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NONLOCAL CAUCHY PROBLEM FOR TIME VARYING DELAY

INTEGRODIFFERENTIAL EQUATIONS OF SOBOLEV TYPE

IN BANACH SPACES

K. BALACHANDRAN AND R. RAVIKUMAR

Abstract. In this paper we prove the existence of mild and strong solutions of nonlinear time

varying delay integrodifferential equations of Sobolev type with nonlocal conditions in Banach

spaces. The results are obtained by using the theory of compact semigroups and Schaefer’s fixed

point theorem.

1. Introduction

Several papers have appeared on the problem of existence of solutions of semilin-

ear differential equations and integrodifferential equations in Banach spaces [1-3, 11-12,
14-16]. Byszewski [6] has established the existence and uniqueness of mild, strong and

classical solutions of the semilinear nonlocal Cauchy problem in a Banach space by using

semigroup theroy and the contraction mapping principle. Subsequently he has inves-

tigated the same problem for different types of evolution equations in Banach spaces
[7-10]. Many papers have been appeared on nonlocal Cauchy problem for various classes

of differential and integrodifferential equations [13-16]. Physical motivation for this kind

of problem is given in [6-10].

Brill [5] investigated the existence of solutions for a semilinear Sobolev evolution

equation in a Banach space. This type of equations arise in various applications such as
in the flow of fluid through fissured rocks, thermodynamics and shear in second order

fluids (see [5]). Recently, Balachandran et al [3, 4] discussed the problem for nonlinear

integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces.

In this paper, we shall establish the existence of solutions of time varying delay inte-
grodifferential equations of Sobolev type with nonlocal conditions by using the compact

semigroup and the Schaefer fixed point theorem.
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2. Basic Assumptions

Consider the nonlinear delay integrodifferential equation of Sobolev type with nonlo-
cal condition of the form

(Eu(t))′+Au(t)=F (t, u(σ1(t)),

∫ t

0

g(t, s, u(σ2(s)),

∫ s

0

k(s, τ, u(σ3(τ)))dτ)ds) (1)

u(0) + q(u(·)) = u0 for 0 ≤ t ≤ b, (2)

where F : J ×X ×X → Y , g : J × J ×X ×X → X , k : J × J ×X → X and q : X → X

are given functions. Moreover, σi : J → J , i = 1, 2, 3 are continuous function such
that σi(t) ≤ t, i = 1, 2, 3 and u0 ∈ D(E). Let J = [0, b] and we assume the following
conditions:

(i) For each t ∈ J, the function F (t, ·, ·) : X × X → Y is continuous and for each
x, y ∈ X, the function F (·, x, y) : J → Y is strongly measurable.

(ii) For each t, s ∈ J, the function g(t, s, ·, ·) : X × X → X is continuous and for each

x, y ∈ X, the function g(·, ·, x, y) : J × J → X is strongly measurable.
(iii) For each t, s ∈ J, the function k(t, s, ·) : X → X is continuous and for each z ∈ X,

the function k(·, ·, z) : J × J → X is strongly measurable.
(iv) For each positive integer r, there exists hr ∈ L1([0, b]) such that

sup
‖x‖,|y|≤r

‖F (t, u(σ1(t)),

∫ t

0

g(t, s, u(σ2(s)),

∫ s

0

k(s, τ, u(σ3(τ)))dτ)ds)‖ ≤ hr(t)

Definition 2.1. A continuous solution u(t) of the integral equation

u(t) = E−1T (t)Eu0 − E−1T (t)Eq(u(·))

+

∫ t

0

E−1T (t− s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds

is called a mild solution of problem (1)-(2) on J .

Definition 2.2. A function u is said to be a strong solution of problem (1), (2) on J

if u is differentiable almost every where on J , u′(t) ∈ L1(J, X), u(0) + q(u(·)) = u0 and

(Eu(t))′ + Au(t) = F (t, u(σ1(t)),

∫ t

0

g(t, s, u(σ2(s)),

∫ s

0

k(s, τ, u(σ3(τ)))dτ)ds)

almost everywhere on J .

In order to prove our main theorem, we assume certain conditions on the operators A

and E. Let X and Y be Banach spaces with norm |·| and ‖·‖, respectively. The operators
A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y satisfy the following hypothesis.
(H1) A and E are closed linear operators.

