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EQUALITY OF GRAPHOIDAL AND ACYCLIC GRAPHOIDAL

COVERING NUMBER OF A GRAPH

INDRA RAJASINGH AND P. ROUSHINI LEELY PUSHPAM

Abstract. A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in

G such that every vertex of G is an internal vertex of at most one path in ψ ad every edge of G

is in exactly one path in ψ. If no member of ψ is a cycle, then ψ is called an acyclic graphoidal

cover of G. The minimum cardinality of a graphoidal cover is called the graphoidal covering

number of G and is denoted by η and the minimum cardinality of an acyclic graphoidal cover

is called an acyclic graphoidal covering number of G and is denoted by ηa. In this paper we

characterize the class of graphs for which η = ηa.

1. Introduction

The concept of graphoidal cover was introduced by B.D. Acharya and E. Sampathku-
mar in 1987 and a study of the graphoidal covering number was initiated by them [1].
Since then this area of research has been explored by several authors [2, 3, 10, 11, 12, 13,
19]. The concept of an acyclic graphoidal cover was introduced by Suresh Suseela and
pursued by Arumugam et al., [14, 15].

By a graph G = (V,E) we mean a finite, undirected, connected graph without loops
or nultiple edges. The order and size of G are denoted by p and q respectively. For graph
theroetic terminology we refer to Harary [16].

If P = (v0, v1, . . . , vn) is a path or a cycle in G, v1, . . . , vn−1 are called internal vertices

of P . If P = (v0, v1, . . . , vn) and Q = (vn = w0, w1, . . . , wm) are two paths in G then the
walk obtained by concatenating P and Q at vn is denoted by P o Q.

Definition 1.1. A graphoidal cover of a graph G is a set ψ of (not necessarily open)
paths in G satisfying the following conditions.

(i) Every path in ψ has at least two vertices.
(ii) Every vertex of G is an internal vertex of at most one path in ψ.
(iii) Every edge of G is in exactly one path in ψ.

ψ is called an acyclic graphoidal cover of G if no member of ψ is a cycle in G.
The minimum cardinality of (an acyclic) a graphoidal cover of G is called the (acyclic)
graphoidal covering number of G and is denoted by (ηa) η.
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Definition 1.2. Let ψ be a collection of internally disjoint paths in G. A vertex of
G is said to be an interior vertex of ψ if it is an internal vertex of some path in ψ. Any
vertex which is not an interior vertex of ψ is said to be an exterior vertex of ψ.

Theorem 1.3.([18]) For any graphoidal cover ψ of G, let tψ denote the number of

exterior vertices of ψ. Let t = min tψ, where the minimum is taken over all graphoidal

covers of G. Then η = q − p+ t where p and q denote respectively the order and size of

G.

Corollary 1.4.([18]) For any graph G, η ≥ q − p. Moreover the following are equiv-

alent.

(i) η = q − p.
(ii) There exists a graphoidal cover without exterior vertices.

(iii) There exists a set of internally disjoint and edge disjoint paths without exterior

vertices.

Theorem 1.5.([17]) For any graph G with δ ≥ 3, η = q − p

Remark 1.6. Results analogous to Theorem 1.3, Corollary 1.4 and Theorem 1.5 are
also true for an acyclic graphoidal covering number of a graph.

Theorem 1.7.([15]) For any graph with δ ≥ 3, η = ηa.

For graphs with δ ≤ 2 it is not necessary that η = ηa = q − p. Hence the problem of
characterizing graphs with δ ≤ 2 satisfying η = ηa is challenging. In this paper we solve
this problem. For our further discussion we confine ourselves to graphs with δ ≤ 2. We
need the following definition and theorems.

Definition 1.8.([7]) Let G(f) denote the collection of all blocks whose edge set can
be decomposed into a cycle C and a collection ℘ of internally disjoint paths such that
each path P in ℘ has f ∈ V (C) as its origin and |V (P ) ∩ V (C)| ≤ 2 (The collection ℘
may be empty in which case the corresponding member of G(f) is a cycle). We observe
that if G ∈ G(f) and G is not a cycle, then deg f = |℘|+ 2 = ∆ and there is at most one
vertex v 6= f with deg v = ∆.

Let F and Fa denote respectively the class of all graphs G with η = q − p and
ηa = q − p.

Theorem 1.9.([4]) Let G be a 2-connected graph with p ≥ 3. Then G /∈ F if and

only if G is a cycle or a cycle with exactly one chord or a theta graph.

