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A NEW PROOF FOR BERGWEILER’S CONJECTURE CONCERNING

THE FIRST DERIVATIVE OF TRANSCENDENTAL MEROMORPHIC

FUNCTION WITH PICARD EXCEPTIONAL VALUE

FENG GUO AND YUHUA LI

Abstract. Let f be a infinite order meromorphic function, suppose f ′ omits the value 1 in
C. ThenM f = f ′( f −1(0)) is unbounded. We give a new proof for the case of infinite order
for Bergweiler’s conjecture.

1. Introduction and main result

Let f be a meromorphic function in C, define M f = f ′( f −1(0)) = { f ′(z) : z ∈ C and f (z) =
0}. W.Bergweiler [1] raised a conjecture in 2001:

Conjecture 1: Let f be a transcendental meromorphic function in C. If f ′(z) ̸= 1 for all z ∈ C,

then M f is unbounded.

Considering g (z) = z − f (z) we see Conjecture 1 is equivalent to the following one:

Conjecture 2: Let g be a transcendental meromorphic function in C. Suppose that g ′ does not

have zeros. Then there exists a sequence {zn}∞n=1 of fixed points of g such that |g ′(zn)|→∞.

Bergweiler [1] has separately proved Conjecture 1 is affirmative for finite order meromor-

phic functions and entire functions; Jianming Chang [2] has first confirmed the conjecture for

infinite order meromorphic functions, which is based on the theory of quasinormal families.

In this paper, we only use the the tool of normal families to affirm the case.

Theorem 1. Let f be a transcendental meromorphic function. If f ′(z) ̸= 1 for all z ∈ C, then

M f is unbounded.

Received March 22, 2014, accepted June 27, 2014.
2010 Mathematics Subject Classification. Primary 30D30; Secondary 30D45,30D35.
Key words and phrases. Transcendental meromorphic function, omit value, derivative.
Corresponding author: Feng Guo.
The second author partially supported by the grant 11261069 from the National Science Foundation
of China.

91



92 FENG GUO AND YUHUA LI

According to the conjecture, we can see if meromorphic function f satisfies f ′(z) ̸= 1 for

all z ∈ C, f is rational when M f is bounded and f is transcendental when M f is unbounded.

Then whether M f is bounded can be an useful divide standard for meromorphic function.

2. Preliminary lemmas

Remark: Let D(z0, M) = {z : |z − z0| < M } and sign fn(z)
loc.−−→−→ g (z) means a sequence of mero-

morphic functions { fn(z)}∞n=1 locally uniformly convergence to a meromorphic function g (z).

Lemma 1 ([3]). Let f be a meromorphic function. If the spherical derivative f #(z) of f (z) is

bounded. Then the order of f (z) is at most 2.

Lemma 2 ([4]). Let F be a family of meromorphic functions in a domain D. Suppose that

there exists K > 0 such that Mg ⊂ D(0,K ) for all g ∈ F .If F is not normal, then there exists a

sequence { fn}∞n=1 in F , a sequence {zn}∞n=1 in D, a sequence {ρn}∞n=1 of positive real numbers

and a non-constant finite order function f which is meromorphic in C such that zn → z0 for

some z0 ∈ D,ρn → 0 and

f (zn +ρn z)

ρn

loc.−−→−→ f (z) (z ∈C;n →∞).

Moreover, the spherical derivative f #(z) of f satisfies f #(z) ≤ f #(0) = K +1 for all z ∈C.

In the conclusion of Lemma 2, it is possible to replace fn (zn+ρn z)/ρn by fn (zn+ρn z)/ρα
n , for any

given α satisfying −1 <α≤ 1, but here the case α= 1 suffices. The case α= 0 is due to Zalcman

[5], and the case −1 < α < 1 is due to Pang [6, 7]. In Lemma 2, if all g ∈ F have no zero in D ,

then Mg =;. The conclusion is still true according to the original proof in which K can take

0.