(H2) D(E) ⊂ D(A) and E is bijective.
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(H3) E−1 : Y → D(E) is continuous.

Hypothesis (H1) and (H2) and the closed graph theorem imply the boundedness of the

linear operator AE−1 : Y → Y and −AE−1 generates a uniformly continuous semigroup

T (t), t ≥ 0, of bounded linear operators from Y into Y .

(H4) For some λ ∈ ρ(−AE−1), the resolvent set of −AE−1, the resolvent R(λ,−AE−1)

is a compact operator.

Let T (t) be a uniformly continuous semigroup and let A be its infinitesimal generator.

If the resolvent set R(λ : A) of A is compact for every λ ∈ ρ(A), then T (t) is compact

semigroup [17].

From the above fact that −AE−1 generates a compact semigroup T (t), t > 0 , and

so maxt∈J ‖T (t)‖ is finite and denote α = ‖E−1‖. We need the following fixed point

theorem to prove our results.

Schaefer’s Theorem.([18]) Let Z be a normed linear space. Let Φ : Z → Z be a

completely continuous operator,that is, it is continuous and the image of any bounded set

is contained in a compact set, and let

ζ(Φ) = {x ∈ Z : x = λΦx for some 0 < λ < 1}.

Then either ζ(Φ) is unbounded or Φ has a fixed point.

3. Existence of a Mild Solution

Theorem 3.1. Let F : J×X×X → Y , g : J×J×X×X → X and k : J×J×X → X

be functions satisfying Conditions (i)−(iv). Assume that (H1) − (H4) hold. Further

assume that:

(v) There exists a continuous function m1 : J → [0,∞) and such that

‖F (t, x, y)‖ ≤ m1(t)Ω2(‖x‖ + ‖y‖), 0 ≤ t ≤ b, x, y ∈ X,

where Ω2 : [0,∞) → (0,∞) is a continuous nondecreasing function.

(vi) There exists a continuous function m2 : J × J → [0,∞) such that

‖g(t, s, x, y)‖ ≤ m2(t, s)Ω1(‖x‖ + ‖y‖), 0 ≤ s ≤ t ≤ b, x, y ∈ X,

where Ω1 : [0,∞) → (0,∞) is a continuous nondecreasing function.

(vii) There exists a continuous function m3 : J × J → [0,∞) such that

‖k(t, s, z)‖ ≤ m3(t, s)Ω0(‖z‖), 0 ≤ s ≤ t ≤ b, z ∈ X,

where Ω0 : [0,∞) → (0,∞) is a continuous nondecreasing function.

(viii) T (t) is a compact semigroup and there exists a constant M > 0 such that

‖T (t)‖ ≤ M
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(ix) q : C(J : X) → D(E) ⊂ X, is continuous, compact and there exists a constant

H > 0 such that

‖Eq(u(·))‖ ≤ H, for u ∈ C(J : X).

Further if
∫ b

0

m∗(s)ds <

∫ ∞

c

ds

2Ω0(s) + 2Ω1(s) + Ω2(s)
,

where c = αM(‖Eu0‖ + H) and

m∗(t) = max
{

αMm1(t), m2(t, t) +

∫ t

0

∂m2(t, s)

∂t
ds, m3(t, t) +

∫ t

0

∂m3(t, s)

∂t
ds

}

,

then the problem (1)-(2) has atleast one mild solution on J .

Proof. Let B = C(J, X). We establish the existence of a mild solution of the problem
(1)-(2) by applying the Schaefer fixed point theorem. First we obtain a priori bounds
for the operator equation

u(t) = λΦu(t), 0 < λ < 1. (3)

where Φ : B → B is defined by

Φu(t) = E−1T (t)Eu0 − E−1T (t)Eq(u(·))

+

∫ t

0

E−1T (t − s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds. (4)

Then from (3)-(4) we have

|u(t)| ≤ αM(‖Eu0‖ + H) + αM

∫ t

0

‖F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)‖ds

≤ αM(‖Eu0‖ + H) + αM

∫ t

0

{

m1(s)Ω2

[

‖u(σ1(s))‖ +

∫ s

0

m1(s, τ)Ω1

(

‖u(σ2(τ))‖

+

∫ τ

0

Ω0(‖u(σ3(θ))‖)dθ
)

dτ
]}

ds.

