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CHARACTERIZATION OF SOME MATRIX CLASSES

INVOLVING PARANORMED SEQUENCE SPACES

BINOD CHANDRA TRIPATHY AND MAUSUMI SEN

Abstract. In this article we characterize some matrix classes with one member as m(p) or m0(p)

or c(p) or c0(p). Some of these results generalize the existing results. Some are new proved in

the general setting.

1. Introduction

Throughout the article w, γ, γ0, c, c0, ℓ∞ denote the spaces of all, summable,

summable to zero, convergent, null and bounded sequences respectively. The notion of
statistical convergence of sequences was introduced by Fast [3], Schoenberg [12] and Buck
[1] independently. Later on the idea was exploited from sequence space point of view
and linked with summability by Fridy [4], Šalát [11], Kolk [5], Rath and Tripathy [10],
Connor [2], Tripathy([14], [15]) and many others. The basic idea depends on the density
of the subsets of N , the set of natural numbers. A subset E of N is said to have density
δ(E) if δ(E) = limn→∞

1
n

∑n

k=1 χE(k) exists, where χE is the characteristic function of
E.

A sequence (xk) is said to be statistically convergent to L if for every ε < 0, δ({k ∈

N : |xk − L| ≥ ε}) = 0. We write xk
stat
−→ L or stat-limxk = L.

Tripathy and Sen [17] have generalized the notion on extending it for paranormed
sequence spaces. The notion of paranormed sequence space was first studied by Nakano
[9] and Simons [13]. Later on it was exploited by Maddox [8], Lascarides and Maddox
[7], Lascarides [6], Tripathy [16] and many others. Throughout p = (pk) ∈ ℓ∞ denote a
non-negative sequence of real numbers. We write rk = 1

pk
for all k ∈ N .

The following known paranormed sequence spaces will be used.

c(p) = {(xk) ∈ w : |xk − L|pk → 0, as k → ∞ for some L}

c0(p) = {(xk) ∈ w : |xk|
pk → 0, as k → ∞}

ℓ∞(p) = {(xk) ∈ w : sup
k

|xk|
pk < ∞}

c(p) = {(xk) ∈ w : |xk − L|pk
stat
−→ 0, for some L}

c0(p) = {(xk) ∈ w : |xk|
pk

stat
−→ 0}.
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We write m(p) = c(p) ∩ ℓ∞(p) and m0(p) = c0(p) ∩ ℓ∞(p).

The above spaces are paranormed by g((xk)) = sup
k

|xk|
pk
M , where M = max(1, sup pk).

2. Preliminaries

The following results will be used for establishing the results of this article.

Lemma 1. (Tripathy and Sen [17], Theorem 2). The space m(p) is a closed subspace

of ℓ∞(p).

Lemma 2. (Lascarides [6], Remark, P.494). Let p, q ∈ ℓ∞. Then we have A =

(ank) ∈ (c0(p), ℓ∞(q)) if and only if there exists an absolute constant D > 1 such that

sup
n

{

∑

k

|ank|D
−rk

}qn

< ∞. (2.1)

In view of the above lemma and using standard techniques we have the following

result.

Lemma 3. Let (pk) ∈ ℓ∞. Then A = (ank) ∈ (ℓ∞, ℓ∞(p)) if and only if

sup
n

{

∑

k

|ank|
}qn

< ∞. (2.2)

Lemma 4. (Lascarides [6], Theorem 9.) Let p ∈ ℓ∞(p). Then A = (ank) ∈ (c(p), c)

if and only if there exists an absolute constant D > 1 such that

sup
n

∑

k

|ank|D
−rk < ∞, (2.3)

lim
n→∞

ank = αk exists for every fixed k. (2.4)

lim
n→∞

∑

k

ank = αnk exists. (2.5)

Lemma 5. Let 0 < inf pk ≤ sup pk < ∞. Then for any linear subspace X of ℓ∞(p),

the following are equivalent:

X is complete with respect to g. (2.6)

If
∑

k

ank converges uniformly to an for each n ∈ N and for each k ∈ N,

ak = (ank)n∈N ∈ X, then a = (an) ∈ X. (2.7)
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Proof. (2.6)⇒(2.7). Suppose
∑

k ank converges uniformly to an for each n ∈ N and

ak = (ank)n∈N ∈ X for each k ∈ N . Since X is linear, so sj =
∑j

k=1 ak ∈ X , j ∈ N . We

have ‖sj − a‖ = sup
n

|
∑

k>j ank|
pk
M .

