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APPLICATIONS OF OSTROWSKI’S VERSION OF THE GRUSS
INEQUALITY FOR TRAPEZOID TYPE RULES

N. S. BARNETT AND S. S. DRAGOMIR

Abstract. Some applications of the Ostrowski inequality and a perturbed version of it for

integral inequalities of the trapezoid type are given.

1. Introduction

In [1], A. Ostrowski proved the following inequality of the Griiss type,
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provided g is integrable on [a, b] and satisfies the condition,
—co<m < g(x) <M < ooforae x€[a,b] (1.2)

and f is absolutely continuous on [a,b] with [’ € Lo [a,b].
The constant % is the best possible in (1.1) in the sense that it cannot be replaced
by a smaller one.

In this paper we present some applications of (1.1) as well as a perturbed version of
it that can also be applied to create some useful integral inequalities.
2. Integral Inequalities

The following trapezoid type result for n-time differentiable functions has been ob-
tained in [2].
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Lemma 1. Let f : [a,b] — R be a mapping such that the derivative f*=1 (n > 1)
is absolutely continuous on [a,b], then for any x € [a,b],

T0d=3 5 o @ Y @ () -2 )
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Some useful particular cases follow.

(1) For n =1, we can retrieve the identity (see for example [2]),

/f x—a)f(a)+(b—x)f(b)+/ (w1 Wd,  (22)

for each = € [a, b].
(2) For n = 2, we have (see for example [2]),

/f —(z—a)f(a)+(b—2)f (D)
1

1 b
tyle-aPr@r oo @)+ g [ -0t o @)
If in (2.2) we choose = = QTH’, then we get the trapezoid identity,

/f )Qf()(bfa) /ab<“;bt)f'(t)dt, (2.4)

while the same choice of  will produce, in (2.3), the following perturbed version of

the trapezoid identity,

/f par=TOET@ gy O oy g
b a 2
%/ <t ;b> £ (1) dt. (2.5)

Consider now the following results.

Theorem 1. Let f : [a,b] — R be a mapping such that the derivative f=1 (n > 1)
is absolutely continuous on [a,b] and there exist real numbers v,T' such that —oco < v <
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f0) (z) <T < oo for a.e. x € [a,b], then,

i k: T 1 [ — a)k+1 f(k) (a) + (71)19 (b — x)kJrl f(k) (b)}

k=
(z — )”+1+( D" (b—a)""
(n+

I
1 9 1 a+b
< s -t =) [0 o

[

]n_l (2.6)

for any x € [a,b], where [h;a,b] = W is the divided difference of h on [a,].

Proof. If we use Ostrowski’s inequality (1.1) we may write,

1 b N 1 b " 1 b
b_a/a (x —1) f<”>(t)dt—b_a/a (z—1t) dt-m/a £ (@) dt

1 _
<=(b—a)(T=~)n sup |z —t/""
8 t€la,b]

:% (b—a) (T —~) [max (z —a,b—z)]" "

=2 (b a) (") B (b—a) + ‘:c “;b ]nl
giving
[ o g - B COMO T
<2 (b-ay (rv)B(baH‘x“;brl. (27)

If we divide this by n! and use the representation (2.1), we obtain the desired inequality
(2.6).

Remark 1. If n =1 in (2.6), we deduce,

Ot~ (o= a) fl@)~ 6= 2) £0)~ (0= a) (2= 52 [t

Sg(b )(F 7),

which implies the trapezoid inequality,

/f par— L0 f()(b—a) (b—a)? (T — ). (2.8)
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It has been shown in various papers that
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1 is a sharp constant (see [4], and [3]).

Remark 2. Further work has yet to be done on comparing, for any x € [a,b], the

bounds provided by (2.6) and the bound,

r'—~

2

where

I(z,n):=

1
(n+ 1) v2n 1 {n

+(@n+1) (@ —a) (b—2) (@ —a)"

has been obtained in [2].

2(b-a) [(z—a)"*' + (b~

1
: EI(:Ean)a

I)2n+1i|

+ (b—:c)”]2}%

The Ostrowski inequality (1.1) can also be applied in the following way.