Lemma 3 ([1]). Let f be a meromorphic function in C with finite order. Suppose f ′(z) ̸= 1 for

all z ∈C and there exists K > 0 such that M f ⊂ D(0,K ). Then f is rational and has the form

(a) f (z) = z +a + b

(z −c)l
wi th a,b,c ∈C,b ̸= 0, l ∈N

or the form (b) f (z) =αz +β,α,β ∈C,α ̸= 1.

Lemma 4 ([1]). Let D ∈ C be a domain and F be a family of functions meromorphic in D, for

any f ∈F , f and f ′′ do not have any zero in D. Then { f ′/f : f ∈F } is normal in D.

In the conclusion of Lemma 4, f ′′ can be replaced by f (k) for any given k ≥ 2,k ∈ N. In

fact, Hayman W. K. [8] raised a conjecture:
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Let k ≥ 2, k ∈ N, f be a meromorphic function in C which satisfies f ̸= 0, f (k) ̸= 0, then

f (z) = eaz+b , a,b ∈C or f (z) = 1/(az+b)n ,n ∈N.

Hayman [9], Clunie J [10], Mues E [11], Frank G [12] have studied the conjecture and

Langley J. K. [13] has proved the conjecture at last. It is natural to ask whether there exists the

normal rule to the conjecture. Schwick W. [14], Berweiler [1], Bergweiler and Langley [15] has

given the normal rule. The case k = 2 is enough here and has been proved by Bergweiler [1].

Lemma 5. Let f be a meromorphic function, D be an bounded domain and c be constant in C.

If f (z)−c has l zeros in D and f ′(z) has l −1 zeros in D which are all the zeros of f (z)−c. Then

both f (z)− c and f ′(z) only have the same one discriminating zero in D.

Proof. Let f (z)− c =
l∏

j=1
(z − z j )g (z) = R(z)g (z), where g (z) be a meromorphic function with

no zero in D and satisfies g (z j ) ̸= ∞ ( j = 1, . . . , l ). Let R(z) =
l∏

j=1
(z − z j ) with z j ⊂ D ( j =

1, . . . , l ).

Because f ′(z) has l − 1 zeros in D which are all the zeros of f (z)− c, then there exists

l −1 points in {z j | j = 1, . . . , l } be zeros of f ′(z) and with out loss of generality we may assume

f ′(z j ) = 0 ( j = 1, . . . , l −1).

Because f ′(z) = R ′(z)g (z)+R(z)g ′(z), we have

R ′(z j ) = 0 ( j = 1, . . . , l −1), R ′(z) = l ·
l−1∏
j=1

(z − z j ) and
R ′(z)

R(z)
= l

z − zl
.

Then R(z) = (z − zl )l and the proof is completed. ���

Lemma 6 ([8]). Let f be a holomorphic function, if the spherical derivative of f is bounded.

Then the order of f is at most 1.

3. Proof of Theorem 1

Proof. If the order of f is at most 2, the conclusion is true due to the Lemma 3.

If the order of f is greater than 2, we apply Lemma 1 to obtain a sequence {ωn}∞n=1,ωn →
∞(n →∞) such that f #(ωn) →∞, (n →∞). If there exists M > 0 such that M f = { f ′(z) : z ∈C,

f (z) = 0} ⊂ D(0, M). ∀ n ∈N, let fn(z) = f (z +ωn). It is easy to apply Marty’s theorem to know

{ fn(z)}∞n=1 is not normal at 0. Because M fn ⊂ M f ⊂ D(0, M), according to Lemma 2 there exists

a sequence {zn}∞n=1, a sequence {ρn}∞n=1 of positive real numbers and a non-constant finite

order function g (z) such that when n →∞, zn → 0, ρn → 0 and

fn(zn +ρn z)

ρn
= f (ωn + zn +ρn z)

ρn

loc.−−→−→ g (z)
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in C where g (z) satisfies g #(z) ≤ g #(0) = K +1 for all z ∈C.