Let us take the right hand side of the above inequality as v(t). Then we have

v(0) = u(0) = αM(‖Eu0‖ + H), and |u(t)| ≤ v(t)

v′(t) = αM
{

m1(t)Ω2

[

‖u(σ1(t))‖ +

∫ t

0

m2(t, s)Ω1

(

‖u(σ2(s))‖

+

∫ s

0

m3(s, τ)Ω0(‖u(σ3(τ))‖)dτ
)

ds
]}

≤ αMm1(t)Ω2

[

v(t) +

∫ t

0

m2(t, s)Ω1

(

v(s) +

∫ s

0

m3(s, τ)Ω0(v(τ))dτ
)

ds
]

,
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since v is obviously increasing and σi(t) ≤ t for i = 1,2,3.

Let w(t) = v(t) +

∫ t

0

m2(t, s)Ω1

(

v(s) +

∫ s

0

m3(s, τ)Ω0(v(τ))dτ
)

ds.

Then
w(0) = v(0) = c, v(t) ≤ w(t)

w′(t) = v′(t) + m2(t, t)Ω1

(

v(t) +

∫ t

0

m3(t, s)Ω0(v(s))ds
)

+

∫ t

0

∂m2(t, s)

∂t
Ω1

(

v(s) +

∫ s

0

m3(s, τ)Ω0(v(τ))dτ
)

ds

≤ αMm1(t)Ω2(w(t)) + m2(t, t)Ω1

(

w(t) +

∫ t

0

m3(t, s)Ω0(w(s))ds
)

+

∫ t

0

∂m2(t, s)

∂t
Ω1

(

w(s) +

∫ s

0

m3(s, τ)Ω0(w(τ))dτ
)

ds.

Let r(t) = w(t) +

∫ t

0

m3(t, s)Ω0(w(s))ds,

then r(0) = w(0) = c, w(t) ≤ r(t)

r′(t) = w′(t) + m3(t, t)Ω0(w(t)) +

∫ t

0

∂m3(t, s)

∂t
Ω0(w(s))ds

≤ αMm1(t)Ω2(r(t)) + m2(t, t)Ω1(r(t)) +

∫ t

0

∂m2(t, s)

∂t
Ω1(r(s))ds

+m3(t, t)Ω0(r(t)) +

∫ t

0

∂m3(t, s)

∂t
Ω0(r(s))ds

≤ αMm1(t)Ω2(r(t)) + m2(t, t)Ω1(r(t)) +

∫ t

0

∂m2(t, s)

∂t
ds Ω1(r(t))

+m3(t, t)Ω0(r(t)) +

∫ t

0

∂m3(t, s)

∂t
ds Ω0(r(t))

This implies
∫ r(t)

r(0)

ds

2Ω0(s) + 2Ω1(s) + Ω2(s)
≤

∫ b

0

m∗(s)ds <

∫ ∞

c

ds

2Ω0(s) + 2Ω1(s) + Ω2(s)
.

This inequality implies that there exists a constant K such that r(t) ≤ K, t ∈ J , and
hence u(t) ≤ K where K depends only on b and on the functions m1, m2, m3, Ω0, Ω1 and
Ω2.

Next we prove that the operator Φ : B → B defined by

(Φy)(t)=E−1T (t)Eu0 − E−1T (t)Eq(u(·))

+

∫ t

0

E−1T (t − s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds
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is a completely continuous operator.

Let Br = {y ∈ B : ‖y‖ ≤ r} for some r ≥ 1. We first show that Φ maps Br into an

equicontinuous family. Let y ∈ Br and t1, t2 ∈ J and ǫ > 0. Then if 0 < ǫ < t1 < t2 ≤ b,

‖(Φy)(t1) − (Φy)(t2)‖

≤ α‖T (t1) − T (t2)‖(‖Eu0‖ + H) + α

∫ t1

0

‖(T (t1 − s) − T (t2 − s))‖

×‖F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)‖ds

+α

∫ t2

t1

‖T (t2 − s)‖‖F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)‖ds

≤ α‖T (t1) − T (t2)‖(‖Eu0‖ + H) + α

∫ t1

0

‖(T (t1 − s) − T (t2 − s))‖hr(s)ds

+ α

∫ t2

t1

‖T (t2 − s)‖hr(s)ds.

