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ANOTHER PROOF OF MONOTONICITY FOR THE EXTENDED

MEAN VALUES

SU-LING ZHANG, CHAO-PING CHEN AND FENG QI

Abstract. We provide another proof of monotonicity for the extended mean values.

Stolarsky defined in [5] the extended mean values E(r, s; x, y) by

E(r, s; x, y) =
(r

s
· ys − xs

yr − xr

)1/(s−r)

, rs(r − s)(x − y) 6= 0;

E(r, 0; x, y) =
(1

r
· yr − xr

ln y − lnx

)1/r

, r(x − y) 6= 0;

E(r, r; x, y) =
1

e1/r

(xxr

yyr

)1/(xr

−yr)

, r(x − y) 6= 0;

E(0, 0; x, y) =
√

xy, x 6= y;

E(r, s; x, x) = x, x = y

and proved that it is continuous on the domain {(r, s; x, y) : r, s ∈ R, x, y > 0}.
Leach and Sholander showed in [1, 2] that E(r, s; x, y) is increasing with both r and

s, and with both x and y. The monotonicities of E has also been researched in [3, 4]

using different ideas and simpler methods.

The aim of this article is to give another proof of monotonicity for the extended mean
values E(r, s; x, y).

The variables x and y are, in this article, positive.

Theorem 1. E(r, s; x, y) is strictly increasing with both r and s.

Proof. Since E(r, s; x, y) is symmetric on r and s, it suffices to prove its monotonicity

of E(r, s; x, y) with respect to r. Since E(r, s; x, y) is symmetric between x and y, without
loss of generality, assume x < y.
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Define for r ∈ (−∞, +∞),

ϕ(r) =







ln
yr − xr

r
, r 6= 0;

ln ln(y/x), r = 0.

Then,

lnE(r, s; x, y) =







ϕ(r) − ϕ(s)

r − s
, r 6= s;

ϕ′(s), r = s.

To prove that lnE(r, s; x, y) is strictly increasing with respect to r it suffices to show

that ϕ is strictly convex on (−∞, +∞). Easy computation reveals that

ϕ(−r) = ϕ(r) − r ln(xy).

which implies that ϕ′′(−r) = ϕ′′(r), and then ϕ has the same convexity on both (−∞, 0)

and (0, +∞). Hence, it is sufficient to prove that ϕ is strictly convex on (0, +∞).

A simple computation yields

r2ϕ′′(r) = 1 − (x/y)r[ln(x/y)r]2

[1 − (x/y)r]2
.

Define for 0 < t < 1,

ω(t) =
t(ln t)2

(1 − t)2
.

Differentiation yields

(1 − t)t ln t
ω′(t)

ω(t)
= (1 + t) ln t + 2(1 − t) = −

∞
∑

n=2

n − 1

n(n + 1)
(1 − t)n+1 < 0,

which means that ω′(t) > 0 for 0 < t < 1, and then, ω(t) < limt→1 ω(t) = 1 for 0 < t < 1.

Clearly, 0 < (x/y)r < 1 for y > x > 0 and r > 0, and thus, ϕ′′(r) > 0 for r > 0. The

proof is complete.
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