Theorem 2. Let f : [a,b] — R be a mapping such that the derivative £ is absolutely

continuous and f™*tY € Lo, [a,b], then,

k=
N )”+1+( D" (b—a)""

Z G [ @ 0 @+ ) =) O )

(n+1)!

[/ 5a,0]
b
(b—a) { (b—a)+ ‘ et H Hf”“)H . if n is even,
<
1
Sl (b—a)’[(z—a)" + (b—2)"] [| £ 0| if n is odd.
Proof. For n = 2k, consider hay, (t) = (z — t)°* . It is obvious that

inf
t€la,b]

sup hoy (t)
t€la,b]

= [%(b—a)—i—

= max [(Jc —a)*, (b—

T —

hop (t) =0,

ac)%} = [max (z — a,b — z)]**

-

a+b
2

(2.9)
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If we now apply Ostrowski’s inequality (1.1) for hgy and f (k) we deduce

L /b( Pk R (g gy — /b( — 1) g L/bf@k)(t)dt
b—a /, o b—a /, v b—a /,

2k
(b—a) B (b—a)+ ‘x— a;bH Hf(2k+1)

[a,b],00

by a similar argument to that in Theorem 1, proving the first part of (2.9).
For n = 2k + 1, consider hggyq (t) = (z — t)***" | then

2k
ser1 () = — (2 + 1) (x — )™,
showing that hoyy1 is decreasing on [a,b], and thus,

J0E o () = hoier (0) = (2 = D) = — (b= )

and

sup hogt1 (8) = hogt (@) = (z — a)%H .
tea,b]

Now apply Ostrowski’s inequality (1.1) for hogy1 and f@F+D) we get,

1 b
m/ (2 — 1)KL FRED) () g
a

Lot 2k+1 L (P ekt
— (x—1t) dt-—/ ! (t)dt
b—a / b—a /,

a —

<

Y

(b—a) [(:c — a)%Jr1 +(b— x)%ﬂ} Hf(%ﬂ)

oo | =

[a,b],00

giving, by a similar procedure to that in Theorem 1, the second part of (2.9).

3. A Perturbed Version
The following result holds.

Theorem 3. Let f : [a,b] — R be an absolutely continuous function on [a,b] such
that the derivative f': [a,b] — R satisfies the condition:

—00 <y < f'(x) <T < oo for a.e. T € [a,b]. (3.1)
If g : [a,b] — R is such that,

—co<m<g(x) <M< oo for ae x€la,b], (3.2)
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then,

b—a

o+t

2

/ fla

r

b
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da:——/f ) dx -
b
ia [ (-2 s <

The constant % is the best possible.

Proof. We know that,

<

| =

1
b—a

(b—

/abh(x)g(x)dxbia/abh(x)d:p

a) (M —m) [[W|l{q.4),00 -

provided —oo < m < g(z) < M < oo for a.e. = € [a,b].
_2

Choose h (x

and since

)=1r

(x) TF (r — ), a € R, then,

74T

W) =1 @) - 13

for a.e. = € [a,b], we have,

However,

/ (x)dx

1 b
b—a/ g (x)dx

(3.4)
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and

By (3.5) we deduce,

b b
= f(x)g(:c)d:c—%-bia/ (v~ ) g (a) do

- ’V_IL ' — L/b
/ f(x)dx - / x)dr+ 5 b (Jc a)dx b—a /, g (x)dx
1

<= (b—a) (M —m) (=), (3.6)

Now, observe that,

y+T 1

:%-(()_%)2 [(b—a)/abxg(ac)dx—/abxdac-/abg(x)dx]

1 a+b 1 f°
bia/xg(x)dx— 5 -ba/g(x)dx]

and by (3.6) we deduce the desired result.
The fact that % is the best constant, follows by Ostrowski’s result on choosing v =
= N pg00 s T = 140,00 - We omit the details.

In what follows, an application of the above perturbed version of Ostrowski’s inequal-
ity is given.
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Using Lemma 1, we have the identity, (see also [2]),

b —
/ fd Z k+1 iy (0 o)t [f(’“) (a) + (=1)* f® (b)
a =0

41 (a ;r b t)n £ (1) dt. (3.7)

n!

We can further state the following result.