Theorem 1.10.([4]) Let G be a 2-edge connected graph with δ = 2. Then G /∈ F if

and only if every block of G is a cycle or a cycle with exactly one chord or a theta graph

and at most one block of G is not a cycle.

Theorem 1.11.([6]) Let G be a connected graph with δ = 2 and edge connectivity

one. Then G /∈ F if and only if there exists a cut edge e of G such that at least one

component of G− e is a graph, all of whose blocks are cycles.
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Lemma 1.12.([6]) Let G be a 2-edge connected graph such that exactly one block of

G is either a cycle with exactly one chord or a theta graph and all other blocks are cycles.

Let v ∈ V (G). Then there exists a minimum graphoidal cover ψ of G such that v is the

only vertex exterior to ψ and there exists a path in ψ which contains v as an exterior

vertex.

Theorem 1.13.([7]) Let G be a 2-connected graph with p ≥ 3. Then G ∈ Fa if and

only if G /∈ G(f).

Theorem 1.14.([7]) Let G be a graph with δ > 1 and connectivity one. Then G /∈ Fa
if and only if at least one end block of G is a member of G(f) with f as a cut vertex of

G.

Theorem 1.15.([5]) Let G ∈ G(f) and ∆(G) ≥ 3. Let v be a vertex of G with

deg v 6= ∆. Then there exists a minimum acyclic graphoidal cover ψ of G such that v is

the only vertex exterior to ψ and ηa = |ψ| = ∆ − 1.

2. Main Results

Lemma 2.1. Let G be a graph whose blocks are all cycles. Let u, v ∈ V (G) with

u 6= v. Then there exists a graphoidal over ψ of G such that u and v are the only vertices

exterior to ψ and a path P in ψ which contains u and v as end vertices.

Proof. Let C1, C2, . . . , Ck be the blocks of G. By hypothesis each Ci is a cycle,

i = 1, 2, . . . , k. Let P be a (u, v) - path in G. Let S1, S2, . . . , Ss, s ∈ {1, 2, . . . , k} be the

segments of P that are part of the cycles C1, C2, . . . , Cs. Let Ri = Ci\Si, 1 ≤ i ≤ s.

Then ψ = {P,R1, R2, . . . , Rs, Cs+1, . . . , Ck} is a graphoidal cover of G with u and v as

the only vertices exterior to ψ.

Theorem 2.2. Let G be a 2-edge connected graph. Then either η = q − p or

η = q − p+ 1.

Proof. Suppose η 6= q − p. By Theorem 1.10, every block of G is a cycle or a cycle

with exactly one chord or a theta graph and at most one block of G is not a cycle. We

now prove that η = q − p + 1 by induction on m where m is the number of blocks of

G. When m = 1, G is either a cycle or a cycle with exactly one chord or a theta graph.

Clearly for any minimum graphoidal cover ψ of G, exactly one vertex of G is exterior to

ψ and hence by Theorem 1.3, η = q − p+ 1.

We now assume that η = q − p + 1 for all 2-edge connected graphs with m blocks,

m ≥ 1. Let G be a 2-edge connected graph with m + 1 blocks. Let C be an end block

which is a cycle and v ∈ V (C) be a cut vertex of G. Let G′ be the subgraph of G

obtained by removing all the vertices of C − v. Clearly G′ has m blocks. By induction
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hypothesis η(G′) = q′ − p′ + 1 when p′ and q′ are the order and size of G′ respectively.

Now η(G) = η(G′) + 1

= q′ − p′ + 2

= q − p+ 1. This completes the induction and the proof.

Theorem 2.3. Let G be a graph with κ′ = 1 and δ > 1, where κ′ is the edge

connectivity of G. Let S = {e | e is a cut edge of G and the bolcks of at least one

component of G-e are all cycles}. Let HG = {H1, H2, . . . , Hm}, be the collection of all

such components. Let vi ∈ V (Hi), 1 ≤ i ≤ m. Then η = q − p +m and there exists a

minimum graphoidal cover ψ of G such that vi, 1 ≤ i ≤ m are the only vertices exterior

to ψ and there exist paths in ψ which contain vi as an end vertex, 1 ≤ i ≤ m.

