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CLOSE-TO-CONVEXITY AND STARLIKENESS OF
ANALYTIC FUNCTIONS

SEE KEONG LEE, V. RAVICHANDRAN AND SHAMANI SUPRAMANIAM

Abstract. For functions f (z) = zp +an+1zp+1+·· · defined on the open unit disk, the con-
dition Re( f ′(z)/zp−1) > 0 is sufficient for close-to-convexity of f . By making use of this
result, several sufficient conditions for close-to-convexity are investigated and relevant
connections with previously known results are indicated.

1. Introduction

Let D := {z ∈C : |z| < 1} be the open unit disk and Ap,n be the class of all analytic functions

f : D→ C of the form f (z) = zp + an+p zn+p + an+p+1zn+p+1 + . . . with A := A1,1. For studies

related to multivalent functions, see [5, 7, 8, 9, 10]. Singh and Singh [16] obtained several

interesting conditions for functions f ∈ A satisfying inequalities involving f ′(z) and z f ′′(z)

to be univalent or starlike in D. Owa et al. [11] generalized the results of Singh and Singh

[16] and also obtained several sufficient conditions for close-to-convexity, starlikeness and

convexity of functions f ∈A . In fact, they have proved the following theorems.

Theorem 1.1 ([11], Theorems 1-3). Let 0 ≤α< 1 and β,γ≥ 0. If f ∈A , then

Re

(
1+ z f ′′(z)

f ′(z)

)
> 1+3α

2(1+α)
=⇒ Re

(
f ′(z)

)> 1+α

2
,

Re

(
1+ z f ′′(z)

f ′(z)

)
< 3+2α

(2+α)
=⇒ ∣∣ f ′(z)−1

∣∣< 1+α,

∣∣ f ′(z)−1
∣∣β |z f ′′(z)|γ < (1−α)β+γ

2β+2γ
=⇒ Re

(
f ′(z)

)> 1+α

2
.

Theorem 1.2 ([11], Theorem 4). Let 1 <λ< 3. If f ∈A , then

Re

(
1+ z f ′′(z)

f ′(z)

)
<


5λ−1

2(λ+1) , 1 <λ≤ 2;

λ+1
2(λ−1) , 2 <λ< 3,

=⇒ z f ′(z)

f (z)
≺ λ(1− z)

λ− z
.
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In this present paper, the above results are extended for functions f ∈Ap,n .

2. Close-to-convexity and starlikeness

For f ∈ A , the condition Re f ′(z) > 0 implies close-to-convexity and univalence of f .

Similarly, for f ∈ Ap,1, the inequality Re( f ′(z)/zp−1) > 0 implies p-valency of f . See also [15,

18, 19]. From this result, the functions satisfying the hypothesis of Theorems 2.1–2.4 are p-

valent in D. A function f ∈ Ap,1 is close-to-convex if there is a p-valent convex function ϕ

such that Re( f ′(z)/ϕ(z)) > 0. Also they are all close-to-convex with respect to ϕ(z) = zp .

Theorem 2.1. If the function f ∈Ap,n satisfies the inequality

Re

(
1+ z f ′′(z)

f ′(z)

)
> (2p −n)+α(2p +n)

2(α+1)
, for z ∈D, (2.1)

then

Re

(
f ′(z)

pzp−1

)
> 1+α

2
, for z ∈D.

For the proof of our main results, we need the following lemma.

Lemma 2.2. [6, Lemma 2.2a] Let z0 ∈ D and r0 = |z0|. Let f (z) = an zn + an+1zn+1 + ·· · be

continuous on Dr0 and analytic on Dr0 ∪ {z0} with f (z) ̸≡ 0 and n ≥ 1. If

| f (z0)| = max{| f (z)| : z ∈Dr0 },

then there exists an m ≥ n such that

(1)
z0 f ′(z0)

f (z0)
= m, and

(2) Re
z0 f ′′(z0)

f ′(z0)
+1 ≥ m.