Since the convergence of
∑

k ank is uniform, so given 1 > ε > 0, there exists j0 such

that ‖sj − a‖ < ε
h
M for all j > j0.

Thus we have a ∈ X , since X is complete.

(2.7)⇒(2.6). Let (xm), where xm = (xm
k )k∈N , be a Cauchy sequence in X . Then

(xm) converges (say to x) in ℓ∞(p), since ℓ∞(p) is complete. Write akm = xm
k − xm−1

k

(x0
k = 0). Then

∑

m akm converges uniformly to xk and (akm)k∈N = am ∈ X .

Note 1. Taking pn = 1 for all n ∈ N , one will get Lemma 4 of Rath and Tripathy
[10] as particular case.

Lemma 6. Let (pk) ∈ ℓ∞, then A = (ank) ∈ (γ, ℓ∞(p)) if and only if

T = sup
n

{

∑

k

|∆ank|
}pn

< ∞, where ∆ank = ank − an,k+1, for all k ∈ N, (2.8)

and

(am) ∈ ℓ∞(p). (2.9)

Proof. Let s = (sk) ∈ γ and Sn =
∑n

k=1 sk → S as n → ∞. Then by Abel’s
summation formula we have

Ans =
∞
∑

k=1

anksk = San1 +
∞
∑

k=1

∆ank(Sk − S). (2.10)

The rest of the proof is a routine work in view of Lemma 2 and using standard

techniques.

The proof of the following result is a routine work in view of Lemma 6.

Lemma 7. Let (pk) ∈ ℓ∞, then A = (ank) ∈ (γ0, ℓ∞(p)) if and only if (2.8) holds.

3. The Main Results

In this section we establish the results of this article.

Theorem 1. Let 0 < inf pk ≤ sup pk < ∞. Then A = (ank) ∈ (γ, m(p)) if and only

if (2.8) holds and

(ank)n∈N ∈ m(p), for every k ∈ N. (3.1)
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Proof. The necessity of (2.8) follows from the inclusion (γ, m(p)) ⊂ (γ, ℓ∞(p)) and

Lemma 5 and that of (3.1) on considering the sequence ek = (0, 0, · · · 0, 1, 0, · · · ) in γ

where the only 1 appears at the k-th place.

Sufficiency. Let s = (sk) ∈ γ. We have by (3.1) that (∆ank)n∈N ∈ m(p) for all

k = 1, 2, 3, · · · .

Hence we have San1 +
∑

k≤j0
∆ank(Sk − S) ∈ m(p), by the linearity.

Next we have
∣

∣

∣

∑

k>j0

∆ank(Sk − S)
∣

∣

∣
≤ T

1

h max
k>j0

|Sk − S|

→ 0, uniformly in n as j0 → ∞.

Hence by Lemma 1, Lemma 5 and (2.8) we have As ∈ m(p).

This completes the proof of the theorem.

The proof of the following result is obvious in view of the above result.

Corollary 1. Let 0 < inf pk ≤ sup pk < ∞. Then A = (ank) ∈ (γ0, m(p)) if and only

if (2.8) holds and (ank)n∈N ∈ m0(p), for every k ∈ N .

Following the techniques of Tripathy [15] and the arguments of Theorem 1, we have

the following result.

