Available online at http://journals.math.tku.edu.tw/

CLASS OF BOUNDED OPERATORS ASSOCIATED WITH AN ATOMIC SYSTEM

P. SAM JOHNSON AND G. RAMU

Abstract. *K*-frames, more general than the ordinary frames, have been introduced by Laura Găvruța in Hilbert spaces to study atomic systems with respect to a bounded linear operator. Using the frame operator, we find a class of bounded linear operators in which a given Bessel sequence is an atomic system for every member in the class.

1. Introduction

Frames in Hilbert spaces were introduced by J. Duffin and A.C. Schaffer [1] in 1952, in the context of nonharmonic Fourier series. After a couple of years, in 1986, frames were brought to life by Daubechies, Grossmann and Meyer [2]. Now frames play an important role not only in the theoretics but also in many kinds of applications, and have been widely applied in signal processing [3], sampling theory [4], coding and communications [5] and so on. The notion of *K*-frames has been recently introduced by Laura Găvruța to study the atomic systems with respect to a bounded linear operator *K* in Hilbert spaces. It is known that *K*-frames are more general than ordinary frames, and many properties for ordinary frames may not hold for *K*-frames have been discussed in [6]. In this paper, we construct a frame sequence for the closed subspace R(K) (the range of *K*) from an atomic system for a closed range operator *K*. In the end, we find a class of bounded linear operators in which a given Bessel sequence is an atomic system for every member in the class.

Throughout the paper, *H* is a separable Hilbert space. We denote by $\mathscr{B}(H)$ the space of all bounded linear operators on *H*. For $T \in \mathscr{B}(H)$, we denote by R(T) the range of *T* and N(T) the null space of *T*.

Received February 17, 2014, accepted April 22, 2014.

2010 Mathematics Subject Classification. 42C15.

Key words and phrases. Bessel sequences, frames, atomic systems, *K*-Frames. Corresponding author: G. Ramu.

2. Notations and preliminaries

Definition 2.1. A family $\{f_i\}_{i=1}^{\infty}$ of vectors in H is called a *Bessel sequence* if there exists a constant B > 0 such that

$$\sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le B ||f||^2, \text{ for all } f \in H.$$

$$(2.1)$$

For a Bessel sequence $\{f_i\}_{i=1}^{\infty}$, an operator $T : \ell_2 \to H$ defined by $T(\{c_i\}_{i=1}^{\infty}) = \sum_{i=1}^{\infty} c_i f_i$, is bounded. *T* is called the *pre-frame operator* or the *synthesis operator*. The adjoint of *T*, $T^* : H \to \ell_2$ defined by $T^*f = \{\langle f, f_i \rangle\}_{i=1}^{\infty}$ is called the *analysis operator*. By composing *T* and T^* , we obtain the *frame operator*

$$Sf = TT^* f = \sum_{i=1}^{\infty} \langle f, f_i \rangle f_i, \text{ for } f \in H.$$
(2.2)

Moreover, for each $f \in H$, $\langle Sf, f \rangle = \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2$, *S* is a bounded positive self-adjoint operator and by Lemma A.6.7 in [7], *S* has a unique positive square root, denoted by $S^{1/2}$.

Definition 2.2. A Bessel sequence $\{f_i\}_{i=1}^{\infty}$ is a *frame* for *H* if there is a constant A > 0 such that

$$A\|f\|^{2} \leq \sum_{i=1}^{\infty} |\langle f, f_{i} \rangle|^{2}, \text{ for all } f \in H.$$

$$(2.3)$$

A and B are called the *lower and upper frame bounds* for the frame, they are not unique.

Definition 2.3 ([8]). Let $K \in \mathcal{B}(H)$. A sequence $\{f_i\}_{i=1}^{\infty}$ in H is called an atomic system for K, if the following conditions are satisfied :

- 1. $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence;
- 2. there exists c > 0 such that for every $f \in H$ there exists $a_f = \{a_i\}_{i=1}^{\infty} \in \ell_2$ such that $||a_f||_{\ell_2} \le c||f||$ and $Kf = \sum_{i=1}^{\infty} a_i f_i$.

Every operator $K \in \mathcal{B}(H)$ has an atomic system. One may ask whether every Bessel sequence $\{f_i\}_{i=1}^{\infty}$ has an operator K which makes $\{f_i\}_{i=1}^{\infty}$ an atomic system for K. The answer is in the affirmative by the following proposition.

