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MONOTONICITY OF SEQUENCES INVOLVING GENERALIZED
CONVEXITY FUNCTION AND SEQUENCES

NGUYEN NGOC HUE AND DUONG QUOC HUY

Abstract. In this paper, by using the theory of generalized convexity functions we intro-
duce and prove monotonicity of sequences of the forms

{(fustee)) } (ot ™

GEe) o {Gmtean)

where f belongs to the classes of AG-convex (concave), HA-convex (concave), or HG-
convex (concave) functions defined on suitable intervals, {a,} is a given sequence and
@ is a given function that satisfy some preset conditions. As a consequence, we obtain
some generalizations of Alzer type inequalities.

1. Introduction

Let f be areal-valued function defined on [a, b]  R. The function f is called convex if
fAx+A -V <Afx)+A-D)f(). (1.1

for all x,y € [a,b] and A € [0,1]. If (1.1) is strict for all x # y and A € (0, 1), then f is said to
be strictly convex. If the inequality in (1.1) is reversed, then f is said to be concave. If the
inequality (1.1) is reversed and strict for all x # y and A € (0,1), then f is said to be strictly

concave.

Suppose that I is a subinterval of (0,00). A function f: I — (0,00) is called multiplicatively
convex if forall x,ye I and 1 € [0,1],

ety < Forrontr 1.2)
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If (1.2) is strict for all x # y and A € (0, 1), then f is said to be strictly multiplicatively convex.
If the inequality in (1.2) is reversed, then f is said to be multiplicatively concave. If inequality
(1.2) isreversed and strict for all x # y and A € (0, 1), then f is said to be strictly multiplicatively

concave.

In [3], E Qi and B.-N. Guo proved the following theorems:

Theorem 1.1 ([3]). Let f be an increasing, convex (concave, respectively) function defined on

)} decreases (the sequence {n( a

0,11, {an} an increasing, positive sequence such that {n( a“fl Gpsy _

1)} increses, respectively), then

LA ) e o

and

Theorem 1.2 ([3]). Let f be an increasing convex (or concave) positive function defined on

[0,1], @ be an increasing convex positive function defined on (0,00) such that {¢p(k) (% -1)}
decreases, then
(p(k)) 1 ( @ (k) )
. (1.4)
<P(n) Z f((ﬂ(n) pn+1) £ Z ! pn+1)

Jiding Liao and Kaizhong Guan [2] proved the following theorems:

Theorem 1.3 ([2]). Let f be a positive function defined in (0, 1]. Suppose that{a,} is an increas-

ing positive sequence such that the sequence {(“21)"} increases.

(1) If f is an increasing and multiplicatively convex (concave) function, then

n Un  (py 1/(n+1)
) =) us

(2) If f is an decreasing and multiplicatively convex (concave) function, then

e "< {ir)

Ap+1
and

Theorem 1.4 ([2]). Let f:(0,1] — [1,4+00) be a real-valued function and {a,} an increasing
positive sequence such that the sequence {(“a”—;l)a”} increases. Then the following statements

arevalid.
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(1) If f is an increasing and multiplicatively convex (concave) function and {a;} is convex
sequence, i.e., Ay—1 + ap+1 =2ay, (n=1,2,...) where ay =0, then

o) (i)

k=1 An+1

(2) If f is an decreasing and multiplicatively convex (concave) function and{a,} is concave
sequence, i.e., Ay_1 + ap+1 <2ay, (n=1,2,...) whereay =0, then

n Van  (ny U
(ﬂf(%)) S(k[[if (azlil)) - 09

The above results are valid for the convex (concave) function and multiplicatively convex

(concave) function. In [1], the authors introduced the class of mean function and generalized

convexity. The class related directly to convex (concave) function.

Definition 1.1 ([1]). A function M : (0,00) x (0,00) — (0,00) is called a mean function if
(1) M(x,y) = M(y, x);
(2) M(x, x) = x;
(3) x < M(x,y) < y, whenever x < y;

(4) M(ax,ay)=aM(x,y) forall a > 0.

Some familiar mean functions such as Arithmetic Mean, Geometric Mean, Harmonic
Mean, Logarithmic Mean, Identric Mean and denoted by A, G, H, L, I, respectively. For details
concerning mean functions A, G, H, L, I we refer to the papers [1] and [5].

Definition 1.2 ([1]). Let f: I — (0,00) be continuous, where [ is a subinterval of (0,00). Let M

and N be any two mean functions. We say f is M N-convex (concave) if
FM(x, ) = (=) N(f(x), f(1), (1.9)
forall x,yel.

From Definition 1.2, the inequalities (1.1) and (1.2) can be rewritten under the simple
forms

FAG M = A(f(0), f(y) and  f(G(x,y) = G(f(x), ().
More precisely, f is AA-convex for the first case and GG-convex for the second case.

Our main purpose of this paper is to present some inequalities which are similar to the
results in [2] and [3] for some generalized convexity functions such as AG-convex (concave),
H A-convex (concave) and HG-convex (concave).
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2. The main results

In this section, we investigate the monotonicity of some sequences involving AG, HA,

HG- convex (concave) function and convex sequence.

Theorem 2.1. Let f be an increasing, AG-convex (concave, respectively) function defined on
(0,1].

(1) If{an} is an increasing, positive sequence such that {n( a“zl )} decreases (the sequence

(% —1)} increses, respectively), then

n Un (. 1/(n+1)
(,Qlf(z_];)) (nlf(anﬂ)) ) (2.1)

G
@(k+1)

{n

(2) If @ is an increasing convex positive function defined on (0,00) such that {(p(k)(
1)} decreases, then

1/¢p(n) 1/¢p(n+1)
n (p(k)) n+1 ( (k) )
(Hf( (n) ) (Hf (n+1) ' 22

4

Proof. Here we only give the proof of the AG-convex, since that the AG-concave is similar and
we omit it.

