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PERSISTENCE AND PROPAGATION IN PERIODIC

REACTION-DIFFUSION MODELS

FRANÇOIS HAMEL AND LIONEL ROQUES

Abstract. In this paper, we consider Fisher-KPP reaction-diffusion models in periodic

environments. We review some results on the questions of species persistence and prop-

agation of pulsating traveling waves. We study the role of the heterogeneities and the

fragmentation of the environment on the persistence and on the propagation speeds.

1. Introduction

This paper is concerned with the study of the qualitative properties and propagation phe-

nomena for solutions of reaction-diffusion equations of the type

∂u

∂t
−∇· (D(x)∇u) = f (x,u), t > 0, x ∈R

N (1.1)

in the whole space R
N with periodic coefficients. Such equations arise in various population

dynamics models in biology, ecology and genetics, see e.g. [9, 33, 44]. The unknown function

u stands for the density of a species and is always assumed to be nonnegative.

Throughout the paper, the matrix field D : RN → M N×N (R) is assumed to be symmetric,

of class C 1,α(RN ) with α> 0, and uniformly elliptic in the sense that

∃ν> 0, ∀x ∈R
N , ∀ξ ∈R

N ,
∑

1≤i , j≤N
Di , j (x)ξi ξ j ≥ ν

∑

1≤i≤N
ξ2

i . (1.2)

The term ∇· (D(x)∇u) corresponds to a diffusion term, which may be anisotropic. The reac-

tion term f : RN × [0,+∞) → R is assumed to be of class C 0,α with respect to x ∈ R
N locally

uniformly in u ∈ [0,+∞), and of class C 1 with respect to u ∈ [0,+∞). Moreover, we assume
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that the state 0 is a steady state, that large constants are supersolutions and that the per capita

growth rate is decreasing with respect to the density u, in the sense that

{
f (x,0) = 0 for all x ∈R

N ,

∃M > 0, f (x,u)≤ 0 for all x ∈R
N and u ≥ M

(1.3)

and

u 7→
f (x,u)

u
is decreasing in (0,+∞) for all x ∈R

N . (1.4)

We focus in this paper on the influence of periodic heterogeneities on the properties of

the solutions u of (1.1). Namely, the functions D and f (·,u) (for every u ≥ 0), are assumed to

be L-periodic with respect to x in the sense that there exists L = (L1, · · · ,LN ) ∈ (0,+∞)N such

that

D(·+Li ei ) = D and f (·+Li ei ,u)= f (·,u) in R
N

for all 1 ≤ i ≤ N , where (ei )1≤i≤N denotes the canonical basis of RN .

The particular case N = 1, D(x) constant and f (x,u) =u(1−u) correspond to the logistic

model of Fisher [16] and Kolmogorov, Petrovsky and Piskunov [28]. Shigesada, Kawasaki and

Teramoto [44, 45] have considered the particular case f (x,u)= u (r (x)−γ(x)u) where r and γ

are C 0,α(RN ) periodic functions with minRN γ> 0.

2. Persistence

In this section, we study the asymptotic behavior at large time of the solutions of (1.1)

with bounded nonnegative initial conditions u0 which are not identically equal to zero. These

conditions on u0 are assumed throughout the paper. It follows then from the maximum prin-

ciple and the assumptions on f that, given such a u0, there exists a unique, classical, solution

u in (0,+∞)×R
N , with 0 < u(t , x) ≤ max

(
M ,‖u0‖L∞(RN )

)
for all t > 0 and x ∈ R

N . We are in-

terested in the asymptotic persistence or extinction of the population, in the following sense.