Proof of Theorem 2.1. Let the function w be defined by

f ′(z)

pzp−1 = 1+αw(z)

1+w(z)
. (2.2)

Then w can be written as

w(z) = 1

α−1

[
(n +p)

p
an+p zn − (n +p)2

p2(1−α)
a2

n+p z2n +·· ·
]

,

hence it is analytic in D with w(0) = 0. From (2.2), some computation yields

1+ z f ′′(z)

f ′(z)
= p + αzw ′(z)

1+αw(z)
− zw ′(z)

1+w(z)
. (2.3)
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Suppose there exists a point z0 ∈D such that

|w(z0)| = 1 and |w(z)| < 1 when |z| < |z0|.

Then by applying Lemma 2.2, there exists m ≥ n such that

z0w ′(z0) = mw(z0), (w(z0) = e iθ;θ ∈R). (2.4)

Thus, by using (2.3) and (2.4), it follows that

Re

(
1+ z0 f ′′(z0)

f ′(z0)

)
= p +Re

(
αmw(z0)

1+αw(z0)

)
−Re

(
mw(z0)

1+w(z0)

)
= p +Re

(
αme iθ

1+αe iθ

)
−Re

(
me iθ

1+e iθ

)

= p + αm(α+cosθ)

1+α2 +2αcosθ
− m

2

≤ (2p −n)+α(2p +n)

2(α+1)
,

which contradicts the hypothesis (2.1). It follows that |w(z)| < 1, that is,∣∣∣∣∣∣
1− f ′(z)

pzp−1

f ′(z)
pzp−1 −α

∣∣∣∣∣∣< 1.

This evidently completes the proof of Theorem 2.1. ���
Owa [13] shows that a function f ∈Ap,1 satisfying Re(1+ z f ′′(z)/ f ′(z)) < p +1/2 implies

f is p-valently starlike. Our next theorem investigates the close-to-convexity of this type of

functions. For related results, see [14, 4, 20].

Theorem 2.3. If the function f ∈Ap,n satisfies the inequality

Re

(
1+ z f ′′(z)

f ′(z)

)
< (p +n)α+ (2p +n)

(α+2)
, for z ∈D, (2.5)

then ∣∣∣∣ f ′(z)

pzp−1
−1

∣∣∣∣< 1+α, for z ∈D.

Proof. Consider the function w defined by

f ′(z)

pzp−1 = (1+α)w(z)+1. (2.6)

It can be checked similarly as above that w is analytic in D with w(0) = 0. From (2.6), some

computation yields

1+ z f ′′(z)

f ′(z)
= p + (1+α)zw ′(z)

(1+α)w(z)+1
. (2.7)
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Suppose there exists a point z0 ∈D such that

|w(z0)| = 1 and |w(z)| < 1 when |z| < |z0|.

Then by applying Lemma 2.2, there exists m ≥ n such that

z0w ′(z0) = mw(z0), (w(z0) = e iθ;θ ∈R). (2.8)

Thus, by using (2.7) and (2.8), it follows that

Re

(
1+ z0 f ′′(z0)

f ′(z0)

)
= p +Re

(
(1+α)z0w ′(z0)

(1+α)w(z0)+1

)
= p +Re

(
(1+α)me iθ

(1+α)e iθ+1

)

= p + m(1+α)(1+α+cosθ)

1+ (1+α)2 +2(1+α)cosθ

≥ (p +n)α+ (2p +n)

(α+2)
,

which contradicts the hypothesis (2.5). It follows that |w(z)| < 1, that is,∣∣∣∣ f ′(z)

pzp−1 −1

∣∣∣∣< 1+α.

This evidently completes the proof of Theorem 2.3. ���

Owa [12] has also showed that a function f ∈A satisfying | f ′(z)/g ′(z)−1|β|z f ′′(z)/g ′(z)−
z f ′(z)g ′′(z)/(g ′(z))2|γ < (1+α)β+α, for 0 ≤α< 1, β≥ 0, γ≥ 0 and g a convex function, is close-

to-convex. Also, see [3]. Our next theorem investigates the close-to-convexity of similar class

of functions.