Proposition 2.4. Let $\{f_i\}_{i=1}^{\infty}$ be a Bessel sequence in H. Then $\{f_i\}_{i=1}^{\infty}$ is an atomic system for the frame operator S.

Proof. Since $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence in *H*, the frame operator *S* defined as in (2.2), is bounded on *H*. Let $a_f = \{a_i\}_{i=1}^{\infty} = \{\langle f, f_i \rangle\}_{i=1}^{\infty} \in \ell_2$. Now

$$\|a_f\|_{\ell_2}^2 = \|\{\langle f, f_i \rangle\}_{i=1}^{\infty}\|_{\ell_2}^2 = \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le B \|f\|^2.$$

As $||a_f||_{\ell_2} \le \sqrt{B} ||f||$ for each $f \in H$ and $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence, $\{f_i\}_{i=1}^{\infty}$ is an atomic system for the frame operator *S*.

Definition 2.5. [8] Let $K \in \mathscr{B}(H)$. A sequence $\{f_i\}_{i=1}^{\infty}$ in *H* is called a *K*-frame for *H* if there exist constants *A*, *B* > 0 such that

$$A \|K^* f\|^2 \le \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le B \|f\|^2$$
, for all $f \in H$.

We call A, B the *lower and upper frame bounds* for the K-frame $\{f_i\}_{i=1}^{\infty}$ respectively.

Definition 2.6. Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in *H*. We say that $\{f_i\}_{i=1}^{\infty}$ is a *frame sequence* if it is a frame for the closed subspace $\overline{span}\{f_i\}_{i=1}^{\infty}$ of *H*.

Definition 2.7 ([9]). Let *H* be a Hilbert space, and suppose that $E \in \mathscr{B}(H)$ has a closed range. Then there exists an operator $E^{\dagger} \in \mathscr{B}(H)$ for which

$$N(E^{\dagger}) = R(E)^{\perp}, \quad R(E^{\dagger}) = N(E)^{\perp}, \quad EE^{\dagger}y = y, \quad y \in R(E).$$

We call the operator E^{\dagger} the *pseudo-inverse* of *E*. This operator is uniquely determined by these properties. In fact, if *E* is invertible, then we have $E^{-1} = E^{\dagger}$.

Definition 2.8 ([10]). Assume that $S, K \in \mathcal{B}(H)$. Then *S* majorizes *K* if there exists M > 0 such that $||Kx|| \le M||Sx||$ for all $x \in H$.

Theorem 2.9 (Douglas' majorization theorem [10]). *Let* H *be a Hilbert space and* $S, K \in \mathcal{B}(H)$. *Then the following are equivalent:*

- 1. $R(K) \subseteq R(S)$;
- 2. $KK^* \leq \lambda^2 SS^*$ for some $\lambda \geq 0$ (i.e., S^* majorizes K^*);
- 3. K = SU for some $U \in \mathcal{B}(H)$.

3. Main results

Theorem 3.1 ([8]). Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in H and $K \in \mathcal{B}(H)$. Then the following statements are equivalent:

- 1. $\{f_i\}_{i=1}^{\infty}$ is an atomic system for K;
- 2. $\{f_i\}_{i=1}^{\infty}$ is a K-frame for H;
- 3. there exists a Bessel sequence $\{g_i\}_{i=1}^{\infty}$ such that $Kf = \sum_{i=1}^{\infty} \langle f, g_i \rangle f_i$.

Theorem 3.2. [6] Let $\{f_i\}_{i=1}^{\infty}$ be a Bessel sequence in H and $K \in \mathcal{B}(H)$. Then $\{f_i\}_{i=1}^{\infty}$ is a K-frame for H if and only if there exists A > 0 such that $S \ge AKK^*$, where S is the frame operator for $\{f_i\}_{i=1}^{\infty}$.

Each atomic system is associated with a bounded operator on H. We analyse a class of operators in $\mathscr{B}(H)$ associated with a given atomic system.

Theorem 3.3. Let $K_1, K_2 \in \mathcal{B}(H)$. If $\{f_i\}_{i=1}^{\infty}$ is an atomic system for K_1 and K_2 , and α, β are scalars, then $\{f_i\}_{i=1}^{\infty}$ is an atomic system for $\alpha K_1 + \beta K_2$ and $K_1 K_2$.