We say that a solution u of (1.1) tends to extinction if u(t , x) → 0 as t → +∞ uniformly in

x ∈ R
N , and we say that u is asymptotically persistent if liminft→+∞‖u(t , ·)‖L∞(RN ) > 0. Ac-

tually, it will turn out (see Theorem 2.1 below) that, under the assumptions of Section 1, u

is asymptotically persistent if and only if it does not tend to extinction, that is if and only if

limsupt→+∞ ‖u(t , ·)‖L∞(RN ) > 0. In the case of persistence, an important question is to deter-

mine the limit of u(t , x), if any, as t →+∞. We will in particular focus on the influence of the

heterogeneities of the medium, that is the diffusion and reaction coefficients D(x), f (x, ·) and

the period L, on the extinction or persistence.
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2.1. An analytic criterion for the persistence

The extinction or the persistence of the population turns out to depend strongly on the

stability of the steady state 0. The question of the stability of 0 is expressed in terms of the

principal eigenvalue of the linearized equation around the state 0. Namely, it follows from

Krein-Rutman theory that there is a unique real number λ[D,r ], called the principal eigen-

value, for which there exists a (unique up to multiplication) function φ ∈ C 2,α(RN ), called

principal eigenfunction, solving

{
−∇· (D(x)∇φ)− r (x)φ=λ[D,r ]φ in R

N ,

φ is L-periodic, φ> 0 in R
N ,

(2.1)

with r (x) = ∂ f
∂u (x,0) denotes the derivative of f with respect to u at u = 0. Notice in particular

that, if r is equal to a constant r0, then φ is constant and λ[D,r0] = −r0. It turns out that the

extinction vs. persistence only depends on the sign of λ[D,r ], as the following result shows:

Theorem 2.1 ([6]). Assume that the diffusion matrix D satisfies (1.2) and that the function f

satisfies (1.3) and (1.4).

(i) (Persistence) Ifλ[D,r ]< 0, then there exists a unique, classical, solution p of the stationary

problem

∇· (D(x)∇p)+ f (x, p(x)) = 0 in R
N , p > 0 in R

N , (2.2)

and this solution is actually L-periodic. Furthermore, the solutions u(t , x) of (1.1) con-

verge to p(x) as t →+∞ locally uniformly in R
N .

(ii) (Extinction) If λ[D,r ] ≥ 0, then 0 is the only nonnegative stationary solution of (1.1) and

any solution u(t , x) of (1.1) converges to 0 as t →+∞ uniformly in x ∈R
N .

This result gives a necessary and sufficient condition for the persistence, that is the neg-

ativity of the principal eigenvalue λ[D,r ]. Roughly speaking, if the state 0 (where the species

is absent) is unstable (in the sense that λ[D,r ] < 0), then the solution u cannot converge to 0

at large time, and the converse also holds, whatever the (bounded) initial condition may be.

Furthermore, in the case of persistence, all solutions u of (1.1) converge locally uniformly in

x ∈ R
N as t →+∞ to the same limiting state p(x), which turns out to periodic and separated

from 0. Actually, one of the difficult points in the proof of the uniqueness of p is to show, by

unsing some estimates on the principal eigenvalues of the linearized operator in large balls

with Dirichlet boundary conditions, that, if λ[D,r ] < 0, any steady state p of (2.2) is actually

bounded from below by a positive constant (this point is not present in the proof of similar re-

sults in bounded domains with various boundary conditions [1, 9]). This remarkably simple

criterion for persistence vs. extinction involves the spatial features of the environment and
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the biological features of the species, but it is important to notice that the growth rate only

appears through its per capita limit r (x) at u = 0. Lastly, we mention that similar results as

in Theorem 2.1 have been obtained with formal arguments in periodic media with piecewise

constant coefficients [44].

2.2. Effect of the heterogeneity and the fragmentation of the medium

In this section, we use the criterion mentioned in Theorem 2.1 to study the role of the

spatial structure of the environment on species persistence. For the sake of simplicity, we

assume here that the diffusion matrix D is constant and equal to the identity matrix D = I

and we therefore only focus on the role of the intrinsic growth rate coefficient r . We set λ[r ] =
λ[I ,r ] and we also point out that the variational formulation

λ[r ] = min
φ∈H1

loc (RN )\{0}, φ is L-periodic

∫

C
|∇φ|2 − r φ2

∫

C
φ2

(2.3)

holds as well for L∞(RN ) L-periodic functions r , where C = [0,L1]× ·· · × [0,LN ] denotes the

periodicity cell.