We first prove g ′(z) cannot be constant. In fact, if g (z) = Az +B(A,B ∈ C), then g #(0) =
|A|

1+|B |2 = M + 1. However, it is obvious that Mg ⊂ M f ⊂ D(0, M) and |A| ≤ M . It contradicts

g #(0) = M +1. Further, because f ′(z) ̸= 1(z ∈C) and g ′(z) not be constant, we apply Hurwitz’s

Theorem to have g ′(z) ̸= 1(z ∈C). Notice that Mg ⊂ D(0, M) and g (z) is finite order, by Lemma

3 we have g (z) has the form g (z) = z +a + b
(z−c)l with a,b,c ∈C,b ̸= 0, l ∈N.

∀ n ∈N, let τn =ωn + zn . There exists entire functions F (z) and H(z) such that F (z) and

H(z) have no common non-trivial divisor and z − f (z) = H(z)
F (z) , then when n is large enough,

we have

fn(zn +ρn z)

ρn
= f (τn +ρn z)

ρn
=

τn +ρn a − H(τn+ρn z)
F (τn+ρn z)

ρn

loc.−−→−→ z +a + b

(z − c)l
(z ∈C),

τn −ρn a − H(τn+ρn z)
F (τn+ρn z)

ρn

loc.−−→−→ b

(z − c)l
(n →∞, z ∈C).

Further,
F (τn +ρn z)

H(τn +ρn z)

loc.−−→−→ 0 (n →∞, z ∈C\{c}), (1)

(τn −ρn a)F (τn +ρn z)−H(τn +ρn z)

ρnF (τn +ρn z)

loc.−−→−→ b

(z − c)l
(n →∞, z ∈C), (2)

ρnF (τn +ρn z)

(τn −ρn a)F (τn +ρn z)−H(τn +ρn z)

loc.−−→−→ (z − c)l

b
(n →∞, z ∈C). (3)

Take an bounded domain D includ c, from (2) we see (τn −ρn a)F (τn +ρn z)− H(τn +ρn z)

have no zero in D when n is large enough; considering (3) there exists some sufficiently small

neighborhood Dc of c such that Dc ⊂ D , thus F (τn +ρn z) have l zeros in Dc when n is large

enough.

We divide two cases for l :

Case 1 l = 1. Let

gn(z) = (τn −ρn a)F (τn +ρn z)−H(τn +ρn z)

(τn −ρn a)F (τn +ρn z)
,

g ′
n(z) = ρn{F ′(τn +ρn z)H(τn +ρn z)−H ′(τn +ρn z)F (τn +ρn z)}

(τn −ρn a)F 2(τn +ρn z)
.

(2) can be expressed as:

gn(z)(τn −ρn a)

ρn
= (τn −ρn a)F (τn +ρn z)−H(τn +ρn z)

ρnF (τn +ρn z)

loc.−−→−→ b

z −c
(z ∈C).
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From (2) we have gn(z) have no zero in Dc when n is large enough.

Here we need to prove g ′′
n(z) have no zero in Dc . The derivative of (2) is

g ′
n(z)(τn −ρn a)

ρn

loc.−−→−→− b

(z − c)2 (z ∈C\{c}).

The derivative of (3) is

dn(z) = ρ2
n{F ′(τn +ρn z)H(τn +ρn z)−F (τn +ρn z)H ′(τn +ρn z)}

{(τn −ρn a)F (τn +ρn z)−H(τn +ρn z)}2

loc.−−→−→ 1

b
(z ∈C). (4)

From (4), when n is large enough, (τn −ρn a)F (τn +ρn z)− H(τn +ρn z) have no zero in any

bounded domain. Therefore, we apply Hurwitz Theorem to have F ′(τn +ρn z)H(τn +ρn z)−
F (τn +ρn z)H ′(τn +ρn z) have no zero too. Considering

ρn

g ′
n(z)(τn −ρn a)

loc.−−→−→− (z − c)2

b
(z ∈C\{c}),

then take the closed circle Dr ⊂ Dc with center c and we have

ρn

g ′
n(z)(τn −ρn a)

â− (z −c)2

b
(z ∈ Dr ).

