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CLASS OF BOUNDED OPERATORS ASSOCIATED
WITH AN ATOMIC SYSTEM

P. SAM JOHNSON AND G. RAMU

Abstract. K -frames, more general than the ordinary frames, have been introduced by
Laura Găvruţa in Hilbert spaces to study atomic systems with respect to a bounded linear
operator. Using the frame operator, we find a class of bounded linear operators in which
a given Bessel sequence is an atomic system for every member in the class.

1. Introduction

Frames in Hilbert spaces were introduced by J. Duffin and A.C. Schaffer [1] in 1952, in the

context of nonharmonic Fourier series. After a couple of years, in 1986, frames were brought

to life by Daubechies, Grossmann and Meyer [2]. Now frames play an important role not

only in the theoretics but also in many kinds of applications, and have been widely applied in

signal processing [3], sampling theory [4], coding and communications [5] and so on. The no-

tion of K -frames has been recently introduced by Laura Găvruţa to study the atomic systems

with respect to a bounded linear operator K in Hilbert spaces. It is known that K -frames are

more general than ordinary frames, and many properties for ordinary frames may not hold

for K -frames. Several methods to construct K -frames and the stability of perturbations for

the K -frames have been discussed in [6]. In this paper, we construct a frame sequence for the

closed subspace R(K ) (the range of K ) from an atomic system for a closed range operator K .

In the end, we find a class of bounded linear operators in which a given Bessel sequence is an

atomic system for every member in the class.

Throughout the paper, H is a separable Hilbert space. We denote by B(H) the space of

all bounded linear operators on H . For T ∈B(H), we denote by R(T ) the range of T and N (T )

the null space of T .
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2. Notations and preliminaries

Definition 2.1. A family { fi }∞i=1 of vectors in H is called a Bessel sequence if there exists a con-

stant B > 0 such that ∞∑
i=1

|〈 f , fi 〉|2≤B∥ f ∥2, for all f ∈ H . (2.1)

For a Bessel sequence { fi }∞i=1, an operator T : ℓ2 → H defined by T ({ci }∞i=1) = ∑∞
i=1 ci fi , is

bounded. T is called the pre-frame operator or the synthesis operator. The adjoint of T , T ∗ :

H → ℓ2 defined by T ∗ f = {〈 f , fi 〉}∞i=1 is called the analysis operator. By composing T and T ∗,

we obtain the frame operator

S f = T T ∗ f =
∞∑

i=1
〈 f , fi 〉 fi , for f ∈ H . (2.2)

Moreover, for each f ∈ H , 〈S f , f 〉 =∑∞
i=1 |〈 f , fi 〉|2, S is a bounded positive self-adjoint operator

and by Lemma A.6.7 in [7], S has a unique positive square root, denoted by S1/2.

Definition 2.2. A Bessel sequence { fi }∞i=1 is a frame for H if there is a constant A > 0 such that

A∥ f ∥2≤
∞∑

i=1
|〈 f , fi 〉|2, for all f ∈ H . (2.3)

A and B are called the lower and upper frame bounds for the frame, they are not unique.

Definition 2.3 ([8]). Let K ∈ B(H). A sequence { fi }∞i=1 in H is called an atomic system for K ,

if the following conditions are satisfied :

1. { fi }∞i=1 is a Bessel sequence;

2. there exixts c > 0 such that for every f ∈ H there exists a f = {ai }∞i=1 ∈ ℓ2 such that ∥a f ∥ℓ2 ≤
c∥ f ∥ and K f =∑∞

i=1 ai fi .

Every operator K ∈ B(H) has an atomic system. One may ask whether every Bessel se-

quence { fi }∞i=1 has an operator K which makes { fi }∞i=1 an atomic system for K . The answer is

in the affirmative by the following proposition.

Proposition 2.4. Let { fi }∞i=1 be a Bessel sequence in H. Then { fi }∞i=1 is an atomic system for the

frame operator S.

Proof. Since { fi }∞i=1 is a Bessel sequence in H , the frame operator S defined as in (2.2), is

bounded on H . Let a f = {ai }∞i=1 = {〈 f , fi 〉}∞i=1 ∈ ℓ2. Now

∥a f ∥2
ℓ2

= ∥{〈 f , fi 〉}∞i=1∥2
ℓ2

=
∞∑

i=1
|〈 f , fi 〉|2 ≤ B∥ f ∥2.