Let us first compare an arbitrary medium with a homogeneous one where the growth rate

coefficient has the same average.

Theorem 2.2. There holds λ[r ] ≤λ[r ] =−r , where r denotes the average of r :

r =
1

L1 ×·· ·×LN

∫

C
r (x)d x.

The proof is immediate, since on the one hand λ[r ] ≤ −r by taking φ = 1 in (2.3) and,

on the other hand, λ[r ] = −r as already noticed before Theorem 2.1. Despite its simplicity,

Theorem 2.2 has an interesting meaning: a heterogeneous environment gives better chance

for persistence than a homogeneous one with the same average. Furthermore, the chances for

persistence are all the higher as the repartition of the resources is unbalanced, in the following

sense.

Theorem 2.3. [6] If r ≥ 0 and r is not identically equal to 0, then λ[Ar ] < 0 for all A > 0, the

map [0,+∞) ∋ A 7→λ[Ar ] is decreasing and λ[Ar ] →−∞ as A →+∞.

As an application, consider the case r = r + Ar1, where r1 has zero average and is not

constant. One has λ[r ] = λ[r + Ar1] =−r +λ[Ar1]. If r < 0 and A = 0 (homogeneous medium

with a negative intrinsic growth rate), then λ[r ] =−r > 0 and the population tends to extinc-

tion. But Theorem 2.3 implies that λ[Ar1] → −∞ as A → +∞, whence λ[r ] = λ[r + Ar1] =
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−r +λ[Ar1] →−∞ as A →+∞. In other words, if the heterogeneities have a large enough am-

plitude, then the population persists, even though the medium is unfavorable in the average

sense.

Remark 2.4. When r < 0, the map [0,+∞) ∋ A 7→λ[Ar ] may or may not be monotone, accord-

ing to the profile of r . For instance, if r is equal to a negative constant r = r0 < 0, then λ[Ar ]=
−Ar0 is increasing with respect to A. Consider now the case where r < 0 and maxRN r > 0.

Then there exist δ > 0 and a non-empty ball B ⊂ C such that r ≥ δ > 0 in B , whence λ[Ar ] ≤
λD (−∆− Ar,B ) ≤λD (−∆,B )− Aδ→−∞ as A →+∞, where λD (−∆− Ar,B ) and λD (−∆,B ) de-

note respectively the principal eigenvalues of the operators −∆−Ar and −∆ in B with Dirich-

let boundary conditions on ∂B . But λ[0] = 0 (with constant eigenfunctions) and λ[Ar ]/A →
−r > 0 as A → 0+, after integration of (2.1) with D = I and Ar instead of r . Therefore, the map

A 7→ λ[Ar ] is not monotone on [0,+∞) if r < 0 and maxRN r > 0. Notice also that the map

A 7→ λ[Ar ] is always concave, due to the variational formula (2.3).

Let us now study the influence of the location of the heterogeneities of the medium, when

they have a given average and even a given distribution. More precisely, for any L-periodic

function r ∈ L∞(RN ), we denote µr : R→ [0,+∞) the distribution function of r , defined by

µr (t )=
∣∣∣
{

x ∈C , r (x) > t
}∣∣∣,

where |E | denotes the Lebesgue measure of a measurable set E ⊂R
N . If two functions r and r̃

have the same distribution functions µr =µr̃ , then they have the same average and equimea-

surable superlevel sets, but the locations of these sets may be different. The goal of the last

part of this section is to see that if the resources are arranged in a special way, then the chances

for species persistence are better. More precisely, given any measurable bounded L-periodic

function r , the periodic symmetric decreasing Steiner rearrangement of r with respect to the

variable xi (with 1 ≤ i ≤ N ) is the unique L-periodic measurable bounded function r ∗i which

is symmetric with respect to the hyperplane {xi = Li /2}, nonincreasing with respect to xi for

Li /2 ≤ xi ≤ Li and such that, for almost every (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ R
N−1 and for every

t ∈R, the sets {xi ∈ [0,Li ], r (x)> t } and {xi ∈ [0,Li ], r ∗i (x) > t } have the same measure.