Proof. It is given that $\{f_i\}_{i=1}^{\infty}$ is an atomic system for K_1 and K_2 , then there are positive constants $A_n, B_n > 0$ (n = 1, 2) such that

$$A_n \|K_n^* f\|^2 \le \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le B_n \|f\|^2, \text{ for all } f \in H.$$
(3.1)

By simple calculations, we have

$$\frac{A_1 A_2}{A_2 |\alpha|^2 + A_1 |\beta|^2} \|(\alpha K_1 + \beta K_2)^* f\|^2 \le \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2.$$

Hence $\{f_i\}_{i=1}^{\infty}$ satisfies the lower frame condition. And from inequalities (3.1), we get

$$\sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le \left(\frac{B_1 + B_2}{2}\right) ||f||^2, \text{ for all } f \in H.$$

Therefore $\{f_i\}_{i=1}^{\infty}$ is an atomic system for $\alpha K_1 + \beta K_2$.

Now for each $f \in H$, we have $||(K_1K_2)^* f||^2 = ||K_2^*K_1^* f||^2 \le ||K_2^*||^2 ||K_1^* f||^2$. Since $\{f_i\}_{i=1}^{\infty}$ is an atomic system for K_1 ,

$$\frac{\|(K_1K_2)^*f\|^2}{\|K_2^*\|^2} \le \|K_1^*f\|^2 \le \frac{1}{A_1} \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le \frac{B_1}{A_1} \|f\|^2.$$

This implies that $\frac{A_1}{\|K_2^*\|^2} \|(K_1K_2)^* f\|^2 \le \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le B_1 \|f\|^2$, for all $f \in H$. Therefore $\{f_i\}_{i=1}^{\infty}$ is an atomic system for K_1K_2 .

Corollary 3.4. If $\{f_i\}_{i=1}^{\infty}$ is an atomic system for \mathcal{A} , where $\mathcal{A} \subseteq \mathcal{B}(H)$, then $\{f_i\}_{i=1}^{\infty}$ is an atomic system for any operator in the subalgebra generated by \mathcal{A} .

Corollary 3.5. If $\{f_i\}_{i=1}^{\infty}$ is an atomic system for a normal operator K, then $\{f_i\}_{i=1}^{\infty}$ is an atomic system for any operator in the subalgebra generated by K and K^* .

Theorem 3.6. Let $\{f_i\}_{i=1}^{\infty}$ be an atomic system for a closed range operator K (i.e., K has a closed range). Then there exists a Bessel sequence $\{g_i\}_{i=1}^{\infty}$ such that $\{(K^{\dagger}|_{R(K)})^*g_i\}_{i=1}^{\infty}$ is a frame sequence for R(K).

Proof. As $\{f_i\}_{i=1}^{\infty}$ is an atomic system, by Theorem 3.1, there exists a Bessel sequence $\{g_i\}_{i=1}^{\infty}$ such that $Kf = \sum_{i=1}^{\infty} \langle f, g_i \rangle f_i$. Since $\{g_i\}_{i=1}^{\infty}$ is a Bessel sequence, there exists B > 0 such that

$$\sum_{i=1}^{\infty} |\langle f, g_i \rangle|^2 \le B ||f||^2, \text{ for every } f \in H.$$

Hence

$$\sum_{i=1}^{\infty} |\langle f, K^{\dagger^*} g_i \rangle|^2 \le D ||f||^2, \text{ where } D = B ||K^{\dagger}||^2.$$

Using the definition of pseudo-inverse and (3) of Theorem 3.1, for any $f \in R(K)$,

$$f = KK^{\dagger}f = \sum_{i=1}^{\infty} \langle K^{\dagger}f, g_i \rangle f_i = \sum_{i=1}^{\infty} \langle f, K^{\dagger *}g_i \rangle f_i.$$

Also

$$\|f\|^{4} = |\langle f, f \rangle|^{2} = \left|\langle f, \sum_{i=1}^{\infty} \langle f, K^{\dagger^{*}}g_{i}\rangle f_{i}\rangle\right|^{2} \le \sum_{i=1}^{\infty} |\langle f, K^{\dagger^{*}}g_{i}\rangle|^{2}B\|f\|^{2}.$$

Therefore $\frac{1}{B} \|f\|^2 \leq \sum_{i=1}^{\infty} |\langle f, K^{\dagger *} g_i \rangle|^2$, for all $f \in R(K)$. Thus $\{(K^{\dagger}|_{R(K)})^* g_i\}_{i=1}^{\infty}$ is a frame sequence for R(K).