By Theorem 2.4 in [1], the function f is AG-convex (concave) if and only if In f is convex
(concave). Obviously, In f increases by the increase of f. Hence, applying Theorem 1.1 for
In f, we have

%élnf(z—:) i (dn+1)

It is equivalent to

lnlﬁlf(%)llnzln;ﬁif( ag )ll(nH)@(ﬁf(z_’:l))l/nz(’ﬁlf( ar ))1/(n+1)‘

ap+1 k=1 k=1 \An+1

So, the proof of (2.1) is complete.
Analogously, if applying Theorem 1.2 for In f, then

I L )

qo(n) pn)) @n+1) pn+1)
Equivalently,
n l_[f((p(k))ll(p(n rﬁlf((p(k))ll(p(nﬂ) ﬁ ( (k)) 1/¢(n) ,ﬁlf( (k) ) 1/¢p(n+1)
@(n) @(n) =1 \e(n) pn+1) ’

Hence, the inequality (2.2) is completely proved. o
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Theorem 2.2. Let f be a decreasing, HA-convex (concave, respectively) function defined on
[1,+00).

(1) If{an} an increasing, positive sequence such that {n( a“njl - 1)} decreases (the sequence

{n(“£t ~ 1)} increses, respectively), then

e les)

W)

=1 n+1l =1 aj
(2) If p be an increasing convex positive function defined on (0,00) such that {¢p(k) ( (p(fk(?l) -
1)} decreases, then
(n) 1l (n+1)
Zf((p ) Zf((’) ) (2.4)
<P(n) pk)] @en+1) (k)

Proof. Here we only give the proof of (2), since that (1) is similar and we omit it.

By Theorem 2.4 in [1], the function f is HA-convex (concave) if and only if f(1/x) is
convex (concave). It’s easy to see that g(x) := f(1/x) increases by the decrease of f. Hence,
applying Theorem 1.2 for g, we have

i EAlE e ).
o) o \en)) e+ =7 \pn+1)

Noting that, in the above inequality, g(‘p(k)) f(w(k)) for all k =1,2,...,n and g( w’ili)l)) -
f ( (przzl)) forall k=1,2,...,n+1, and so the proof of the inequality (2.4) is complete. O

Theorem 2.3. Let f be a decreasing, HG-convex (concave, respectively) function defined on

[1, +00).

aﬂ

(1) If{a,} an increasing, positive sequence such that {n( — 1)} decreases (the sequence

{n(#2L — 1)} increses, respectively), then

(lﬁlf(z_:))m (,ﬁlf( n+1))1/(n+1). e

(2) If ¢ be an increasing convex positive function defined on (0,00) such that {¢(k)( (p(fk(f)l) -

1/¢(n) 1/¢p(n+1)
n ( )) n+1 ((p(n+1))
= . 2.6
(l:[ (w(k) ) >(;£[1f @(k) (26)

Proof. The proof runs as in the proof of Theorem 2.1. Here, the increase of In f(1/x) is de-
duced from the decrease of f. O

1)} decreases, then
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Remark 2.4. In Theorem 1.1, if we replace f increasing with decreasing, then the inequality
(1.3) isreversed. That is

_Zf(an) nH’ilf(anﬂ) [f(x)dx 2.7

=1
Indeed, by the decrease of f on [0, 1] we have —f is increasing. Therefore, applying directly
Theorem 1.1 for this function we obtain the inequality (2.7). This implies the inequality (2.1)
is reversed whenever f decreasing and the inequalities (2.3), (2.5) are reversed whenever f

increasing.

3. Corollaries

From these theorems, we can obtain many new inequalities related to Alzer’s inequality

and others or, similar inequalities to those in [3].

Corollary 3.1. Let ¢ be an increasing convex positive function defined on (0,00) such that
{p(h)( o _ 1)} decreases, then

o&+D)
@(n) n
VTG, p(k) nign)
k=1 - p(n)

> . (3.1)
(n+1)/p(n+1)
Tl PO DI
Proof. Taking f(x) = x is an increasing function on (0,1]. Moreover, we have fj:((;c)) = % is a

decreasing function on (0, 1]. By Corollary 2.5 in [1], f is AG-concave. So, applying Theorem
2.1 for this function we get the inequality (3.1). O

Corollary 3.2. Letr > 0 and ¢ be an increasing convex positive function defined on (0,00) such

that {p(k)( w,élj)l) —1)} decreases, then

(p(k)r 1 n+l1 (p(k)r
Z = o+ f 3 6.2

(n) <p(n)’ pn+1)7

Proof. Taking f(x) = 1/x" where r > 0 for x € [1, +00). Obviously, f is decreasing on [1,+00).

Moreover, we have
gx) =P ) =(=rx"™ =r(r=1)x", Vxe(l,+00).

It's easy to see that g(x) > 0 whenever r > 1 and g(x) < 0 whenever 0 < r < 1. So, by Corollary
2.5in [1], f is HA-convex (concave) whenever r > 1 (0 < r < 1, respectively). So, applying
Theorem 2.2 for this function we get the inequality (3.2). O

Iftaking f(x) = xMxel* for x € [1, +00), then f is decreasing. And, we have xzf’(x)/f(x) =
—In x is a decreasing function on (1, +o0). Hence, by Corollary 2.5 in [1], f is HG-concave. By
applying direct Theorem 2.3, we obtain
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Corollary 3.3. For all natural number n, the following inequality is valid

2
(n+1)/2n n TRk
n 1/2n(n+1)] o k=1

e

(n+ 1)(n+2)/2(n+1) (n+1)2 [Tn+1 k.
[ k
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