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ON THE TRIPLE HIERARCHICAL VARIATIONAL INEQUALITIES
WITH CONSTRAINTS OF MIXED EQUILIBRIA, VARIATIONAL
INCLUSIONS AND SYSTEMS OF GENERALIZED EQUILIBRIA

LU-CHUAN CENG AND JEN-CHIH YAO

Abstract. In this paper, we introduce and analyze a relaxed iterative algorithm by com-
bining Korpelevich’s extragradient method, hybrid steepest-descent method and Mann’s
iteration method. It is proven that under appropriate assumptions, the proposed algo-
rithm converges strongly to a common element of the fixed point set of infinitely many
nonexpansive mappings, the solution set of a generalized mixed equilibrium problem
(GMEDP), the solution set of finitely many variational inclusions and the solution set of a
system of generalized equilibrium problems (SGEP), which is just a unique solution of a
triple hierarchical variational inequality (THVI) in a real Hilbert space. In addition, we
also consider the application of the proposed algorithm to solving a hierarchical vari-
ational inequality problem with constraints of the GMEP, the SGEP and finitely many
variational inclusions.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm | - ||, C be a nonempty
closed convex subset of H and P¢ be the metric projection of H onto C. Let S: C — Hbea
nonlinear mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of all
real numbers. A mapping S: C — H is called L-Lipschitz continuous if there exists a constant
L>0such that

ISx—Syl<Llx-yl, Vx,yeC.

In particular, if L = 1 then S is called a nonexpansive mapping; if L € (0,1) then S is called a
contraction.
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Let A: C — H be a nonlinear mapping on C. We consider the following variational in-
equality problem (VIP): find a point x € C such that

(Ax,y-x)=0, VyeC. (1.1)

The solution set of VIP (1.1) is denoted by VI(C, A).

The VIP (1.1) was first discussed by Lions [13] and now is well known; there are a lot of
different approaches towards solving VIP (1.1) in finite-dimensional and infinite-dimensional
spaces, and the research is intensively continued. It is well known that, if A is a strongly mono-
tone and Lipschitz-continuous mapping on C, then VIP (1.1) has a unique solution.

In 1976, Korpelevich [2] proposed an iterative algorithm for solving the VIP (1.1) in Eu-
clidean space R
Yn=Pcxp,—TAXy),
{ Xn+1=Pc(xp—TAyn), VYnz=0,
with 7 > 0 a given number, which is known as the extragradient method. The literature on
the VIP is vast and Korpelevich’s extragradient method has received great attention given by
many authors, who improved it in various ways; see e.g., [8, 9, 10, 11, 12, 14, 18, 20, 23, 24, 25,
28, 29, 30, 34, 35, 36] and references therein, to name but a few.

Let ¢ : C — R be a real-valued function, A: H — H be a nonlinear mapping and © :
C x C — R be a bifunction. In 2008, Peng and Yao [23] introduced the following generalized
mixed equilibrium problem (GMEP) of finding x € C such that

O, ) +e(y)—px)+{Ax,y—x)=0, VyeC. (1.2)

We denote the set of solutions of GMEP (1.2) by GMEP(0, ¢, A). The GMEP (1.2) is very general
in the sense that it includes, as special cases, optimization problems, variational inequalities,
minimax problems, Nash equilibrium problems in noncooperative games and others. The
GMEP is further considered and studied; see e.g., [20, 25, 26, 29, 36].

In particular, if A =0, then GMEP (1.2) reduces to the mixed equilibrium problem (MEP)
which is to find x € C such that

O, ) +e(y)—¢kx)=0, VyeC.
It was considered and studied in [15, 21]. The set of solutions of the above MEP is denoted by

MEP(O, ¢).

In [23], Peng and Yao assumed that ® : C x C — R is a bifunction satisfying conditions
(H1)-(H4) and ¢ : C — R is a lower semicontinuous and convex function with restriction
(H5), where
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(H1) ©(x,x)=0forall xe C;
(H2) © is monotone, i.e., O(x, y) +O(y,x) <0 for any x, y € C;

(H3) © is upper-hemicontinuous, i.e., for each x,y,z€ C,

limsup®(tz+ (1-18)x,y) =0O(x,));

t—0*

(H4) ©(x,-) is convex and lower semicontinuous for each x € C;

(H5) for each x € H and r > 0, there exists a bounded subset D, c C and y, € C such that for
any z€ C\ Dy,

1
O(z,yx) +@(yx) —@(2) + ;(J/x -z,z—x)<0.

Given a positive number r > 0. Let S£®’¢) : H — C be the solution set of the auxiliary mixed
equilibrium problem, that is, for each x € H,

1
SO = {yeC:0(,2) +9(2) - o) + 7<I<’(y) ~K'(x),z—y) =0, YzeC},

where K is a Fréchet differential and strongly convex function on H. In particular, whenever
K(x) =3lxl%VxeH, S99 is rewritten as 7.