Further according to the Maximum modulus principle and Montel’s normal criterion we have

ρn

g ′
n(z)(τn −ρn a)

loc.−−→−→− (z − c)2

b
(z ∈C).

According to it’s derivative, since { ρn

g ′
n (z)(τn−ρn a) }∞n=1 are holomorphic in any bound domain

in C, we have
g ′′

n(z)(τn −ρn a)

{g ′
n(z)}2ρn

loc.−−→−→−2(z − c)

b
(z ∈C),

which means g ′′
n (z)/{g ′

n (z)}2 have 1 zero in Dc when n is large enough. On the other hand,

g ′′
n(z)

{g ′
n(z)}2 = 1

F 4(τn +ρn z){g ′
n(z)}2 {g ′′

n(z)F 3(τn +ρn z)}F (τn +ρn z).

From (4) we see when n is large enough, F ′(τn +ρn z)H(τn +ρn z)−F (τn +ρn z)H ′(τn +ρn z)

have no zero in Dc . After simple calculation, we have 1/F 4(τn+ρn z){g ′
n (z)}2 are analytic and have

no zero in Dc with g ′′
n(z)F 3(τn +ρn z) are entire functions. Because F (τn +ρn z) have 1 zero in

Dc , g ′′
n(z) have no zero in Dc .

We apply Lemma 4 to obtain that {g ′
n (z)/gn (z)}∞n=1 is normal in Dc and according to the

definition of normal family there exists a subsequence we still suppose {g ′
n (z)/gn (z)}∞n=1 and a

function G(z) meromorphic in Dc such that

gn(z)

g ′
n(z)

= F (τn +ρn z){(τn −ρn a)F (τn +ρn z)−H(τn +ρn z)}

ρn{F ′(τn +ρn z)H(τn +ρn z)−F (τn +ρn z)H ′(τn +ρn z)}

loc.−−→−→G(z) (5)
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where G(z) cannot always be ∞ due to F (τn +ρn z) have 1 zero in Dc .

From (4) we have
ρn

(τn −ρn a)dn(z)

loc.−−→−→ 0 (z ∈ Dc ). (6)

(5)-(6) is

tn(z) = H(τn +ρn z){(τn −ρn a)F (τn +ρn z)−H(τn +ρn z)}

(τn −ρn a)ρn{F ′(τn +ρn z)H(τn +ρn z)−H ′(τn +ρn z)F (τn +ρn z)}

l oc.−−→−→G(z),

then we have
1

tn(z)

loc.−−→−→ 1

G(z)
(z ∈ Dc ). (7)

From (5) we have
g ′

n(z)

gn(z)

loc.−−→−→ 1

G(z)
(z ∈ Dc ). (8)

(7)−(8) is

{F ′(τn +ρn z)H(τn +ρn z)−H ′(τn +ρn z)F (τn +ρn z)}ρn

F (τn +ρn z)H(τn +ρn z)

loc.−−→−→ 0 (z ∈ Dc ). (9)

Because F ′(τn+ρn z)H(τn+ρn z)−F (τn+ρn z)H ′(τn+ρn z) have no zero in Dc when n is large

enough, therefore from (9) we can see F (τn +ρn z) have no zero in Dc . However, it contradicts

F (τn +ρn z) have 1 zero in Dc .