As t2 − t1 → 0, the right-hand side of the above inequality tends to zero since the

compactness of T (t) for t > 0 implies the continuity in the uniform operator topology.

Thus Φ maps Br into an equicontinuous family of functions. It is easy to see that the

family ΦBr is uniformly bounded.

Next we show that ΦBr is compact. Since we have proved that ΦBr is an equicon-

tinuous family, it is sufficient, by the Arzela-Ascoli theorem, to show that Φ maps Br

into a precompact set in X . This is clear when t = 0, the set Φy(0) = {u0 − q(y)} is

precompact in X , since q is compact.

Let 0 < t ≤ b be fixed and ǫ a real number satisfying 0 < ǫ < t. For y ∈ Br, we define

(Φǫy)(t) = E−1T (t)Eu0 − E−1T (t)Eq(u(·))

+

∫ t

0

E−1T (t− s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds.

Since T (t) is a compact operator, the set Yǫ(t) = {(Φǫy)(t) : y ∈ Br} is precompact in

X , for every ǫ, 0 < ǫ < t. Moreover for every y ∈ Br, we have

‖(Φy)(t) − (Φǫy)(t)‖

≤ α

∫ t

t−ǫ

‖T (t− s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)‖ds

≤ αM

∫ t

t−ǫ

hr(s)ds.

Therefore there are precompact sets arbitrarily close to the set {(Φy)(t) : y ∈ Br}. Hence

the set {(Φy)(t) : y ∈ Br} is precompact in X .



NONLOCAL CAUCHY PROBLEM 199

It remains to show that Φ : B → B is continuous. Let {uj} be a sequence such that

uj → u in B. Then there is an integer l such that ‖uj‖ ≤ l for all j and ‖u‖ ≤ l, t∈ J

and so uj ∈ Bl and u ∈ Bl. By (i) and (ii)

F

(

s, uj(σ1(s)),

∫ s

0

g(s, τ, uj(σ2(τ)),

∫ τ

0

k(τ, θ, uj(σ3(θ)))dθ)dτ

)

→ F

(

s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ

)

,

for each t ∈ J and since

‖F

(

s, uj(σ1(s)),

∫ s

0

g(s, τ, uj(σ2(τ)),

∫ τ

0

k(τ, θ, uj(σ3(θ)))dθ)dτ

)

→ F

(

s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ

)

‖ ≤ 2hl(t),

we have by dominated convergence theorem,

‖Φuj − Φu‖

= sup
t∈J

‖

∫ t

0

E−1T (t− s)
{

F
(

s, uj(σ1(s)),

∫ s

0

g(s, τ, uj(σ2(τ)),

∫ τ

0

k(τ, θ, uj(σ3(θ)))dθ)dτ
)

−F
(

s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ
)}

ds‖

≤αM

∫ t

0

‖F
(

s, uj(σ1(s)),

∫ s

0

g(s, τ, uj(σ2(τ)),

∫ τ

0

k(τ, θ, uj(σ3(θ)))dθ)dτ
)

−F
(

s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ
)

‖ds → 0, as j → ∞.

Thus Φ is continuous. This complete the proof that Φ is completely continuous.

We have already proved that the set ζ(Φ) = {y ∈ B : y = λΦy, λ ∈ (0, 1)} is bounded

and, by Schaefer’s theorem, the operator Φ has a fixed point in B. This means that the

problem (1)-(2) has a mild solution.

4. Example

Consider the partial integrodifferential equation of the form

∂

∂t
[z(t, y) − zyy(t, y)]

=
∂2

∂y2
z(t, y) +

z2(t, y) sin(z(t, y))

(1 + t)(1 + t2)
+

∫ t

0

[ z(s, y)

(1 + t)(1 + t2)2(1 + s)2

+
1

(1 + t)(1 + t2)

∫ s

0

z(τ, y)

(1 + s)(1 + τ)
exp z(τ, y)dτ

]

ds (5)
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z(t, 0) = z(t, 1) = 0, t ∈ J = [0, 1]

z(0, y)−

p
∑

i=1

z(ti, y) = z0(y), 0 < y < 1; 0 < t1 < t2 < · · · < tp < 1.