Let ©1,0, : Cx C — Rbe two bifunctions, and A;, A, : C — H be two nonlinear mappings.
Consider the following system of generalized equilibrium problems (SGEP): find (x*,y*) €
C x C such that

{ ®1(x*,x)+(A1y*,x—x*>+vil(x* -y5,x—x*)=0, VxeC, (1.3)

O2(y*, Y) +(Aax™, y =y + (¥  —x*,y—y*) 20, VyeC,

where v; > 0 and v, > 0 are two constants. It was introduced and studied in [24]. Whenever
0; = 0, =0, the SGEP reduces to a system of variational inequalities, which was considered
and studied in [9, 10, 30]. It is worth to mention that the system of variational inequalities is a
tool to solve the Nash equilibrium problem for noncooperative games.

Let f : H— H be a contraction and V : H — H be a bounded linear operator, which is
strongly positive, i.e., there exists a constant y € (0,1] such that (Vx, x) = )7||x||2, Vxe H. As-
sume that ¢ : H— Ris alower semicontinuous and convex functional, that©®,0;,0, : Hx H —
R satisfy conditions (H1)-(H4), and that A, A;, A : H — H are inverse-strongly monotone. Put
G:= Tfil I-v14y) TVOZZ(I — vy Ay). For the case of C = H, Ceng, Ansari and Schaible [25] intro-
duced the following hybrid extragradient-like iterative algorithm

{ in = Sg(:,),(p) (X —TrpAxy), (1.4)

Xpe1 = au(u +Yf(xn)) + ﬁnxn +((1 _,Bn)l_ an(I+uV)W,Gz,, Vn=0,
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for finding a common solution of GMEP (1.2), SGEP (1.3) and the fixed point problem of in-
finitely many nonexpansive mappings {T,}}, on H, where {r,} < (0,00), {a,}, {8} < (0,1), vi €
0,2¢x), k=1,2, xp, u € H are given, and W,, is the W-mapping generated by T}, Tj,—1,..., T}
and A,,A,-1,...,A1 € (0, b] for some b € (0,1) (see (2.2) in Sect. 2). The authors proved the
strong convergence of the sequence {x,} generated by (1.4) to a point x*eQ:= m‘,’l": 1Fix(Tn) N
GMEP(0, ¢, A) n SGEP(G) under some suitable conditions, where SGEP(G) is the fixed point
set of the mapping G.

On the other hand, let B be a single-valued mapping of C into H and R be a set-valued
mapping with D(R) = C. Consider the following variational inclusion: find a point x € C such
that

0eBx+Rx. (1.5)

We denote by I(B, R) the solution set of the variational inclusion (1.5). In particular, if B=R =
0, thenI(B,R) = C. If B =0, then problem (1.5) becomes the inclusion problem introduced by
Rockafellar [5]. It is known that problem (1.5) provides a convenient framework for the unified
study of optimal solutions in many optimization related areas including mathematical pro-
gramming, complementarity problems, variational inequalities, optimal control, mathemat-
ical economics, equilibria and game theory, etc. Let a set-valued mapping R: D(R) ¢ H — 21
be maximal monotone. We define the resolvent operator Jz ; : H — D(R) associated with R
and A as follows:

Jra=U+AR)', VxeH, (1.6)

where A is a positive number.

In 1998, Huang [33] studied problem (1.5) in the case where R is maximal monotone
and B is strongly monotone and Lipschitz continuous with D(R) = C = H. Subsequently,
Zeng, Guu and Yao [7] further studied problem (1.5) in the case which is more general than
Huang’s one [33]. Moreover, the authors [7] obtained the same strong convergence conclu-
sion as in Huang’s result [33]. In addition, the authors also gave the geometric convergence
rate estimate for approximate solutions. Also, various types of iterative algorithms for solv-
ing variational inclusions have been further studied and developed; for more details, refer to
(14, 22, 27, 29, 32] and the references therein.