Theorem 2.5. [6] Under the above notations, one has λ[r ∗i ] ≤λ[r ].

The proof of this result mainly follows from the variational formula (2.3) and from stan-

dard Hardy-Littlewood and Polya-Szegö rearrangement inequalities. By performing several

consecutive Steiner rearrangements with respect to any variables, the principal eigenvalue

always decreases, in the sense that

λ[r ∗i ,∗ j ] ≤λ[r ∗i ] ≤λ[r ].
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Notice that, in general, r ∗i ,∗ j 6= r ∗ j ,∗i and λ[r ∗i ,∗ j ] 6=λ[r ∗ j ,∗i ].

As a particular example of these general properties, consider the case where the environ-

ment is binary in the sense that r takes only two values. More precisely, let us assume here

that there exists a measurable set C+ =C+(r ) ⊂C and two constants r− < r+ such that

{
r (x)= r+ if x ∈C+,

r (x)= r− if x ∈C− =C \C+,

and r is L-periodic. The set C+ corresponds to the favorable regions and the set C− to the

unfavorable ones. The distribution function of such a binary function r depends only on r±

and on the proportion h = |C+|/|C | of favorable environment. For given r− < r+ and h ∈ (0,1),

it is a natural question to look for an optimal habitat configuration, that is a binary L-periodic

function r taking values r±, having the given proportion h of favorable environment and min-

imizing the principal eigenvalue λ[r ] in this class. In dimension N = 1, the answer is imme-

diate and the optimal configuration is the one for which, up to shifts, C+ is an interval of size

hL1 (included in [0,L1]). The simple looking problem in higher dimensions N ≥ 2 is actually

quite intricate and it is still open. However, it is possible to prove that there exist optimal con-

figurations. Furthermore, up to shifts in space, these optimal configurations are equal to their

Steiner symmetrizations with respect to all variables xi and the favorable region is connected

and convex in all variables xi . Lastly, the optimal shapes for the optimal favorable and un-

favorable regions C± strongly depend on the amplitude r+− r− of the heterogeneities of the

growth rate r , and they are not always balls or slabs even if they look like balls or slabs: we

refer to [40] for further results in this direction and for enlightening numerical simulations.

Remark 2.6. For a diffusion matrix D and a function f satisfying the general assumptions of

Section 1, with r = ∂ f
∂u (·,0), the formula (2.3) is replaced by

λ[D,r ] = min
φ∈H1

loc (RN )\{0}, φ is L-periodic

∫

C
D∇φ ·∇φ− r φ2

∫

C
φ2

.

In particular, the map B 7→ λ[BD,r ] is nondecreasing on (0,+∞) and, for every B > 0, there

holds −maxRN r ≤ λ[BD,r ] ≤ −r (by choosing φ = 1 for the upper inequality). It is also easy

to see that λ[BD,r ] → −r as B → +∞. Indeed, consider any sequence (Bn)n∈N of positive

real numbers converging to +∞ and let φn be the principal eigenfunctions of the operators

−∇· (Bn D∇)− r with periodicity conditions, that is

−∇· (BnD(x)∇φn )− r (x)φn =λ[BnD,r ]φn in R
N (2.4)

with φn > 0 in R
N and φn is L-periodic. Up to normalization, one can assume without

loss of generality that ‖φn‖L2(C ) =
p
|C | for all n ∈N. By multiplying (2.4) by φn and integrating
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over C , it follows that Bn
∫

C D(x)∇φn · ∇φn −
∫

C r (x)φ2
n = λ[BnD,r ] |C |. Since the sequences

(λ[BnD,r ])n∈N and (‖φn‖L2(C ))n∈N are bounded and since Bn → +∞, one infers from (1.2)

that ‖∇φn‖L2(C ) → 0 as n →+∞, whence φn → 1 as n →+∞ in L2(C ) (and thus in L1(C )) by

Poincaré-Wirtinger inequality. Integrating (2.4) over C and passing to the limit as n → +∞
implies that λ[BnD,r ] →−r as n →+∞.