Proof. Since contracting an edge incident with a cut vertex of degree 2 does not

affect the value of q − p and η, we may assume without loss of generality that any cut

vertex has degree at least 3. We observe that if m = 0, then the result follows from

Theorem 1.11. Hence we assume that m > 0 and prove the result by induction on r,

where r is the number of cut edges of G. Since κ′ = 1, r ≥ 1. Suppose r = 1 and

let e = x1x2 be the cut edge of G. Let G1 and G2 be the components of G-e with

x1 ∈ V (G1) and x2 ∈ V (G2). Clearly G1 and G2 are 2-edge connected graphs. If both

G1 and G2 are in HG then by Lemma 2.1 there exists a graphoidal cover ψi of Gi,

i = 1, 2 and a (vi, xi)-path Pi in Gi such that vi and xi are the only vertices exterior to

ψi, i = 1, 2. Then by Theorem 1.3 ψ = (ψ1\{P1}) ∪ (ψ2\{P2}) ∪ {P1 o e o P
−1
2 } is a

minimum graphoidal cover such that v1 and v2 are the only vertices exterior to ψ. Thus

η = q − p+ 2. Suppose G1 /∈ HG. For G2 ∈ HG we define ψ2 as before. If G1 ∈ F , then

there exists a minimum graphoidal cover ψ1 of G1 such that all vertices of G1 are interior

to ψ1. Then by Theorem 1.3 ψ = ψ1 ∪ (ψ2\{P2}) ∪ (e o P−1
2 ) is a minimum graphoidal

cover of G with v2 as the only vertex exterior to ψ, where e o P−1
2 is a path in ψ which

contains v2 as an end vertex. If G1 /∈ F , then since G1 /∈ HG, by Theorem 1.10 exactly

one block of G1 is a cycle with exactly one chord or a theta graph and all other blocks

are cycles. Hence by Lemma 1.12 there exists a minimum graphoidal over ψ1 of G1 and

a path P1 in ψ1 with x1 as its terminus such that x1 is the only vertex exterior to ψ1.

Then ψ = (ψ1\{P1}) ∪ (ψ2\{P2}) ∪ {P1 o e o P
−1
2 } is a minimum graphoidal cover of

G such that v2 is the only vertex exterior to ψ and P1 o e o P
−1
2 is a path in ψ which

contains v2 as an end vertex. Thus η = q − p+ 1. Hence the result is true for r = 1.

We now assume that the result is true for all graphs with at most r − 1 cut edges.

Let G be a graph with r cut edges satisfying the conditions of the theorem. Let e = x1y1
be a cut edge of G such that one of the components of G− e is H1. Let G1 be the other

component of G− e and let x1 ∈ V (G1) and y1 ∈ V (H1). By Lemma 2.1 there exists a

graphoidal cover ψ1 of H1 whose only exterior vertices are y1 and v1 and there exists a

(y1, v1)-path Q1 in ψ1. Clearly δ(G1) > 1.
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Case(i). x1 ∈ H for some H ∈ HG1

By induction hypothesis there exists a minimum graphoidal cover ψ2 of G1 whose only
exterior vertices are x1, v2, . . . , vm and there exists a path R1 in ψ2 with x1 as its terminus
and path in ψ2 with v1 as terminus, 2 ≤ i ≤ m. Then ψ = (ψ1\{Q1})∪(ψ2\{R1})∪{P1}

where P1 = R1 o e o Q1 is the required minimum graphoidal cover of G.

Case(ii). x1 /∈ H for all H ∈ HG1

By induction hypothesis there exists a minimum graphoidal cover ψ2 of G1 whose
only exterior vertices are v2, v3, . . . , vm and there exists a path ψ2 with vi, 2 ≤ i ≤ m

as terminus. Now ψ = (ψ1\{Q1}) ∪ ψ2 ∪ {e o Q1} is the required minimum graphoidal
cover of G. This completes the induction and the proof.

Theorem 2.4. Let G be a connected graph which is not a tree with n pendant vertices,

n ≥ 1 and |HG| = m, m ≥ 0. Then η = q − p+m+ n.

Proof. We prove the result by induction on n, the number of pendant vertices in
G. Let HG = {H1, H2, . . . , Hm}. Let vi ∈ V (Hi), 1 ≤ i ≤ m where Hi ∈ HG. Suppose
n = 1. Let v ∈ V (G) be such that deg v = 1 and P = (v, u1, u2, . . . , uk, w) be a path
in G such that deg ui = 2, for all i, 1 ≤ i ≤ k and degw > 2. Such a vertex w exists

because G is not a path. Let G1 = G\{v, u1, u2, . . . , uk}.

Case(i). w ∈ H for some H ∈ HG1

Then by Theorem 2.3, there exists a minimum graphoidal cover ψ1 of G1 such that
v1, v2, . . . , vm, w are the only vertices exterior to ψ1 and there exists paths in ψ1 which

contains vi, 1 ≤ i ≤ m and w as end vertices. Let P1 be the path in ψ1 with w as its
terminus. Then ψ = (ψ1\{P1}) ∪ {P1 o P

−1} is a minimum graphoidal cover of G such
that v1, v2, . . . , vm, v are the only vertices exterior to ψ and η = q − p+m+ 1.