Let S and T be two nonexpansive mappings. In 2009, Yao, Liou and Marino [19] consid-
ered the following hierarchical VIP: find hierarchically a fixed point of T, which is a solution

to the VIP for monotone mapping I — S; namely, find % € Fix(T) such that

((I-8)Xx,p—%)=0, VpeFix(T). (1.7)
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The solution set of the hierarchical VIP (1.7) is denoted by A. It is not hard to check that solving
the hierarchical VIP (1.7) is equivalent to the fixed point problem of the composite mapping
Prix(1)S, i.e., find % € C such that X = Pgix(7)SX. The authors [19] introduced and analyzed the
following iterative algorithm for solving the hierarchical VIP (1.7):

{ Yn :ﬁnsxn-i'(]._ﬁn)xnr (1.8)

Xpr1=apVxp+(1—-a,)Ty,, Vn=0.

Theorem YLM (see [19, Theorem 3.2]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let S and T be two nonexpansive mappings of C into itself. Let V : C — C be
a fixed contraction with a € (0,1). Let {a,} and {f,} be two sequences in (0,1). For any given
Xo € C, let {x,} be the sequence generated by (1.8). Assume that the sequence {x,} is bounded
and that

(D) XoZoan =00;

R SR TR TR
a5y " | = 0 limy—co 5|1 = 0 = 0;

(i) 1imp—co £

n
2

(iii) limy oo Br =0, lim, oo % =0 andlim,_ g—z =0;
(iv) Fix(T) nintC # @;

(v) there exists a constant k > 0 such that | x — Tx| = kDist(x, Fix(T)) for each x € C, where
Dist(x, Fix(T)) = il’lfygFix(T) lx—yl. Then{x,} converges strongly to X = Pp V X which solves
the hierarchical VIP

(I-8)%, p—X) <0, VpeFix(T).

Very recently, liduka [16, 17] considered a variational inequality with a variational in-
equality constraint over the set of fixed points of a nonexpansive mapping. Since this prob-
lem has a triple structure in contrast with bilevel programming problems or hierarchical con-
strained optimization problems or hierarchical fixed point problem, it is refereed as triple
hierarchical constrained optimization problem (THCOP). He presented some examples of
THCOP and developed iterative algorithms to find the solution of such a problem. The con-
vergence analysis of the proposed algorithms was also studied in [16, 17]. Since the original
problem is a variational inequality, in this paper, we call it a triple hierarchical variational
inequality (THVI). Subsequently, Zeng, Wong and Yao [22] introduced and considered the fol-
lowing triple hierarchical variational inequality (THVI):

Problem I. Assume that
(i) each T;: H— H is a nonexpansive mapping with méV: 1Fix(Ti) £ P;

(ii) A,:H — H is a-inverse strongly monotone;
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(iii) A, : H — H is -strongly monotone and L-Lipschitz continuous;
(iv) VI(NN,Fix(T}), A1) # 9.
Then the objective is to

find x* € VI(VI(N Y, Fix(T}), A1), Az)
= {x* EVI(mﬁ.\ilFix(Ti),Al) H(Apx*,v—x")=0,Yv EVI(ﬁf-\ilFiX(Ti),Aﬂ}-

The authors [22] proposed the following algorithm for solving Problem I:

Algorithm ZWY ([22, Algorithm 3.2]). Let T;: H—- H (i =1,2,...,N)and A; : H — H (i =
1,2) satisfy assumptions (i)-(iv) in Problem I. The following steps are presented for solving
Problem I.

Step 0. Take {an}‘,’l"zo < (0,1], {pn}‘,’l"zo c(0,2al, pe (O,Z,B/LZ), choose xj € H arbitrarily, and let
n:=0.

Step 1. Given x, € H, compute x,.1 € H as

Yn=Tin+11(Xn — prAi1xn),
Xpt1=Yn—HanA2yn,
where Tix := Tkmodn, for integer k = 1, with the mod function taking values in the set {1,2,....,

N} ie., if k= jN+qforsomeintegers j >0and0< g < N, then Tjy) = Ty if g =0and Ty = Ty
ifl<g<N.

Update n:=n+1 and go to Step 1.
The following convergence analysis was presented in [22] for Algorithm ZWY.