3. Propagation

In this section, we go back to the reaction-diffusion equation (1.1) with periodic diffusion

and reaction coefficients D and f satisfying (1.2), (1.3) and (1.4), and we assume that λ[D,r ]<
0. In other words, from Theorem 2.1, there is a unique positive L-periodic solution p of (2.2)

and the solutions u(t , x) of (1.1) converge to p(x) locally uniformly in x ∈ R
N as t →+∞. We

focus here on how and at which speed the steady state p(x) invades the unstable steady state

0. We will study the influence of the heterogeneities and the fragmentation of the medium on

the propagation speeds of the pulsating fronts connecting 0 and p .

3.1. Pulsating fronts

For a homogeneous equation of the type ut = D0uxx + f (u) with D0 > 0 being a positive

constant and f satisfying (1.3) and (1.4), a traveling front (moving to the right) is a solution of

the type u(t , x) =φ(x − ct ) with φ(−∞) = M0 >φ> 0 =φ(+∞), where M0 denotes the unique

positive zero of f . In the moving frame with speed c to the right, a traveling front u(t , x) =
φ(x − ct ) is invariant in time. Such fronts are known to exist if and only if c ≥ 2

√
D0 f ′(0) and

they are stable with respect to some natural classes of perturbations, see e.g. [8, 28, 29, 42, 46].

For heterogeneous equations such as (1.1) in periodic media, standard traveling fronts do

not exist in general and the notion of fronts is replaced by the more general one of pulsating

fronts [45]. For (1.1), in the case of the existence (and uniqueness) of a periodic positive steady

state p(x) of (2.2), a pulsating front connecting 0 and p is a solution of the type u(t , x) =
φ(x ·e −ct , x) with c 6= 0, e is a unit vector (e ∈S

N−1), and the function φ :R×R
N →R satisfies

{
φ(−∞, x) = p(x), φ(+∞, x) = 0 uniformly in x ∈R

N ,

φ(s, ·) is L-periodic in R
N , for all s ∈R.

Notice that, if u(t , x) = φ(x · e − ct , x) is a pulsating front, then, for every x ∈ R
N , the function

t 7→ u(t , x +ct e) is in general quasi-periodic.

The following result states the existence and uniqueness of the pulsating fronts.

Theorem 3.1. [7, 24] Under the assumptions of Theorem 2.1 with λ[D,r ] < 0, for every unit

vector e of RN , there exists a real number c∗D,r,e > 0 such that the pulsating fronts u(t , x) =
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φc (x · e − ct , x) connecting 0 and p for (1.1) exist if and only if c ≥ c∗D,r,e . The minimal speed

c∗D,r,e is characterized by the formula

c∗D,r,e = min
λ>0

−kD,r,e,λ

λ
,

where kD,r,e,λ denotes the principal eigenvalue of the operator

LD,r,e,λψ=−∇·(D(x)∇ψ)+2λeD(x)∇ψ+ [λ∇·(D(x)e)−λ2 eD(x)e − r (x)]ψ

with L-periodicity conditions. Furthermore, for each fixed speed c ≥ c∗D,r,e , the pulsating fronts

u(t , x)=φc (x ·e −ct , x) are increasing in time and unique up to shifts in time.

Notice in particular that, if D = D0 and r = r0 are constant, then, by uniqueness of the

principal eigenvalue, one has kD,r,e,λ = kD0,r0,e,λ = −λ2eD0e − r0 and c∗D,r,e = 2
p

(eD0e)r0. We

also refer to [2, 5, 20, 27, 31, 32, 47] for further existence, uniqueness and qualitative results,

to [34, 37, 38] for some results in space-time periodic media and [2, 5, 10, 15, 19, 26, 43, 48,

49, 50] for some existence and qualitative results with other types of nonlinearities or various

boundary conditions in periodic domains.