As ∥a f ∥ℓ2 ≤
p

B∥ f ∥ for each f ∈ H and { fi }∞i=1 is a Bessel sequence, { fi }∞i=1 is an atomic system

for the frame operator S. ���
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Definition 2.5. [8] Let K ∈ B(H). A sequence { fi }∞i=1 in H is called a K -frame for H if there

exist constants A,B > 0 such that

A∥K ∗ f ∥2≤
∞∑

i=1
|〈 f , fi 〉|2≤B∥ f ∥2, for all f ∈ H .

We call A, B the lower and upper frame bounds for the K -frame { fi }∞i=1 respectively.

Definition 2.6. Let { fi }∞i=1 be a sequence in H . We say that { fi }∞i=1 is a frame sequence if it is a

frame for the closed subspace span{ fi }∞i=1 of H .

Definition 2.7 ([9]). Let H be a Hilbert space, and suppose that E ∈B(H) has a closed range.

Then there exists an operator E † ∈B(H) for which

N (E †) = R(E)⊥, R(E †) = N (E)⊥, EE † y = y, y ∈ R(E).

We call the operator E † the pseudo-inverse of E . This operator is uniquely determined by these

properties. In fact, if E is invertible, then we have E−1 = E †.

Definition 2.8 ([10]). Assume that S,K ∈B(H). Then S majorizes K if there exists M > 0 such

that ∥K x∥ ≤ M∥Sx∥ for all x ∈ H .

Theorem 2.9 (Douglas’ majorization theorem [10]). Let H be a Hilbert space and S,K ∈B(H).

Then the following are equivalent:

1. R(K ) ⊆ R(S) ;

2. K K ∗ ≤λ2SS∗ for some λ≥ 0 (i .e., S∗ majorizes K ∗) ;

3. K = SU for some U ∈B(H).

3. Main results

Theorem 3.1 ([8]). Let { fi }∞i=1 be a sequence in H and K ∈B(H). Then the following statements

are equivalent:

1. { fi }∞i=1 is an atomic system for K ;

2. { fi }∞i=1 is a K -frame for H;

3. there exists a Bessel sequence {gi }∞i=1 such that K f =∑∞
i=1 〈 f , gi 〉 fi .

Theorem 3.2. [6] Let { fi }∞i=1 be a Bessel sequence in H and K ∈ B(H). Then { fi }∞i=1 is a K -

frame for H if and only if there exists A > 0 such that S ≥ AK K ∗, where S is the frame operator

for { fi }∞i=1.
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Each atomic system is associated with a bounded operator on H . We analyse a class of oper-

ators in B(H) associated with a given atomic system.

Theorem 3.3. Let K1,K2 ∈ B(H). If { fi }∞i=1 is an atomic system for K1 and K2, and α,β are

scalars, then { fi }∞i=1 is an atomic system for αK1 +βK2 and K1K2.

Proof. It is given that { fi }∞i=1 is an atomic system for K1 and K2, then there are positive con-

stants An ,Bn > 0 (n = 1,2) such that

An∥K ∗
n f ∥2 ≤

∞∑
i=1

|〈 f , fi 〉|2≤Bn∥ f ∥2, for all f ∈ H . (3.1)

By simple calculations, we have

A1 A2

A2|α|2 + A1|β|2
∥(αK1 +βK2)∗ f ∥2 ≤

∞∑
i=1

|〈 f , fi 〉|2.

Hence { fi }∞i=1 satisfies the lower frame condition. And from inequalities (3.1), we get

∞∑
i=1

|〈 f , fi 〉|2 ≤
(

B1 +B2

2

)
∥ f ∥2, for all f ∈ H .

Therefore { fi }∞i=1 is an atomic system for αK1 +βK2.

Now for each f ∈ H , we have ∥(K1K2)∗ f ∥2 = ∥K2
∗K1

∗ f ∥2 ≤ ∥K2
∗∥2∥K1

∗ f ∥2. Since { fi }∞i=1 is an

atomic system for K1,

∥(K1K2)∗ f ∥2

∥K2
∗∥2 ≤ ∥K1

∗ f ∥2 ≤ 1

A1

∞∑
i=1

|〈 f , fi 〉|2 ≤ B1

A1
∥ f ∥2.