Case(ii). w /∈ H for all H ∈ HG1

By Theorem 2.3, there exists a minimum graphoidal cover ψ1 of G1 such that v1, v2,
. . . , vm are the only vertices exterior to ψ1. Hence ψ = ψ1∪{P} is a minimum graphoidal
cover with v1, v2, . . . , vm and v as the only vertices exterior to ψ. Hence η = q−p+m+1.

Therefore the result is true for n = 1.

We assume the result is true for k pendant vertices. Let G be a graph with k +
1 pendant vertices and let z1, z2, . . . , zk+1 be the pendant vertices of G. Let P =
(z1, u1, . . . , uk, w) be a path in G such that deg ui = 2, for all i, 1 ≤ i ≤ k and

degw > 2. Let G1 = H\{z1, u1, u2, . . . , uk}. If w ∈ H for some H ∈ HG1
, then

by induction hypothesis there exists a minimum graphoidal cover ψ1 of G1 such that
v1, v2, . . . , vm, w, z2, z3, . . . , zk+1 are the only vertices exterior to ψ1 and there exists a

path P1 in ψ1 with w as its terminus. Hence ψ = (ψ1\{P1})∪ {P1 o P
−1} is a minimum

graphoidal cover of G with z1, z2, . . . , zk+1, v1, v2, . . . , vm as the only vertices exterior to
ψ. Thus η = q − p + n + m. If w /∈ H for all H ∈ HG, then by induction hypothesis
there exists a minimum graphoidal cover ψ1 of G1 such that v1, v2, . . . , vm, z2, . . . , zk+1

are the only vertices exterior to ψ1. Hence ψ = ψ1 ∪ {P} is a minimum graphoidal cover
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of G with v1, v2, . . . , vm and z1, z2, . . . , zk+1 as the only vertices exterior to ψ. Thus
η = q − p+m+ n.

The next theorem determines the acyclic graphoidal covering number of a graph with
δ = 2.

Theorem 2.5. Let G be a graph with δ = 2. Let B1, B2, . . . , Bm, m ≥ 0 be end

blocks of G which are in G(fi) with fi as a cut vertex. Let vi ∈ V (Bi), 1 ≤ i ≤ m and vi
is not a cut vertex of G. Then there exists a minimum acyclic graphoidal cover ψ of G
whose only exterior vertices are v1, v2, . . . , vm and ηa = q − p+m.

Proof. We observe that if m = 0, then the result follows from Theorem 1.13 and
Theorem 1.14. Hence we assume that m > 0 and prove the result by induction on n,
where n is the number of blocks of G. If n = 1, the result follows from Theorem 1.15.
We now assume that the result is true for all graphs with at most n − 1 blocks. Let G
be a graph with n blocks satisfying the conditions of the theorem. Let ψ1 be a minimum
acyclic graphoidal cover ofB1 whose only exterior vertex is v1. LetH = G\(V (B1)\{f1}).

Case(i). degH f1 = 1.
We choose a path P = (f1, u1, . . . , uk, w), such that deg ui = 2 for each i and degw >

2. Let G1 = H\{f1, u1, u2, . . . , uk}. Clearly δ(G1) > 1. Let B be a block of G1

containing w. If B is an end block of G1 and B ∈ G(f) with f a cut vertex of G, then
by induction hypothesis there exists a minimum acyclic graphoidal cover ψ2 of G1 whose
only exterior vertices are w, v2, . . . , vm. Let P1 be a path in ψ2 having w as its terminus.
Then ψ = (ψ2\{P1})∪{P1 o P

−1}∪ψ1 is a minimum acyclic graphoidal cover of G with
v1, v2, . . . , vm as its only exterior vertices.

Otherwise by induction hypothesis there exists a minimum acyclic graphoidal cover
ψ2 of G1 whose only exterior vertices are v2, v3, . . . , vm and ψ = ψ2 ∪ {P} ∪ ψ1 is a
minimum acyclic graphoidal cover of G whose only exterior vertices are v1, v2, . . . , vm.

Case(ii). degH f1 > 1.
Let B be a block of H containing f1. If B is an end block of G and B ∈ G(f) with f

as a cut vertex then by induction hypothesis there exists a minimum acyclic graphoidal
cover ψ2 of H with v2, v3, . . . , vm and f1 as its only exterior vertices. Then ψ = ψ1 ∪ ψ2

is the required minimum acyclic graphoidal cover of G.