The following example illustrates that a Bessel sequence $\{f_i\}_{i=1}^{\infty}$ is an atomic system for an operator *K* but it is not the same for other operator *L*.

Example 3.7. Let $H = \mathbb{C}^3$ and $\{e_1, e_2, e_3\}$ be an orthonormal basis for H. Define $K : H \to H$ by $Ke_1 = e_1$, $Ke_2 = e_1$, $Ke_3 = e_2$. Then $\{f_i\}_{i=1}^3 = \{e_1, e_1, e_2\}$ is a K-frame for H. The frame operator is $S = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and its square root is $S^{1/2} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Let $L = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ and $f = e_3 \in H$. Then $\sum_{i=1}^3 |\langle f, f_i \rangle|^2 = 0$ and $\|L^*f\|^2 = 4$. Hence $\{f_i\}_{i=1}^3$ is not a L-frame for H.

Theorem 3.8. Let $\{f_i\}_{i=1}^{\infty}$ be a Bessel sequence in H. Then $\{f_i\}_{i=1}^{\infty}$ is a K-frame for H if and only if $K = S^{1/2}T$, for some $T \in \mathcal{B}(H)$.

Proof. Suppose $\{f_i\}_{i=1}^{\infty}$ is a *K*-frame, by Theorem 3.2, there exists A > 0 such that

$$AKK^* \le S^{1/2}S^{1/2^*}$$

Then by definition of inner product, for each $f \in H$, $||K^*f||^2 \le A^{-1}||S^{1/2}f||^2$. Therefore $S^{1/2}$ majorizes K^* . By Douglas' majorization theorem, $K = S^{1/2}T$, for some $T \in \mathcal{B}(H)$.

On the other hand, let $K = S^{1/2}T$ for some $T \in \mathcal{B}(H)$. Then by Douglas' majorization theorem, $S^{1/2}$ majorizes K^* . Then there is a positive *A* such that

$$||K^*f|| \le A ||S^{1/2}f||$$
, for all $f \in H$

which implies that $KK^* \leq A^2S$. Hence by Theorem 3.2, $\{f_i\}_{i=1}^{\infty}$ is a *K*-frame for *H*.

Remark 3.9. In the above example, the operator *L* is not of the form $S^{1/2}T$, for any operator $T \in \mathcal{B}(H)$, because *L* has a column which is not a linear combination of columns of $S^{1/2}$.

P. SAM JOHNSON AND G. RAMU

Acknowledgement

The present work of first author was partially supported by National Board for Higher Mathematics (NBHM), Ministry of Atomic Energy, Government of India (Reference No.2/48 (16)/2012/NBHM(R.P.)/R&D 11/9133). The authors would like to thank the anonymous referee for valuable comments and suggestions to improve the quality of the paper.

References

- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341–366.
- [2] I. Daubechies, A. Grossmann and Y. Meyer, *Painless nonorthogonal expansions*, J. Math. Phys., 27(1986), 1271-1283.
- [3] P. Ferreira, *Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction*, Byrnes, J.S. (ed.) **17**(1999), 35-54.
- [4] Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl., 9(2003), 77–96.
- [5] T. Strohmer and R. W. Heath, Jr., *Grassmannian frames with applications to coding and communication*, Appl. Comput. Harmon. Anal., 14(2003), 257–275.
- [6] X. Xiao, Y. Zhu, L. Găvruța, Some properties of K-frames in Hilbert spaces, Results Math., 63 (2013), 1243-1255.
- [7] O. Christensen, *An introduction to frames and Riesz bases*, Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA, 2003.
- [8] L. Găvruța, Frames for operators, Appl. Comput. Harmon. Anal., 32(2012), 139-144.
- [9] P. G. Casazza, The art of frame theory, Taiwanese J. Math., 4(2000), 129–201.
- [10] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(1966), 413–415.

Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India.

E-mail: sam@nitk.ac.in

Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India.

E-mail: ramu.geddavalasa@gmail.com