Theorem 2.4. If f ∈Ap,n , then for z ∈D,∣∣∣∣ f ′(z)

pzp−1 −1

∣∣∣∣β ∣∣∣∣ f ′′(z)

zp−2 − (p −1)
f ′(z)

zp−1

∣∣∣∣γ < (pn)γ(1−α)β+γ

2β+2γ
, (2.9)

implies

Re

(
f ′(z)

pzp−1

)
> 1+α

2
,

and ∣∣∣∣ f ′(z)

pzp−1 −1

∣∣∣∣β ∣∣∣∣ f ′′(z)

zp−2 − (p −1)
f ′(z)

zp−1

∣∣∣∣γ < (pn)γ|1−α|β+γ, (2.10)

implies ∣∣∣∣ f ′(z)

pzp−1 −1

∣∣∣∣< 1−α.



CLOSE-TO-CONVEXITY AND STARLIKENESS OF ANALYTIC FUNCTIONS 115

Proof. For the function w defined by

f ′(z)

pzp−1 = 1+αw(z)

1+w(z)
, (2.11)

we can rewrite (2.11) to yield
f ′(z)

pzp−1 −1 = (α−1)w(z)

1+w(z)
,

which leads to ∣∣∣∣ f ′(z)

pzp−1
−1

∣∣∣∣β = |w(z)|β|1−α|β
|1+w(z)|β . (2.12)

By some computation, it is evident that

f ′′(z)

zp−2 − (p −1)
f ′(z)

zp−1 = p(α−1)zw ′(z)

(1+w(z))2

or ∣∣∣∣ f ′′(z)

zp−2 − (p −1)
f ′(z)

zp−1

∣∣∣∣γ = pγ|zw ′(z)|γ|1−α|γ
|1+w(z)|2γ . (2.13)

From (2.12) and (2.13), it follows that∣∣∣∣ f ′(z)

pzp−1 −1

∣∣∣∣β ∣∣∣∣ f ′′(z)

zp−2 − (p −1)
f ′(z)

zp−1

∣∣∣∣γ = pγ|w(z)|β(1−α)β+γ|zw ′(z)|γ
|1+w(z)|β+2γ

.

Suppose there exists a point z0 ∈D such that

|w(z0)| = 1 and |w(z)| < 1 when |z| < |z0|.

Then (2.4) and Lemma 2.2 yield∣∣∣∣∣ f ′(z0)

pzp−1
0

−1

∣∣∣∣∣
β ∣∣∣∣∣ f ′′(z0)

zp−2
0

− (p −1)
f ′(z0)

zp−1
0

∣∣∣∣∣
γ

= pγ(1−α)β+γ|w(z0)|β|mw(z0)|γ
|1+e iθ|β+2γ

= pγmγ(1−α)β+γ

(2+2cosθ)(β+2γ)/2

≥ pγnγ(1−α)β+γ

2β+2γ
,

which contradicts the hypothesis (2.9). Hence |w(z)| < 1, which implies∣∣∣∣∣∣
1− f ′(z)

pzp−1

f ′(z)
pzp−1 −α

∣∣∣∣∣∣< 1,

or equivalently

Re

(
f ′(z)

pzp−1

)
> 1+α

2
.
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For the second implication in the proof, consider the function w defined by

f ′(z)

pzp−1 = 1+ (1−α)w(z). (2.14)

Then ∣∣∣∣ f ′(z)

pzp−1 −1

∣∣∣∣β = |1−α|β|w(z)|β (2.15)

and ∣∣∣∣ f ′′(z)

zp−2 − (p −1)
f ′(z)

zp−1

∣∣∣∣γ = pγ|zw ′(z)|γ|1−α|γ. (2.16)

From (2.15) and (2.16), it is clear that∣∣∣∣ f ′(z)

pzp−1 −1

∣∣∣∣β ∣∣∣∣ f ′′(z)

zp−2 − (p −1)
f ′(z)

zp−1

∣∣∣∣γ = pγ|w(z)|β|1−α|β+γ|zw ′(z)|γ.

Suppose there exists a point z0 ∈D such that

|w(z0)| = 1 and |w(z)| < 1 when |z| < |z0|.