Case 2 l ≥ 2. From (3) we have

ρn
F (τn+ρn z)
H(τn+ρn z)

(τn −ρn a) F (τn+ρn z)
H(τn+ρn z) −1

loc.−−→−→ (z − c)l

b
(z ∈C). (10)

According to (1) and (10) we have

(τn −ρn a)F (τn +ρn z)

H(τn +ρn z)

loc.−−→−→ 1 (n →∞, z ∈C\{c}). (11)

Here we discuss two subcases for (11):

Subcase 2.1 If { (τn−ρn a)F (τn+ρn z)
H(τn+ρn z) }∞n=1 is normal in C, from (11) we have

(τn −ρn a)F (τn +ρn z)

H(τn +ρn z)

loc.−−→−→ 1 (z ∈C). (12)

(τn −ρn a)F (τn +ρn z)−H(τn +ρn z)

H(τn +ρn z)

loc.−−→−→ 0 (z ∈C). (13)

From (2), (τn −ρn a)F (τn +ρn z)−H(τn +ρn z) have no zero in Dc when n is large enough,

so are H(τn +ρn z) due to (13). According to Hurwitz’s Theorem and (12), F (τn +ρn z) have no

zero in Dc , which contradicts F (τn +ρn z) have l zeros in Dc .
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Subcase 2.2 If { (τn−ρn a)F (τn+ρn z)
H(τn+ρn z) }∞n=1 is not normal in C. Let

φn(z) = (τn −ρn a)F (τn +ρn z)−H(τn +ρn z)

H(τn +ρn z)
.

Then {φn(z)}∞n=1 is not normal and

φ′
n(z) = (τn −ρn a)ρn{H ′(τn +ρn z)F (τn +ρn z)−F ′(τn +ρn z)H(τn +ρn z)}

H 2(τn +ρn z)
.

The derivative of (3) is

ρ2
n · F ′(τn +ρn z)H(τn +ρn z)−H ′(τn +ρn z)F (τn +ρn z)

{(τn −ρn a)F (τn +ρn z)−H(τn +ρn z)}2

loc.−−→−→ (z − c)l−1l

b
(z ∈C). (14)

When n is large enough, (τn −ρn a)F (τn +ρn z)−H(τn +ρn z) have no zero in Dc from (2);

and then F ′(τn +ρn z)H(τn +ρn z)−H ′(τn +ρn z)F (τn +ρn z) have l −1 zeros in Dc from (14)

and Hurwitz’s Theorem .

When n is large enough, we see φn(z) have no zero in Dc from (2). Because {φn(z)}∞n=1

is not normal, we apply Lemma 2 to obtain {νn}∞n=1 ∈ C and {ρ∗
n}∞n=1 of positive real numbers

and a non-constant finite order function ψ(ξ) such that νn → c,ρ∗
n → 0, and

ψn(ξ) = φn(νn +ρ∗
nξ)

ρ∗
n

loc.−−→−→ψ(ξ)(n →∞,ξ ∈C) wi th ψ#(ξ) ≤ψ#(0) = 1.

Here we assert ψ(ξ) has no simple pole if it exists. Let ξ0 be the zero of ψ(ξ). Beacuse ψ(ξ)

cannot always be ∞, there exists closed disc D(ξ0,δ) such that 1/ψ(ξ) and 1/ψn (ξ) are holomor-

phic in D(ξ0,δ). Then 1/ψn (ξ) â 1/ψ(ξ) uniformly in D(ξ0,δ) and so are 1/ψn (ξ)+ρ∗
n .

Notice that 1/ψn (ξ) cannot be constant, there exists {ξn}∞n=1,ξn → ξ0(n →∞) such that

1

ψn(ξn)
+ρ∗

n = ρ∗
n

φn(νn +ρ∗
nξn)

+ρ∗
n = 0, φn(νn +ρ∗

nξn)+1 = 0.