Theorem 4. Let f : [a,b] — R be a mapping such that the derivative f*=1 (n > 1)
is absolutely continuous on [a,b] and there exists the real numbers m, M such that —oco <
m < f" (z) < M < oo for a.e., x € [a,b]. We then have the inequality:

n—1 b* b*anJrl L
D -3 (£+DLKH[ﬂk()+(1ff“WM}%q;%ﬁjh“%@4
_an—i-l

if n is even and

k+1
e <§HQHJWWM+PNﬂ“@]
—a (n—1) (1) (4
+(n(i1% Hf(n2);b,a} _f (b);f ( )H
_ gt
N % (M —m) -

if n is odd.

Proof. The proof is by application of Theorem 3 for g — f™ and f — (QTH’ — )n .
We first observe that,

/ab (a+b _t)"dt: (b—a)™+ )

2 27+ (4 1)

1
b—

(tydt = [ £ ib,a,
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b—a n—1
n< 5 > if n is even,

A
—n if n is odd,

T N L
,y_te[a,b] dt 2 B

2
b—a n—1
d b n n ( ) if n is even,
sy
t€la,b] dt 2
0 if n is odd,
and then,
0 if n is even,
y+T
2 - h— n—1
n( 2a) if n is odd,
and
A
2n — if n is even,
I'—~v=
h— n—1
n< 2a> if n is odd.
Also,

SR A
[ (5500

b
= =D @) <a;rbt> +/ £ (1) dt

fr @) + f7Y (a)
2

b

=—(b—a)

+[£25b,0] (b - a).

Now, when n is even, we have,

< 1—16 (b—a)? [Qn <b2“>n_1] (M —m),

<

b la+b " on bla+b " 1 b
/a< 5 t) f<>(t)dt/a< 5 t> dt'm/a £ (4) dt

n(b—a)"" (M —m)

bla+b " n (b—a)" ne1).
/( 3 —’f) FON Wt - e - (7 ikl

2n+2
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Dividing by n! and using (3.7), we get (3.8).
Now, when n is odd, we have,

b la+b " on b la+b " 1 b
/a< 5 t) f()(t)dt/a< 5 ) dt~m/af()(t)dt

+n (b 3 “)n_l {(b —a) [f" b0 - (b - 0) AR i (“)] ‘

2

gi<b—a>2<M—m>n(”;“)n_l7

ie.,

2 on—1

/ab <a+b t>”f(n) @yde 4 0= 2)" Hf(ng);b’a} A O A (a)H

n(b—a)"™ (M —m)
<
— 2n+3 )

and dividing by n! and using (3.7) we have (3.9).
The theorem is thus proved.

The second approach is incorporated in the following theorem.

Theorem 5. Let f : [a,b] — R be a mapping such that the derivative f™ is absolutely
continuous on [a,b] and assume that there exist constants ¢, ® € R such that —oo < ¢ <
fFY (2) < ® < oo for a.e. x € [a,b], then,

k+1
)

b n—1 _a
| 0= e [ @+ (-1 5 )]
a 0 *

k=
L+ (D" 0—a)"

) [y ] 4042 [ 10—
27+l (n 4+ 1)! T 2 2712 (n 4 2) n!
__\n+2
% (® — ¢) if n is even,
< ' (3.10)
_ n+2
% (® — ¢) if n is odd.

Proof. We apply Theorem 3 for the choices g — (C’T*b — )n and f — f().
We observe that,

b Loatb fatb N b atb "“dt
[l=) () o= [ (57 )
(b—a)"*? [(4)"“ + 1}

2n+2 (n 4 2) '
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By (3.3) we then get,

/b a+b
. 2

n b n b
—t) f(”)(t)dt—/ (a;’b—t) dt-ﬁ/f(”)(t)dt

<I> n
o+ t_a—i—b a+b t) it
2 a 9
1 1f n is even,
< — _
6 (b a
1f n is odd,
that is,
b n n+1 n
axh (n) (b—a)" " L4+ (=1)"] [ n-1).
/a ( 2 —t) f (t) dt_ 2n+1 (TL+].) |:f ,b,a}
(b _ a)n+2 . .
N o+ @ (b—a)"*? {(—1)’“rl +1 3 ontd ( ) if n is even,
2 IR B BRI
s (®— @) if nis odd,
and the inequality (3.10) is proved.
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