Theorem ZWY ([22, Theorem 3.2]). Let € (0,28/L?), {antS., < (0,11, and {pn}., < (0,2a]
such that (i) lim,, . a, =0, (i) X5 a, = oo, (iil) lim,—.oo (@p—apiN)  Aps Ny =007 X5 (|t N
—ap| <oo, (i) limy—.co(On — P+ N/ PN =0 0r X520 10N — Pl < 00, and (V) pp < ay, for all

n =0. Assume in addition that
N
ﬂ Fix(T;) =Fix(T1 Ty -+ - Tn) = Fix(TN Ty -+ Tn—1) = -+ = Fix(To Ty -+ - Ty Th).

i=1

Then the sequence {x,};,_, generated by Algorithm ZWY satisfies the following properties:
@ {xn}52, is bounded;

(b) hmn—»oo ||-7Cn+N —Xp ” =0 andllmn_,oo ||xn — Tn+N oo Tn+1xn” = 0,

(©) {xn}52,, converges strongly to the unique solution of Problem I provided || x,, — ynll = 0(p ).
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In this paper, we introduce and study the following triple hierarchical variational inequal-
ity (THVI) with constraints of GMEP (1.2), SGEP (1.3) and finitely many variational inclusions:

Problem II. Let N be an integer. Assume that
@d) {Tn}‘,’l":1 is a sequence of nonexpansive mappings on H, and A: H — H and Ay : C —
H are {-inverse-strongly monotone and ( x-inverse-strongly monotone, respectively, for
k=1,2;
(i) A;:H — His a-inverse strongly monotone and A, : H — H is f-strongly monotone and
L-Lipschitz continuous;
(iii) ©,01,0, are three bifunctions from C x C to R satisfying (H1)-(H4), and ¢ : C — Ris a
lower semicontinuous and convex functional;
(iv) R; : C — 2" is a maximal monotone mapping and B; : C — H is n;-inverse strongly
monotone fori =1,2,...,N;
(V) VI(Q,A;) # @ where Q := NS~ Fix(T,) nGMEP(®, ¢, A) N mﬁ.\ill(Bi,Ri) NSGEP(G).
Then the objective is to

find x* € WM(Q»EI)»ZZ)

~ ~ ~ 1.9
={x" e VI(Q, Ay) : (Aox™, v—x") 20,V e VI(Q, A})}. 19

Motivated and inspired by the above facts, we introduce and analyze a relaxed iterative al-
gorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method
and Mann’s iteration method. It is proven that under mild conditions, the proposed algo-
rithm converges strongly to a common element x* € Q := N9, Fix(T,;) n GMEP(®, ¢, A) n
mé\ill(Bi,Ri) N SGEP(G) of the solution set of GMEP (1.2), the solution set of SGEP (1.3), the

solution set of finitely many variational inclusions and the fixed point set of infinitely many

[e 0]

nonexpansive mappings {15,}77,,

which is just a unique solution of the THVI (1.9). In ad-
dition, we also consider the application of the proposed algorithm to solving a hierarchical
variational inequality problem with constraints of GMEP (1.2), SGEP (1.3) and finitely many
variational inclusions. Thatis, under appropriate conditions, it is proven that the proposed al-
gorithm converges strongly to a unique solution u* € Q of the VIP: (A, u*, p—u*) =0,Vp e Q;
equivalently, Po(I — A>)u* = u*. The results obtained in this paper improve and extend the

corresponding results announced by many others.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by (:,-) and || - ||, respectively. Let C be a nonempty closed convex subset of

H. We write x,, — x to indicate that the sequence {x,} converges weakly to x and x, — x to
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indicate that the sequence {x,} converges strongly to x. Moreover, we use w,,(x,) to denote

the weak w-limit set of the sequence {x,}, i.e.,
wy(x,) := {x € H: x,, — x for some subsequence {x,,} of {x,}}.

Definition 2.1. A mapping A: C — H is called

(i) monotone if

(Ax—Ay,x—y)=0, Vx,yeC

(ii) n-strongly monotone if there exists a constant 7 > 0 such that
(Ax=Ay,x-y)=nlx- y||2, Vx,yeC;
(iii) ¢-inverse-strongly monotone if there exists a constant { > 0 such that
(Ax—Ay,x—y)=C(llAx— Ayllz, Vx,yeC.

It is easy to see that the projection P is 1-inverse-strongly monotone. Inverse strongly
monotone (also referred to as co-coercive) operators have been applied widely in solving
practical problems in various fields. It is obvious that if A is {-inverse-strongly monotone,
then A is monotone and %-Lipschitz continuous. Moreover, we also have that, forall u,ve C
and 1 >0,

I(I-AA)u—(I-A2A)v|? = | (u-v) - AMAu— Av)||?
=lu—-vl?=2MAu—- Av,u—v) + A%|| Au— Av|? 2.1)
<lu-vlI?+AA =20 | Au— Av|?.