Otherwise by induction hypothesis there exists a minimum acyclic graphoidal cover
ψ2 of H with v2, v3, . . . , vm as its only exterior vertices. Let P be the path in ψ2 having
f1 as an internal vertex. Let x, y be the terminal vertices of P . Let P1 and P2 be the
(x, f1) and (f1, y) - sections of P respectively. Then ψ = ψ1 ∪ (ψ2\{P})∪{P1, P2} is the
required minimum acyclic graphoidal cover of G. This completes the induction and the
proof.

Theorem 2.6. Let G be a graph with n pendant vertices, n ≥ 1 and let B1, B2, . . . ,
Bm, m ≥ 0 be end blocks of G which are in G(fi) with fi as a cut vertex. Then ηa =
q − p+m+ n.
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Proof. Similar to the proof of Theorem 2.3.

We now proceed to the main theorem of characterizing the class of graphs with η = ηa.

Remark 2.7. Since η ≤ ηa, ηa = q − p implies that η = q − p. Theorem 1.13 and

Theorem 1.14 characterizes the class of all graphs for which ηa = q − p. Hence for these

graphs η = q − p, in turn η = ηa. Hence we need to consider the case when ηa 6= q − p.

Theorem 2.8. Let G be a connected graph with ηa 6= q − p and δ ≤ 2. Then η = ηa
if and only if one of the following holds.

(i) If G has no cut edge, then G is a graph such that an end block of G is either a

theta graph or a cycle with exactly one chord whose vertices of degree 3 are not cut

vertices and all other blocks are cycles and the block-cut point tree of G is a path

(Refer Figure 1).

Figure 1.

(ii) If G has a cut edge with |HG| = m and if l is the number of end blocks in G(f)

with f as a cut vertex, then m = l, where HG is as defined in Theorem 2.3 (Refer

Figure 2).

Figure 2.

Proof. If G is of type (i) by Lemma 1.12 and Theorem 2.3, η = ηa = q− p+ 1. If G

is of type (ii), let |HG| = m and let n be the number of pendant vertices in G. Then by

Theorem 2.4 and Theorem 2.6, η = ηa = q − p+m+ n. Hence η = ηa.
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Conversely suppose η = ηa. We first prove the theorem when δ = 2. Since ηa 6= q−p,

we have η 6= q − p. Hence by Theorem 1.9, Theorem 1.10 and Theorem 1.11, G is either

(a) a block which is either a cycle or a cycle with exactly one chord or a theta graph, or

(b) a graph in which each block is a cycle or a cycle with exactly one chord or a theta

graph and at most one block is not a cycle, or

(c) a graph which has a cut edge e such that at least one component of G− e is a graph

whose blocks are all cycles.

If G is of type (a) or (b) then by Theorem 2.2, η = q−p+1. Suppose G is of type (a),

a clock. If G is a cycle then clearly η 6= ηa. Hence G is a cycle with exactly one chord

or a theta graph and G reduces to a graph of type (i) given in the theorem. Suppose G

is of type (b), not a clock. Let s be the number of end blocks of G which are cycles. If

each block of G is a cycle then by Theorem 2.5, ηa = q − p + s. Since η = ηa, s = 1

which is a contradiction to the fact that G is not a block. Hence there exists a block B

in G which is not a cycle. We claim that s = 1. Suppose s > 1. Then by Theorem 2.5,

ηa =











q − p+ s+ 1, if B is an end block of G and a vertex of

degree 3 is a cut vertex of G,

q − p+ s, otherwise.

Hence ηa − η = s or s− 1 and s > 1 which is a contradiction to the fact that η = ηa.

Hence s = 1 and this proves that the block-cut point tree of G is a path. If a vertex of

degree 3 in B is a cut vertex then again ηa = q − p+ 2 which is a contradiction. Hence

vertices of degree 3 in B are not cut vertices and G reduces to a graph of type (i) given

in the theorem.

If G is of type (c), let l be the number of end blocks in G which are in G(f) with f as

a cut vertex and let |HG| = m. Then by Theorem 2.3 and Theorem 2.5, η = q − p+m,

ηa = q − p+ l. Since η = ηa, m = l. Thus G reduces to a graph of type (ii) given in the

theorem.

Now let δ = 1. Let n be the number of pendant vertices of G. We define l,m as

before. By Theorem 2.4 and Theorem 2.6, η = q − p + m + n and ηa = q − p + l + n.

Since η = ηa, l = m. Thus G reduces to a graph of type (ii) given in the theorem.
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