Let X denote the Banach space L2([0, π]) and z(t, y) = u(t)(y).
Let

q(u(·)) =

p
∑

i=1

u(ti).

We can easily check that there exists H > 0 such that

‖q(u(·))‖ ≤ H

for instance we may take H = pr, if ‖u(t)‖ ≤ r. On the other hand,we have

‖q(u1(·)) − q(u2(·))‖ ≤ p‖u1(t) − u2(t)‖.

Moreover, since

F (t, u(σ1(t)),

∫ t

0

g(t, s, u(σ2(s)),

∫ s

0

k(s, τ, u(σ3(τ)))dτ)ds)

=
u2(t − sin t) sin(u(t − sin t))

(1 + t)(1 + t2)
+

∫ t

0

[ u(s − sin s)

(1 + t)(1 + t2)2(1 + s)2

+
1

(1 + t)(1 + t2)

∫ s

0

u(τ − sin τ)

(1 + s)(1 + τ)
exp u(τ − sin τ)dτ

]

ds,

then,

‖F (t, u, z)‖ =

∥

∥

∥

∥

1

(1 + t)(1 + t2)
(u2(t − sin t) sin(u(t − sin t)) + z)

∥

∥

∥

∥

≤
1

(1 + t2)
‖u‖2 +

1

(1 + t)
‖z‖

where we have set

z =

∫ t

0

g(t, s, u(σ2(s)),

∫ s

0

k(s, τ, u(σ3(τ)))dτ)ds

Next if

v =

∫ s

0

k(s, τ, u(σ3(τ))dτ,

then,

‖g(t, s, u, v)‖ =

∥

∥

∥

∥

u(s − sin s)

(1 + t)(1 + t2)2(1 + s)2
+

v

(1 + t)(1 + t2)

∥

∥

∥

∥

≤
‖u(s − sin s)‖

(1 + t2)2(1 + s)
+

1

(1 + t2)(1 + t)
‖v‖.
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Finally, we have

k(s, τ, u) =

∥

∥

∥

∥

u(τ − sin τ)exp(u(τ − sin τ))

(1 + s)(1 + τ)

∥

∥

∥

∥

≤
1

(1 + s)(1 + τ)
‖u(τ − sin τ)‖exp(‖u(τ − sin τ)‖).

Define the operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y by

Aw = w′′, and Ew = w − w′′,

where each domain D(A) and D(E) is given by

{w ∈ X : w, w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0}.

Then A and E can be written, respectively, as

Aw =

∞
∑

n=1

n2(w, wn)wn, w ∈ D(A),

Ew =

∞
∑

n=1

(1 + n2)(w, wn)wn, w ∈ D(E),

where wn(x) = {
√

2
π

sin ns}n≥1, is the orthogonal set of eigenvectors of A. Furthermore
for w ∈ X we have

E−1w =

∞
∑

n=1

1

1 + n2
(w, wn)wn,

−AE−1w =

∞
∑

n=1

−n2

1 + n2
(w, wn)wn,

T (t)w =

∞
∑

n=1

exp(
−n2t

1 + n2
)(w, wn)wn.

It is easy to see that AE−1 generates a strongly continuous semigroup T (t) on Y and

T (t) is compact such that |T (t)| ≤ e−t for each t > 0. Further we have,

∣

∣

∣

∣

∣

1

(1 + t)(1 + t2)

[

z2(sin t, y) sin z(t, y) +

∫ t

0

( z(s, y)

(1 + t2)(1 + s)2

+

∫ s

0

z(τ, y)

(1 + s)(1 + τ)
exp z(sin τ, y)dτ

)

ds
]

∣

∣

∣

∣

∣

≤
1

(1 + t2)
|z|

Moreover all the other conditions stated in Theorem 3.1 are satisfied. Hence the equation

(5) has a mild solution on [0, 1].
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5. Existence of a Strong Solution

Theorem 5.1. Let assumption (i)-(ix) in Theorem 3.1 be satisfied and the following

additional assumptions hold:

(x) Y is a reflexive Banach space and Br = {y ∈ B : ‖y‖ ≤ r}.