In the following stability result, for every speed c ≥ c∗D,r,e , we denote λD,r,e,c the smallest

root of the equation kD,r,e,λ + cλ = 0 and ψD,r,e,c a principal eigenfunction of the operator

LD,r,e,λD,r,e,c under L-periodicity conditions.

Theorem 3.2. [24] Under the assumptions of Theorem 3.1, for each fixed speed c ≥ c∗D,r,e , the

pulsating fronts φc (x · e − ct , x) are stable in the following sense: there exists ε> 0 such that, if

the initial condition u0 of (1.1) satisfies 0 ≤u0 ≤ p in R
N ,

liminf
σ→−∞

inf
x∈RN , x·e≤σ

(u0(x)−p(x)) >−ε

and u0(x) ∼ A e−λD,r,e,c x·e ψD,r,e,c (x) (resp. u0(x) ∼ A (x · e)e−λD,r,e,c x·e ψD,r,e,c (x)) for some A > 0

as x · e →+∞ in the case c > c∗D,r,e (resp. in the case c = c∗D,r,e ), then there is a real number τ

such that the solution u of (1.1) with initial condition u0 satisfies

u(t , x)−φc(x ·e −ct +τ, x) → 0 as t →+∞ uniformly in x ∈R
N .

Actually, this result is equivalent to the fact that, if the initial condition u0 is sufficiently

close to p as x · e →−∞ and has the same exponential decay as a pulsating front with speed

c ≥ c∗D,r,e , then the solution u of (1.1) will converge to this front as t →+∞ uniformly in space.

For further stability results and attractivity of the fronts with minimal speeds, we refer to [10,

18, 23].
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3.2. Speed of propagation: effect of the underlying medium

In this section, we analyze the effect of the environment on the propagation speeds c∗D,r,e ,

as defined in the previous section. These minimal speeds are of great importance from the

point of view of the applications. Indeed, under the assumptions of Theorem 3.1, it is known [3,

17, 47] that, if u(t , x) solves (1.1) with a bounded compactly supported and nonzero initial

condition u0, then u spreads with a speed w∗
D,r,e > 0 in every direction e ∈S

N−1, in the sense

that u(t , x + ct e)→ p(x) locally uniformly in x ∈ R
N as t →+∞ for every 0 ≤ c < w∗

D,r,e , while

u(t , x + ct e) → 0 locally uniformly in x ∈ R
N as t → +∞ for every c > w∗

D,r,e , where w∗
D,r,e is

given by

w∗
D,r,e = min

e ′∈SN−1, e ′·e>0

c∗D,r,e ′

e ′ ·e
.

In particular, in dimension 1, the spreading speeds w∗
D,r,±1 coincide with the minimal speeds

c∗D,r,±1, which are equal since, for every λ, the operator LD,r,−1,λ is the adjoint of the operator

LD,r,1,λ.

In the following statements, we focus on the dependence of the minimal speeds c∗D,r,e

with respect to the diffusion and reaction rates, and similar statements can be obtained for

the spreading speeds w∗
D,r,e . Let us first study the positive effect of the heterogeneities on the

propagation speeds, as a consequence of Theorems 2.2 and 3.1.

Theorem 3.3. [7] Assume that the diffusion D is the identity matrix I . Under the notations of

Theorem 2.2, if r > 0, then c∗I ,r,e ≥ c∗
I ,r ,e

for every direction e ∈ S
N−1. Furthermore, if r ≥ 0 and

r 6≡ 0, then the speeds c∗I ,Br,e are increasing with respect to B > 0, for every e ∈S
N−1.

Furthermore, the more aggregated the medium, the larger the speed, in the sense of the

following result.

Theorem 3.4. [35] Under the assumptions of the previous theorem, in dimension N = 1, there

holds c∗I ,r∗,±1 ≥ c∗I ,r,±1, where r ∗ denotes the periodic symmetric decreasing Steiner rearrange-

ment of the function r .