So, if 1 <2(, then I — A A is a nonexpansive mapping from C to H.

Definition 2.2. A differentiable function K : H — R is called:

(i) convex, if
K(y)-K(x)=(K'(x),y—x), VYx,y€H,

where K'(x) is the Frechet derivative of K at x;

(i) strongly convey, if there exists a constant o > 0 such that
o
Ky =K = (K'G),y-x0=Zlx=yl, ¥xyeH.

It is easy to see that if K : H — R is a differentiable strongly convex function with constant

o >0then K': H— H is strongly monotone with constant o > 0.
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The metric (or nearest point) projection from H onto C is the mapping P¢c : H — C which

assigns to each point x € H the unique point P¢x € C satisfying the property

|x—Pcxl|l = inf |x -yl =:d(x, C).
yeC

Some important properties of projections are gathered in the following proposition.

Proposition 2.1. Forgivenx€ Handze€ C:

(i) z=Pcx © (x—2,y—2)<0,VyeC;
(i) z=Pcx © x—zl®?<lx-yl>-ly-zl? VyeC;
(iii) (Pcx—Pcy,x—y)= IIPCx—PCyIIZ, Yy € H. (This implies that Pc is nonexpansive and

monotone.)

By using the technique of [21], we can readily obtain the following elementary result.

Proposition 2.2. (see [25, Lemma 1 and Proposition 1]) Let C be a nonempty closed convex
subset of a real Hilbert space H and let ¢ : C — R be a lower semicontinuous and convex func-
tion. Let © : C x C — R be a bifunction satisfying the conditions (H1)— (H4). Assume that

(i) K: H — R is strongly convex with constant o > 0 and the function x — (y — x,K'(x)) is
weakly upper semicontinuous for each y € H;

(i) foreach x € H and r > 0, there exists a bounded subset D, c C and y, € C such that for
anyz€ C\ Dy,

1
Oz, yx) +@(yx) —p(2) + - (K'(2) = K'(x), yx—2) <0.

Then the following hold:

(@) foreachxe H, S(,e"p) (x) # &5
(b) S(rg’q)) is single-valued;

(© S(rg’(p) is nonexpansive if K' is Lipschitz continuous with constantv > 0 and
(K'(x1) = K'(x2), u1 — up) < (K'(uy) = K'(up), uy — ), V(x1,x2) € Hx H,

where u; = S(re’q)) (x;) fori=1,2;

(d) foralls,t>0andxe H

S—1
(K'SPPx) - K' (899 x), 89 x =5 ) < — (K" x) - K'(x), 827 x - S99 xy;

(e) Fix($©?) = MEP(®, p);
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(f) MEP(O, ¢) is closed and convex.

In particular, whenever © : C x C — R is a bifunction satisfying the conditions (H1)-(H4) and
K(x) = 3l1xI%,Yx € H, then that is, for any x, y € H,

©,9) (©,9) (©,9) (©,9)
1S; 7 x =8P y12 <SP x =8y, x - )

(S(re"p) is firmly nonexpansive) and

o, o, ls—tl _@©,
1S9 x =8Oy < 2SO x—xll, Vs, t>0,x€ H.
S

In this case, S(rg’(p) is rewritten as T,(G"p). If, in addition, ¢ =0, then T, r@’(ﬂ) is rewritten as TO (see
[24, Lemma 2.1] for more details).

Remark 2.1. Suppose K : H — R is strongly convex with constant ¢ >0 and K’ : H — H is
Lipschitz continuous with constant v > 0. Then K’ : H — H is o-strongly monotone and v-
Lipschitz continuous with positive constants o, v > 0. Utilizing Proposition 2.2 (d) we obtain
thatforall s,r>0and xe H

Ullsg(")r(p)x _ S(t@)y(/’)xnz < <K/(S§@r(ﬂ)x) _ K/(S(f)#’) x)’ Sg@)y(ﬂ)x _ S(t@r(ﬂ)x>
< SHE(SO? x) - K'(x), 8 x-S0 x)
- o, 0, o,
< RSP0 - K @118 x - 5,77 xl

-t ©,9) ©,9) (©,9)
S x—xlSg Vx-S, xll,

IA

which immediately implies that

0, 0, |S - tl v 0,
IS "’)x—sﬁ Pyl —— =189 % —x|.
s o
In 2010, Ceng and Yao [24] transformed the SGEP (1.3) into a fixed point problem in the
following way:

Proposition 2.3 (see [24]). Let®;,0,: C x C — R be two bifunctions satisfying conditions (H1)-
(H4) and let A : C — H be (-inverse-strongly monotone for k = 1,2. Let vi € (0,2{}) for
k=1,2. Then, (x*,y*) € C x C is a solution of SGEP (1.3) if and only if x* is a fixed point of the
mapping G : C — C defined by G := Tfil (I- V1A1)T22 (I -v2A), where y* = TVO;(I— Vo As)x*.
Here, we denote the fixed point set of G by SGEP(G).

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.1. Let X be a real inner product space. Then there holds the following inequality

lx+yI? <lxl®+2¢y,x+y), Vx,yeX.
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Lemma 2.2. Let H be a real Hilbert space. Then the following hold:

@ lx=yll*= x> = yll*—2(x—y,y) forallx,y € H;
®) |Ax+ pyl? = Alxl? + plyll> = Aullx - yl? forall x,y € H and A, p€ [0,1] withA+pu=1;

() If{xn} is a sequence in H such that x;, — x, it follows that

limsup [ x, — ylI? =limsup || x, — x|I> + |x— y|I?>, Vye H.
n—oo n—oo

Let {T,}2., be an infinite family of nonexpansive mappings on H and {1}, be a se-

quence of nonnegative numbers in [0,1]. For any n = 1, define a mapping W, on H as follows:

Un,n+1 =1,
Un,n =An TnUn,n+1 +(1=-A1,
Un,n—l = An—l Th-1 Un,n +(1- An—l)ly

S Uni = Ak TiUp 1 + (L= A0, (2.2)
Upi-1=Ak-1Ti—1Upic+ 1= A1),

Un2=1ToUps+ (1= 1)1,
W, = Un,l = Al TlUn,Z +(1 —Al)l.

Such a mapping Wy, is called the W -mapping generated by Ty, Ty,—1,..., Ty and Ay, Ay—y,..., 1.

We have the following crucial lemmas concerning the W-mappings defined by (2.2).

Lemma 2.3. (see [3, Lemma 3.2]). Let {Tn}‘;f:1 be a sequence of nonexpansive mappings on H
such that N} Fix(Ty,) # @ and let {1} be a sequence in (0, b] for some b € (0,1). Then, for every
x€ Handk =1 the limitlim,,_.o, Uy, i x exists, where U, \. is defined by (2.2).

Remark 2.2. (see [31, Remark 3.1]). It can be known from Lemma 2.3 that if D is a nonempty
bounded subset of H, then for ¢ > 0 there exists ng = k such that for all n > ng

sup | Uy, xx — Ugxll <e.
xeD

Remark 2.3. (see [31, Remark 3.2]). Utilizing Lemma 2.3, we define a mapping W : H — H as
follows:

Wx=lim Wy,x= lim U,1x, VxeH.
n—oo n—oo

Such a W is called the W-mapping generated by 77, T»,... and A;, A,.... Since W,, is nonex-

pansive, W : H — H is also nonexpansive. Indeed, observe that for each x,y€ H

IWx—=Wyl = lim [Wyx~ Wyl =lx-yl.
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If {x,} is a bounded sequence in H, then we put D = {x,, : n = 1}. Hence, it is clear from Remark
2.2 that for an arbitrary € > 0 there exists Ny = 1 such that for all n > Ny

Wyxn = Wxpll = |UpiXn — Ui xull <sup|Up1x - Urxl| <e.
xeD

This implies that

lim |W,x,— Wx,| =0.
n—oo

Lemma 2.4. (see [3, Lemma 3.3]). Let {T,}, be a sequence of nonexpansive mappings on
H such that N Fix(Ty,) # @, and let {1,} be a sequence in (0,b] for some b € (0,1). Then,
Fix(W) = NS Fix(T5,).

Lemma 2.5. (see [4, Demiclosedness principle]). Let C be a nonempty closed convex subset of
a real Hilbert space H. Let T be a nonexpansive self-mapping on C. Then I — T is demiclosed.
That is, whenever {x,} is a sequence in C weakly converging to some x € C and the sequence
{(I - T)x,} strongly converges to some y, it follows that (I — T)x = y. Here I is the identity
operator of H.