(xi) F : J ×X ×X → Y is continuous in t on J and there exists constants N0 > 0 and

N > 0 such that

‖F (t, u, v)‖ ≤ N0,

‖F (t, u, v) − F (s, u1, v1)‖ ≤ N [|t − s| + ‖u − u1‖ + ‖v − v1‖],

for t, s ∈ J and u, u1, v, v1 ∈ Br.

(xii) g : J × J × X × X → X is continuous in t on J and there exists constants N1 > 0

and N2 > 0 such that

‖g(s, τ, u, v)‖ ≤ N1,

‖g(t, τ, u, v)− g(s, τ, u, v)‖ ≤ N2[|t − s|],

for t, s, τ ∈ J and u, v ∈ Br.

(xiii) u is the unique mild solution of problem (1)-(2) and there is a constant γ such that

‖u(σ1(t)) − u(σ1(s))‖ ≤ γ‖u(t) − u(s)‖, for t, s ∈ J.

Then u is the unique strong solution of the problem (1)-(2) on J .

Proof. Since all the assumptions of the Theorem 3.1 are satisfied, then the problem

(1)-(2) possesses a mild solution u which, according to assumption (xiii), is the unique

mild solution of the problem (1)-(2).

Now we show that this mild solution is the unique strong solution of the problem

(1)-(2) on J . For any t ∈ J , we have

u(t + h) − u(t)

= E−1[T (t + h) − T (t)]Eu0 − E−1[T (t + h) − T (t)]Eq(u(·))

+

∫ h

0

E−1T (t + h − s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds

+

∫ t+h

h

E−1T (t + h − s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds

−

∫ t

0

E−1T (t − s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds.
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From our assumptions, we have

‖u(t + h) − u(t)‖

≤ α‖T (t + h) − T (t)‖(‖Eu0‖ + H) + αMN0h

+

∫ t

0

‖E−1T (t− s)[F (s + h, u(σ1(s + h)),

∫ s+h

0

g(s + h, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds),

−F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)]ds‖

≤ αhM‖AE−1‖(‖Eu0‖ + H) + αMN0h + αMN

∫ t

0

[

h + ‖u(σ1(s + h)) − u(σ1(s))‖

+‖

∫ s+h

0

g(s + h, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ

−

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ‖
]

ds

≤ αhM‖AE−1‖(‖Eu0‖ + H) + αMN0h

+αMN

∫ t

0

[

h + γ‖u(s + h) − u(s)‖ + N1h + N2hb
]

ds

≤ αhM‖AE−1‖(‖Eu0‖ + H) + αMN0h + αMNbh

+αMNγ

∫ t

0

‖u(s + h) − u(s)‖ds + αMNN1bh + αMNN2b
2h

≤ Ph + αMNγ

∫ t

0

‖u(s + h) − u(s)‖ds,

where

P = αM‖AE−1‖(‖Eu0‖ + H) + αMN0 + αMNb + αMNN1b + αMNN2b
2.

Using Gronwall’s inequality, we get

‖u(t + h) − u(t)‖ ≤ PheαMNbγ , t ∈ J.

Therefore u is Lipschitz continuous on J .
The Lipschitz continuity of u on J , combined with (u), gives that

t → F (t, u(σ1(t)),

∫ t

0

g(t, s, u(σ2(s)),

∫ s

0

k(s, τ, u(σ3(τ)))dτ)ds)

is Lipschitz continuous on J . Using the Corollary 2.11 in Section 4.2 in [7] and the
definition of strong solution we observe that the linear Cauchy problem:

(Ev(t))′ + Av(t) = F (t, u(σ1(t)),

∫ t

0

g(t, s, u(σ2(s)),

∫ s

0

k(s, τ, u(σ3(τ)))dτ)ds)
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v(0) = u0 − q(u(·)), has a unique strong solution v satisfying the equation

v(t) = E−1T (t)Eu0 − E−1T (t)Eq(u(·))

+

∫ t

0

E−1T (t − s)F (s, u(σ1(s)),

∫ s

0

g(s, τ, u(σ2(τ)),

∫ τ

0

k(τ, θ, u(σ3(θ)))dθ)dτ)ds.

= u(t).

Consequently u is the unique strong solution of problem (1)-(2) on J .
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