We point out that the same statement does not hold in general in higher dimensions

N ≥ 2, see [35]. In dimension N = 1, another way to study the dependence of the propagation

speeds on the fragmentation of the medium is to analyze the role of the spatial period L = L1.

We will in particular consider the homogenization limit L → 0+ and the large scale limit L →
+∞. To do so, we fix some functions D and f satisfying the general assumptions of Section 1

and being 1-periodic with respect to x ∈R. For L > 0, we define

DL(x) = D
( x

L

)
and fL(x,u)= f

(x

L
,u

)
for all (x,u) ∈R× [0,+∞).
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We also set r (x) = ∂ f
∂u (x,0) and rL(x) = r (x/L) = ∂ fL

∂u (x,0). When L increases, the medium be-

comes somehow less fragmented and, following the general observations mentioned in Sec-

tion 2.2 on the effect of fragmentation on species persistence, the pulsating fronts are ex-

pected to move faster in less fragmented media.

Theorem 3.5. [12, 21, 22, 35] In dimension N = 1, if r > 0, then the function L 7→ c∗DL ,rL ,±1 is

nondecreasing and bounded on (0,+∞). Furthermore,

c∗DL ,rL ,±1 → c∗0 := 2
√

DH r as L → 0+,

where DH = 1/
(
1/D

)
is the harmonic mean of the diffusion coefficient D. Lastly,

c∗DL ,rL ,±1 → c∗∞ := min
λ≥F (R),λ>0

F−1(λ)

λ
as L →+∞,

where F−1 is the reciprocal of the function F : [R ,∞)→ [F (R),∞) defined by:

F (s)=
∫1

0

√
s − r (x)

D(x)
d x for all s ≥ R := max

x∈[0,1]
r (x).

These results show the different roles of the diffusion and growth rate coefficients in het-

erogeneous media and they provide some quantitative estimates of the influence of the spa-

tial period, which can be measured by the ratio c∗∞/c∗0 ≥ 1. For instance, if D = D0 is constant

and r (x) = r+ > 0 on (0,1/2) and r (x) = 0 on (1/2,1) (the function r is not continuous in this

case, but such a profile can be approximated by smooth functions, for which the limiting

speeds c∗0 and c∗∞ are close to the ones obtained in Theorem 3.5), then c∗0 =
p

2D0r+, while

c∗∞ = (8/9)
p

3D0r+, whence c∗∞ = (4
p

6/9)× c∗0 , independently of D0 and r+. Let us consider

another example: if r = r0 > 0 is constant, then c∗0 = 2
p

DH r0 and c∗∞ = 2(
p

D)H
p

r0, where

(
p

D)H denotes the harmonic mean of
p

D. In this case, the ratio c∗∞/c∗0 = (
p

D)H /
p

DH ≥ 1

measures the relative increase of the propagation speeds between a homogenized medium

and a slowly oscillating one. It can also be seen from Theorem 3.5 (see [22]) that, in some

sense, the minimal speeds are much more sensitive to small perturbations (in the L1(0,1)

sense) of the diffusion coefficients than to small perturbations of the growth rate. Another

interesting consequence of Theorem 3.5 is the derivation of an equivalent of the propaga-

tion speed for large reaction terms: namely, under the assumptions and notations of Theo-

rem 3.5, one has, for each fixed L > 0, c∗DL ,BrL ,±1 ∼ c∗0 ×
p

B as B → 0+ and c∗DL ,BrL ,±1 ∼ c∗∞×
p

B

as B → +∞. We also point out that more general results hold in higher dimensions, see

e.g. [11, 22, 35].

For further dependence results and optimal bounds for the propagation speeds in terms

of the diffusion and growth rate coefficients in periodic media, we refer to [5, 11, 30, 36]. Lastly,

we mention that much work has been devoted to the study of the asymptotics of propaga-

tion speeds for reaction-diffusion equations with large advection terms in periodic media,

see e.g. [4, 13, 14, 25, 39, 41, 51, 52].
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