Lemma2.6. Let A: C — H bea monotone mapping. In the context of the variational inequality
problem the characterization of the projection (see Proposition 2.1 (i)) implies

ueVIi(C,A) < u=Pcu-2AAu), A>0.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some
notations. Let A be a number in (0,1] and let u > 0. Associating with a nonexpansive mapping
T:C — H, we define the mapping T*: C — H by

Thx:= Tx—AuF(Tx), VxeC,

where F : H— H is an operator such that, for some positive constants «, 7 > 0, F is k-Lipschitzian

and n-strongly monotone on H; that is, F satisfies the conditions:
IFx—-Fyl<xlx—yll and (Fx—-Fy,x—-y)=nlx- y||2

forall x,y e H.

Lemma 2.7. (see [1, Lemma 3.1]). T is a contraction provided 0 < 1 < i—Z s thatis,

IT x- Tyl <1 -An)lx—yl, Vx,yeC,

wheret =1—-+/1—pu@2n—ux?) € (0,1].
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Lemma 2.8. [see [1]] Let{s,} be a sequence of nonnegative numbers satisfying the conditions
spr1 <A —ap)sp+apfn, Vnzl,

where{a,} and{f,} are sequences of real numbers such that

@) {an}<c[0,1] and Y57 | ay, = oo, or equivalently,
(o) n
[Ta-au:=lim [JA-ap)=0;
n=1 S|

(i) limsup,,_,Bn=<0,0r¥ " la,pfnl <oco.

Thenlim;, o s, =0.

Finally, recall that a set-valued mapping T : D(T) ¢ H — 2! is called monotone if for all
x,yeD(T), fe Txand g€ Ty imply

(f-gx—yy=0.

A set-valued mapping T is called maximal monotone if T is monotone and (I + AT)D(T) = H
for each A > 0, where I is the identity mapping of H. We denote by G(T) the graph of T. It is
known that a monotone mapping T is maximal if and only if, for (x, f) e HxH, {(f—g,x—y) =0
for every (y, g) € G(T) implies f € Tx. Let A: C — H be a monotone, k-Lipschitz-continuous
mapping and let Ncv be the normal coneto CatveC,i.e.,

Ncv={ue H:{v—-p,u)=0, VpeC}.

Define
~ {AU+NCU, ifvecC,

Tv =
o, ifvegC.

Then, T is maximal monotone (see [5]) such that

0e Tv < veVIC,A). 2.3

Let R: D(R) ¢ H — 2! be a maximal monotone mapping. Let A,y > 0 be two positive
numbers.

Lemma 2.9. [see [6]] There holds the resolvent identity
JrAX = ]R,,u(%x"‘ (1- %)]R,Ax), VxeH.

Remark 2.4. For A, u > 0, there holds the following relation

1 1
Jrax=Jruyl <llx—yl+IA- ’“”(X IJrax—yll+ i lx—Jruyll), Vx,y€H. (2.4)
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In terms of Huang [33] (see also [7]), there holds the following property for the resolvent
operator gy : H— D(R).

Lemma 2.10. Jr , is single-valued and firmly nonexpansive, i.e.,
Urax—JraAY, X =Y = WJrax—JraylI? Vx,yeH.

Consequently, J ) is nonexpansive and monotone.

Lemma 2.11 (see [14]). Let R be a maximal monotone mapping with D(R) = C. Then for any
given A >0, u e C is a solution of problem (1.6) if and only if u € C satisfies

u=Jgpa(u—ABu).

Lemma 2.12 (see [7]). Let R be a maximal monotone mapping with D(R) = C and letB:C —
H be a strongly monotone, continuous and single-valued mapping. Then for each z € H, the
equation z € (B+ AR)x has a unique solution x, for A > 0.

Lemma 2.13 (see [14]). Let R be a maximal monotone mapping with D(R)=C andB:C — H
be a monotone, continuous and single-valued mapping. Then (I + A(R+ B))C = H for each
A > 0. In this case, R + B is maximal monotone.

3. Main results

In this section, we will introduce and analyze a relaxed iterative algorithm for finding a
solution of the THVI (1.9) with constraints of several problems: the GMEP (1.2), the SGEP
(1.3) and finitely many variational inclusions in a real Hilbert space. This algorithm is based
on Korpelevich’s extragradient method, hybrid steepest-descent method and Mann’s iteration
method. We prove the strong convergence of the proposed algorithm to a unique solution of
THVI (1.9) under suitable conditions. In addition, we also consider the application of the
proposed algorithm to solving a hierarchical VIP with the same constraints.