Then by applying Lemma 2.2 and using (2.4), it follows that∣∣∣∣∣ f ′(z0)

pzp−1
0

−1

∣∣∣∣∣
β ∣∣∣∣∣ f ′′(z0)

zp−2
0

− (p −1)
f ′(z0)

zp−1
0

∣∣∣∣∣
γ

= pγ|w(z0)|β|1−α|β+γ|z0w ′(z0)|γ

= pγmγ|1−α|β+γ

≥ (pn)γ|1−α|β+γ,

which contradicts the hypothesis (2.10). Hence |w(z)| < 1 and this implies∣∣∣∣ f ′(z)

pzp−1 −1

∣∣∣∣< 1−α.

Thus the proof is complete. ���

In next theorem, we need the concept of subordination. Let f and g be analytic functions

defined on D. Then f is subordinate to g , written f ≺ g , provided there is an analytic function

w : D→D with w(0) = 0 such that f = g ◦w .

Theorem 2.5. Let λ1 and λ2 be given by

λ1 = n +2

4p +n −2p
,

λ2 = n +2

2−n
,
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and 1 ≤λ1 <λ<λ2 ≤ 3. If the function f ∈Ap,n satisfies the inequality

Re

(
1+ z f ′′(z)

f ′(z)

)
<


(4p+n)λ−n

2(λ+1) , λ1 <λ≤ p+n
p ;

n(λ+1)
2(λ−1) , p+n

p <λ<λ2,
(2.17)

for z ∈D, then
1

p

z f ′(z)

f (z)
≺ λ(1− z)

λ− z
, for z ∈D. (2.18)

The result is sharp for the function f given by

f (z) = zp (λ− z)p(λ−1) . (2.19)

Proof. Let us define w by
1

p

z f ′(z)

f (z)
= λ(1−w(z))

λ−w(z)
. (2.20)

By doing the logarithmic differentiation on (2.20), we get

1+ z f ′′(z)

f ′(z)
= pλ(1−w(z))

λ− z
− zw ′(z)

1−w(z)
+ zw ′(z)

λ−w(z)
.

Assume that there exists a point z0 ∈D such that |w(z0)| = 1 and |w(z)| < 1 when |z| < |z0|. By

applying Lemma 2.2 as in Theorem 2.1, it follows that

Re

(
1+ z0 f ′′(z0)

f ′(z0)

)
= Re

(
pλ(1−e iθ)

λ−e iθ

)
−Re

(
me iθ

1−e iθ

)
+Re

(
me iθ

λ−e iθ

)

= pλ(λ+1)(1−cosθ)

λ2 +1−2λcosθ
+ m

2
+ m(λcosθ−1)

λ2 +1−2λcosθ

= λ+1

2
p + (λ2 −1)[(p +m)−pλ]

2(λ2 +1−2λcosθ)

≥ λ+1

2
p + (λ2 −1)[(p +n)−pλ]

2(λ2 +1−2λcosθ)
,

which yields the inequality

Re

(
1+ z0 f ′′(z0)

f ′(z0)

)
≥


(4p+n)λ−n

2(λ+1) , λ1 <λ≤ p+n
p ;

n(λ+1)
2(λ−1) , p+n

p <λ<λ2.
(2.21)

Since (2.21) obviously contradicts hypothesis (2.17), it follows that |w(z)| < 1. This proves the

subordination (2.18).

Finally, for (2.18) to be sharp, consider

1

p

z f ′(z)

f (z)
= λ(1− z)

λ− z
. (2.22)
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By integrating both sides of the equality and after some arrangement, we get

f (z) = zp (λ− z)p(λ−1) .

This completes the proof. ���

Remark 2.1. The subordination (2.18) can be written in equivalent form as∣∣∣∣λ(z f ′(z)/p f (z)−1)

z f ′(z)/p f (z)−λ

∣∣∣∣< 1,

or by further computation, as ∣∣∣∣ 1

p

z f ′(z)

f (z)
− λ

λ+1

∣∣∣∣< λ

λ+1
.

The last inequality shows that f is starlike in D.

Remark 2.2. When p = 1 and n = 1, Theorems 2.1–2.5 reduce to Theorems 1.1 and 1.2.
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