Theorem 2. Let 0 < inf pk ≤ sup pk < ∞. Then A = (ank) ∈ (γ, m(p); P ) if and

only if (2.8) holds and (ank − 1)n∈N ∈ m0(p), for all k = 1, 2, 3, · · · . In this transforma-

tion, the limit is preserved.

Theorem 3. Let 0 < inf pk ≤ sup pk < ∞. Then A = (ank) ∈ (γ0, m(p)) if and only

if (2.8) holds and

(∆ank)n∈N ∈ m(p), for each fixed k ∈ N. (3.2)

Proof. The necessity of (2.8) follows from the inclusion (γ0, m(p)) ⊂ (γ0, ℓ∞(p)) and

Lemma 7. The necessity of (3.2) follows on considering the series (sk) whose k-th term

is 1 and (k-1)-th term is −1 and rest are zero.

Putting S = 0 in (2.10) we have

Ans =

∞
∑

k=1

∆ankSk, for all n = 1, 2, 3, · · · .

Following the techniques of Theorem 1, it can be shown that As ∈ m(p). This

completes the proof of the theorem.

The following result is an easy consequence of the above theorem.
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Corollary 2. Let 0 < inf pk ≤ sup pk < ∞. Then A = (ank) ∈ (γ0, m(p)) if and only

if (2.8) holds and

(∆ank)n∈N ∈ m0(p), for all k = 2, 3, 4, · · · . (3.3)

Note 2. Taking pn = 1 for all n ∈ N in Theorem 1, Corollary 1, Theorem 2, Theorem

3, and Corollary 2, we have the characterization of the matrix classes (γ, m), (γ, m0),

(γ, m; P ), (γ0, m) and (γ0, m0) i.e. the results of Tripathy [15] as particular cases.

It is well known that c(p) ⊂ ℓ∞ if p ∈ ℓ∞. The proofs of the following results are

routine works in view of Lemma 5, taking pn = 1 for all n ∈ N and the technique for

establishing the above results.

Proposition 4. Let p ∈ ℓ∞ and X be either c(p) or c0(p). Then

A = (ank) ∈ (γ, X) if and only if (2.8) holds with pn = 1 for all n ∈ N

and (ank)n∈N ∈ X for all k ∈ N. (3.4)

A = (ank) ∈ (γ0, X) if and only if (2.8) holds with pn = 1 for all n ∈ N

and (∆ank)n∈N ∈ X for all k ∈ N. (3.5)

Proposition 5. Let p ∈ ℓ∞. Then A = (ank) ∈ (γ, c(p); P ) if and only if (2.8) holds

and

|ank − 1|pn → 0, as n → ∞ for all k ∈ N.

Theorem 6. Let 0 < inf pk ≤ sup pk < ∞. Then A = (ank) ∈ (m(p), c) if and only

if (2.3), (2.4), (2.5) hold and

lim
n→∞

∑

n∈S

|ank − αk|F
rk =0 for each S ⊂ N with δ(S)=0 and for all F >1. (3.6)

Proof. The necessity of (2.3) is clear in view of the inclusion (m(p), c) ⊂ (c(p), c). The

necessity of (2.4) and (2.5) follow on considering the sequences ek and e = (1, 1, 1, · · · )

respectively.

Next suppose A ∈ (m(p), c) but limn→∞

∑

k∈S |ank − αk|F
rk 6= 0 for some F > 1.

Let us define the matrix B = (bnk) as follows:

bnk =

{

(ank − αk)F rk , k ∈ S,

0, othewise,

for all n ∈ N .

Then

lim
n→∞

∞
∑

k=1

|bnk| = lim
n→∞

∑

k∈S

|ank − αk|F
rk 6= 0.
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Thus B /∈ (ℓ∞, c), so there exists x = (xk) ∈ ℓ∞ with sup
k

|xk| = 1 such that Bx /∈ c i.e.