We shall later show that the discriminating zeros of φn(z)+1 in Dc are all the zeros of φ′
n(z)

in Dc when n is large enough. In fact, (z − f (z))′ = H ′(z)F (z)−H(z)F ′(z)
F 2(z) ̸= 0(z ∈ C) therefore the

zeros of H ′(z)F (z)−H(z)F ′(z) are all the zeros of F (z) in C. Further, the zeros of φ′
n(z) in Dc

are all the zeros of φn(z)+1 in Dc . From (14) we see φ′
n(z) have l −1 zeros in Dc when n is

large enough and φn(z)+1 have the same l zeros with F (τn +ρn z) in Dc . Then by Lemma 5

the conclusion is proved and we have

(
1

ψ(ξ)
)′|ξ=ξ0 =− ψ′(ξ0)

{ψ(ξ0)}2 =− lim
n→∞

ψ′
n(ξn)

{ψn(ξn)}2 =− lim
n→∞ {ρ∗

n}2 ·0 = 0,

which means ψ(ξ) has to have multiple pole if it exists, the assert is proved.
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Notice H ′(z)F (z)−H(z)F ′(z)
F 2(z) ̸= 0(z ∈C),then H(τn +ρn z) have no multiple zero in C.

Considering 1/ψn (ξ)
loc.−−→−→ 1/ψ(ξ)(ξ ∈ C). Since (τn −ρn a)F (τn +ρn z)− H(τn +ρn z) have no

zero in Dc when n is large enough, 1/ψn (ξ) are analytic in Dc . By Hurwitz’s Theorem, ψ(ξ) has

no multiple pole and with the assert above, ψ(ξ) have no pole and be entire.

Notice that ψ#(ξ) ≤ ψ#(0) = 1(ξ ∈ C). By Lemma 6, the order of ψ(ξ) is at most 1. Since

φn(z) have no zero in Dc when n is large enough, then φn(νn +ρ∗
nξn) have no zero in any

bounded domain, from the above it follows that ψ(ξ) ̸= 0(ξ ∈C) and ψ(ξ) = e Aξ+B (A,B ∈C, A ̸=
0).

1/ψn (ξ)
loc.−−→−→ 1/ψ(ξ)(ξ ∈C) is

ρ∗
n H(τn +ρnνn +ρnρ

∗
nξ)

(τn −ρn a)F (τn +ρnνn +ρnρ
∗
nξ)−H(τn +ρnνn +ρnρ

∗
nξ)

loc.−−→−→ e−Aξ−B (ξ ∈C). (15)

Let ηn(z) = F (τn +ρn z)H ′(τn +ρn z)−F ′(τn +ρn z)H(τn +ρn z)

{(τn −ρn a)F (τn +ρn z)−H(τn +ρn z)}2

Then the derivative of (15) is

(ρ∗
n)2ρn(τn −ρn a)ηn(νn +ρ∗

nξ)
loc.−−→−→−Ae−Aξ−B (n →∞,ξ ∈C). (16)

(14) can be expressed as:

ρ2
nηn(z)

loc.−−→−→ (z − c)l−1l

b
(n →∞, z ∈C).

∀ n ∈N, let hn(z) be the l −1 order derivative of ηn(z)(z be defined in any bounded domain

in C), then the l −1 order derivative of (14) is

ρ2
nhn(z)

l oc.−−→−→ l !

b
(n →∞, z ∈C).

Then we have

ρl+1
n hn(νn +ρ∗

nξ)
loc.−−→−→ l !

b
(n →∞,ξ ∈C). (17)

The l −1 order derivative of (16) is

(ρ∗
n)l+1ρn(τn −ρn a)hn(νn +ρ∗

nξ)
loc.−−→−→ (−A)l e−Aξ−B (n →∞,ξ ∈C), (18)

(17)+(18) is

{ρl
n + (τn −ρn a)(ρ∗

n)l+1}ρnhn(νn +ρ∗
nξ)

loc.−−→−→ l !

b
+ (−A)l e−Aξ−B (n →∞,ξ ∈C).

It shows that hn(νn +ρ∗
nξ) have zeros in C when n is large enough. However, it contradicts

(17) by Hurwitz’s Theorem and the proof is completed. ���
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