \begin{pmatrix} A_1 & T \\ 0 & A_2 \end{pmatrix}, \widetilde{B} = \begin{pmatrix} B_1 & 0 \\ S & B_2 \end{pmatrix}, Y = \begin{pmatrix} Y_1 & 0 \\ 0 & 0 \end{pmatrix},$$

where, A_1 is *p*-hyponormal, B_1^* is hyponormal and Y_1 is one-one mapping with dense range. It follows from equation 1.2 that

$$A_1Y_1 - Y_1B_1 \in \mathscr{C}_2. \tag{1.3}$$

Hence A_1, B_1 are normal by [11, Theorem 10], so that T = 0 by [15, Lemma 12] and S = 0 by [6]. Thus $|B| = |B_1| \oplus J$, for some positive operator J, by equation 1.1 and [15, Lemma13] that $U = \begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix}$. Let $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$ be a 2 × 2 matrix representation of X with respect to the decomposition $\mathcal{H} = \ker Y^{\perp} \oplus \ker Y$. Then, $Y = XU|B|^{\frac{1}{2}}$ implies that $Y_1 = X_{11}U_{11}|B_1|^{\frac{1}{2}}$ and hence $\ker B_1 \subset \ker Y_1 = \{0\}$. This shows that B_1 is one-one (hence, it has dense range), so that $U_{12} = 0$ and $B = B_1 \oplus B_3$, for some co-p-hyponormal operator B_3 by [15, Lemma 13]. Since,

$$\begin{pmatrix} Y_1 & 0 \\ 0 & 0 \end{pmatrix} = Y = XU|B|^{\frac{1}{2}} = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} U_{11}|B_1|^{\frac{1}{2}} & 0 \\ 0 & U_{22}|A_{33}|^{\frac{1}{2}} \end{pmatrix},$$

we have the following statements.

 $X_{12}U_{22}|B_3|^{\frac{1}{2}} = 0$; hence $X_{12}B_3 = 0$ because $B_3 = U_{22}|B_3|$. $X_{12}U_{11}|B_1|^{\frac{1}{2}} = 0$; hence $X_{12} = 0$ because $U_{11}|B_1|^{\frac{1}{2}}$ has dense range. $X_{22}U_{22}|B_3|^{\frac{1}{2}} = 0$; hence $X_{22}B_3 = 0$. The assumption $AX - XB \in \mathcal{C}_2$ imply that

 $A_1X_{11} - X_{11}B_1 \in \mathcal{C}_2$, $X_{12}B_3 = A_1X_{12} = 0$ and $X_{22}B_3 = A_2X_{22} = 0$. Since A_1 and B_1 are normal we have $A_1^*X_{11} - X_{11}B_1^* \in \mathcal{C}_2$, by Fuglede-Putnam Theorem. The *p*-hyponormality of B_3^* shows that $ranB_3^* \subset \overline{B_3}$. Also we have ker $A_2 \subset \ker A_2^*$ from the fact A_2 is *p*-hyponormal. Hence, we also have $X_{12}B_3^* = A_1^*X_{12} = 0$ and $X_{22}B_3^* = A_2^*X_{22} = 0$. This implies that $AX - XB \in \mathcal{C}_2$. Next, we prove the case where 0 . Let*Y* $be as above. Then <math>\widetilde{B^*}$ is $p + \frac{1}{2}$ -hyponormal

Next, we prove the case where 0 . Let*Y* $be as above. Then <math>B^*$ is $p + \frac{1}{2}$ -hyponormal and satisfies $AX - X\widetilde{B} \in \mathscr{C}_2$. Use the same argument as above. We obtain $\widetilde{B} = B_1 \oplus B_2$ on $\mathscr{H} = \ker Y^{\perp} \oplus \ker Y$ and $A = A_1 \oplus A_2$, where B_1 is an injective normal operator and A_1 is also normal. Hence, we have $B = B_1 \oplus B_3$ for some *p*-hyponormal B_3^* . Again using the same argument as above we obtain the result.

References

- A. Al-Moadjil, On the commutant of relatively prime powers in banach algebra, Proc. Amer. Math. Soc. 57(1976), 243–249.
- [2] A. Aluthge, On the *p*-hyponormal for 0 , Integ. Equat. Oper. Th.**13**(1990), 307–315.
- [3] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38(1973), 135-140.
- [4] A. Bachir, Generalized derivation, SUT J. Math 40(2004), no.2, 111-114.
- [5] T. Furuta, An extension of the Fuglede-Putnam Theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc.81(1981), 240–242.

- [6] I. Kim, The Fuglede-Putnam Theorem for (p,k)-quasihyponormal operators, J. Ineq. Appl. Artical 47481(2006), 1–7.
- [7] F. Kittaneh, On generalized Fuglede-Putnam Theorems of Hilbert-Schmidt type, Proc. Amer. Math. Soc. 88(1983), 293–298.
- [8] F. Kittaneh, Inequalities for the schatten p-norm II, Glasgow Math. J. 29(1987), 99–104.
- [9] F. Kittaneh, On normal derivations of Hilbert-Schmidt type, Glasgow Math. J. 29(1987), 245–248.
- [10] F. Kittaneh, Normal derivations in normal ideals, Proc. Amer. Math. Soc., 123(1995), 1179–1785.
- [11] M. Otieno, On intertwining and ω -hyponormal operators, Opuscula Math. **25**(2005), 275–285.
- [12] J. G. Stampfli, Hyponormal operators, Pacific J. Math., 12(1962), 1453-1458.
- [13] J. Stampfli and B. Wadhwa, On dominant operators, Monatshefte. Für. Math. 84(1977), 33–36.
- [14] T. Tanahashi, On log-hyponormal operators, Math. Ineq. Appl., 2(1999), 123–130.
- [15] A. Uchiyama and K. Tanahashi, *Fuglede-Putnam Theorem For p-hyponormal Or log-hyponormal operators*, Glassgow Math. J. **44**(2002), 397–410.

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor, Malaysia.

E-mail:malik_okasha@yahoo.com, msn@pkrisc.cc.ukm.my, shabir@pkrisc.cc.ukm.my