(

∑

k∈S

(ank − αk)F rkxk

)

/∈ c. (3.7)

Define the sequence y = (yk) as follows:

yk =

{

xkF rk , k ∈ S,
0, othewise,

Then y ∈ m(p). We have for each n ∈ N ,

Any =

∞
∑

k=1

ankyk =
∑

k∈S

ankxkF rk =
∑

k∈S

(ank − αk)xkF rk +
∑

k∈S

αkxkF rk .

Thus (Any) /∈ c by (3.7). Hence the necessity of (3.6) follows.

Sufficiency. Let x = (xk) ∈ m(p). Then there exists y = (yk) ∈ c(p) and z = (zk) ∈
δ0(p) such that xk = yk + zk for all k ∈ N . By (2.3), (2.4), (2.5) we have A ∈ (c(p), c).
Thus Ay = (Any) ∈ c whenever y ∈ c(p). Next we have

∣

∣

∣

∞
∑

k=1

ankzk −
∞
∑

k=1

αkzk

∣

∣

∣
=

∣

∣

∣

∑

k∈S

(ank − αk)zk

∣

∣

∣

≤
∑

k∈S

|ank − αk|F
rk → 0, as n → ∞.

Therefore Az ∈ c. Hence A ∈ (m(p), c). This completes the proof of the theorem.

The proof of the following two results is a routine work in view of the proof of the
above result.

Corollary 3. A = (ank) ∈ (m(p), c; P ) if and only if the conditions (2.3), (2.4), (2.5)
with α = 1 and (3.6) with αk = 0 for each k = 1, 2, 3, . . . hold.

Corollary 4. A = (ank) ∈ (m0(p), c) if and only if (2.3), (2.4) and (3.6) hold.

Theorem 7. Let p, q ∈ ℓ∞, then A = (ank) ∈ (mo(p), ℓ∞(q)) if and only if (2.1)
holds and

sup
n

{

∑

k

|ank|F
rk

}qn

< ∞ for each S ⊂ N with δ(S) = 0 and for all F > 1. (3.8)

Proof. The necessity of (2.1) follows from the inclusion (m0(p), ℓ∞(q)) ⊂ (c0(p),
ℓ∞(q)). Next let S ⊂ N be such that δ(S) = 0 and sup

n

{
∑

k |ank|F
rk}qn = ∞ for some

F > 1. Define a matrix B = (bnk) as follows:

bnk =

{

ankF rk , k ∈ S,

0, othewise,
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for all n ∈ N .

We have

sup
n

{

∞
∑

k=1

|bnk|
}qn

= sup
n

{

∑

k∈S

|ank|F
rk

}qn

= ∞.

Hence B /∈ (ℓ∞, ℓ∞(q)). Thus there exists x = (xk) ∈ ℓ∞ with sup
n

|xk| = 1 such that

(

∞
∑

k=1

bnkxk

)

=
(

∑

k∈S

ankF rkxk

)

/∈ ℓ∞(q). (3.9)

Define the sequence y = (yk) as follows:

yk =

{

xkF rk , k ∈ S,

0, othewise.

Then clearly (yk) ∈ m0(p). But (Any) /∈ ℓ∞(q) by (3.9), as such we arrive at a

contradiction. Thus the necessity of (3.8) follows.

Sufficiency. Let x = (xk) ∈ m0(p). Then for a given 0 < ε < 1, δ(K) = δ({k ∈ N :
|xk|

pk < ε}) = 1 and |xk|
pk < F for all k ∈ N . Let D = ε−1, then D > 1. If k ∈ K, then

|xk| < D−rk and for k /∈ K, we have |xk| < F rk . We have

∣

∣

∣

∞
∑

k=1

ankxk

∣

∣

∣

qn

≤ C
[{

∑

k∈K

|ank‖xk|
}qn

+
{

∑

k∈Kc

|ank‖xk|
}qn

]

≤ C
[{

∑

k∈K

|ank|D
−rk

}qn

+
{

∑

k∈Kc

|ank|F
rk

}qn
]

< ∞.

Thus A ∈ (m0(p), ℓ∞(q)). This completes the proof of the theorem.
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