This implies that A1
∥K2

∗∥2 ∥(K1K2)∗ f ∥2 ≤ ∑∞
i=1 |〈 f , fi 〉|2 ≤ B1∥ f ∥2, for all f ∈ H . Therefore { fi }∞i=1

is an atomic system for K1K2. ���

Corollary 3.4. If { fi }∞i=1 is an atomic system for A , where A ⊆B(H), then { fi }∞i=1 is an atomic

system for any operator in the subalgebra generated by A .

Corollary 3.5. If { fi }∞i=1 is an atomic system for a normal operator K , then { fi }∞i=1 is an atomic

system for any operator in the subalgebra generated by K and K ∗.

Theorem 3.6. Let { fi }∞i=1 be an atomic system for a closed range operator K (i.e., K has a closed

range). Then there exists a Bessel sequence {gi }∞i=1 such that {(K †|R(K ))∗gi }∞i=1 is a frame se-

quence for R(K ).

Proof. As { fi }∞i=1 is an atomic system, by Theorem 3.1, there exists a Bessel sequence {gi }∞i=1

such that K f =∑∞
i=1 〈 f , gi 〉 fi . Since {gi }∞i=1 is a Bessel sequence, there exists B > 0 such that

∞∑
i=1

|〈 f , gi 〉|2 ≤ B∥ f ∥2, for every f ∈ H .
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Hence ∞∑
i=1

|〈 f ,K †∗gi 〉|2 ≤ D∥ f ∥2, where D = B∥K †∥2.

Using the definition of pseudo-inverse and (3) of Theorem 3.1, for any f ∈ R(K ),

f = K K † f =
∞∑

i=1
〈K † f , gi 〉 fi =

∞∑
i=1

〈 f ,K †∗gi 〉 fi .

Also

∥ f ∥4 = |〈 f , f 〉|2 =
∣∣∣∣∣〈 f ,

∞∑
i=1

〈 f ,K †∗gi 〉 fi 〉
∣∣∣∣∣
2

≤
∞∑

i=1
|〈 f ,K †∗gi 〉|2B∥ f ∥2.

Therefore 1
B ∥ f ∥2 ≤ ∑∞

i=1 |〈 f ,K †∗gi 〉|2, for all f ∈ R(K ). Thus {(K †|R(K ))∗gi }∞i=1 is a frame se-

quence for R(K ). ���

The following example illustrates that a Bessel sequence { fi }∞i=1 is an atomic system for

an operator K but it is not the same for other operator L.

Example 3.7. Let H = C3 and {e1,e2,e3} be an orthonormal basis for H . Define K : H → H

by K e1 = e1, K e2 = e1, K e3 = e2. Then { fi }3
i=1 = {e1,e1,e2} is a K -frame for H . The frame

operator is S =


2 0 0

0 1 0

0 0 0

 and its square root is S1/2 =


p

2 0 0

0 1 0

0 0 0

 . Let L =


2 0 0

0 1 0

0 1 1

 and f = e3 ∈ H .

Then
∑3

i=1 |〈 f , fi 〉|2 = 0 and ∥L∗ f ∥2 = 4. Hence { fi }3
i=1 is not a L-frame for H .

Theorem 3.8. Let { fi }∞i=1 be a Bessel sequence in H. Then { fi }∞i=1 is a K -frame for H if and only

if K = S1/2T , for some T ∈B(H).

Proof. Suppose { fi }∞i=1 is a K -frame, by Theorem 3.2, there exists A > 0 such that

AK K ∗ ≤ S1/2S1/2∗.

Then by definition of inner product, for each f ∈ H , ∥K ∗ f ∥2 ≤ A−1∥S1/2 f ∥2. Therefore S1/2

majorizes K ∗. By Douglas’ majorization theorem, K = S1/2T , for some T ∈B(H).

On the other hand, let K = S1/2T for some T ∈ B(H). Then by Douglas’ majorization

theorem, S1/2 majorizes K ∗. Then there is a positive A such that

∥K ∗ f ∥ ≤ A∥S1/2 f ∥, for all f ∈ H

which implies that K K ∗ ≤ A2S. Hence by Theorem 3.2, { fi }∞i=1 is a K -frame for H . ���

Remark 3.9. In the above example, the operator L is not of the form S1/2T , for any operator

T ∈B(H), because L has a column which is not a linear combination of columns of S1/2.
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