We are now in a position to state and prove the first main result in this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let N be an
integer. Let ©,01,0, be three bifunctions from C x C to R satisfying (H1)-(H4) and ¢ : C — R
be a lower semicontinuous and convex functional. Let R; : C — 2H be a maximal monotone
mapping and B; : C — H ben;-inverse strongly monotone fori =1,2,...,N. Let A: H— H and
Ay : C — H be(-inverse-strongly monotone and { ;. -inverse-strongly monotone, respectively, for
k=1,2. Let {Ty}5, be a sequence of nonexpansive mappings on H and {1,157, be a sequence
in (0,b] for some b e (0,1). Let A, : H— H be a-inverse strongly monotone and A, : H — H
be B-strongly monotone and L-Lipschitz continuous. Assume that VI(Q, A1) # @ where Q :=
N, Fix(T,) nGMEP(®, ¢, A)nSGEP(G)mmﬁ.\LII(Bi,Ri) # @ whereG is defined as in Proposition
2.3 withvy € (0,20y) fork=1,2. Let e (0,2B/L12),{an}%%, < (0,11, {pn}2, < (0,2al, {B}S2, <
la,b] = (0,1) and{rn}‘,’l":1 c[c,d] < (0,20). Assume that:



ON THE TRIPLE HIERARCHICAL VARIATIONAL INEQUALITIES 311

(i) K: H — R is strongly convex with constant o > 0 and its derivative K' is Lipschitz con-
tinuous with constant v > 0 such that the function x — (y — x,K'(x)) is weakly upper
semicontinuous for each y € H;

(i) foreach x € H, there exist a bounded subset D, c C and z, € C such that for any y ¢ Dy,
1
Oy, z2) + ¢(zx) — p(y) + ;(K'(y) —K'(x),2x - y) <0;

(ifi) limy—co@n =0, X352, @y =00 andlimy .o =11~ 222 =0;

T Pn _ o 1 BT U ; Ay _Q1j_g.
(iv) limy—co g* =0, limp oo a5, ~ 55170 andlim,, .o orll===1=0;
. " _ . |ﬁn_ﬁn71| _ : |rn_rn—1| — -

V) lim,,— b = 0, lim,—o oo = 0 andlim;,_.o, Sapn T 0,
|/1i,n_/1i,n—1|

i) {Ain}<lai, bil <(0,2n;) andlim,_ =0fori=1,2,...,N.

@nPn
For arbitrarily given x, € H, let {x,} be a sequence generated by

=SV = 1y A)xn,

Un = JRy Ann U = ANuBN) TRy Ajo1 U = AN-1,nBN-1) =" TR, A1, (I — A1, n B Un,
Yn = BnGup+ 1= L)WV, — prAivy),

Xp+l = Yn— HanAzyn, Ynzl,

(3.1

where Wy, be the W -mapping defined by (2.2). Then, whenever S(rg’(p) is firmly nonexpansive,

there hold the following:
(i) lim, o ||xn+l;n_xn” =0;
(i) wy(x,) <Q;
(ili) Wy (x) € VI(Q, A)) provided || x, — y,|l = 0(p,) additionally.
Proof. Let {x*} = VI(VI(Q, A;), A>). Taking into account that lim,,_. g—z = 0, we may assume,
without loss of generality, that p, < a, for all n = 1. Since A, is L-Lipschitz continuous, we

get
I A2y — Asx* || < Lllyn—x*Il, Vn=1.

Put
Ay = TR pn U= i nB)TR, iy T = Aic1,nBiz1) -+ Ty A, (I = A1,nB1)

forall i € {1,2,...,N} and A(,)l = I, where I is the identity mapping on H. Then we have v, =
ANu,.

We divide the rest of the proof into several steps.

Step 1. We prove that {x,} is bounded.
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o,
Sg,, ®)

Indeed, take p € Q arbitrarily. Since p = (p—rpAp), Ais (-inverse strongly mono-

tone and 0 < rj, < 2¢, utilizing (2.1) and the nonexpansivity of S(,(;)’(p), we have, foranyn =1,

ln =PI = 1S5, T = ra A xn = S (= ra A pll®
< 1= rpA)xy— (- rpA)pl?
= 1(xn = p) = rn(Ax, — Ap)II®
= [1xn = pI* = 2rp(xp — p, Axp — Ap) + 5l Ax, — Ap|)?
< llxn = pI* =21, | Axp — AplI> + 15l Ax, — Ap|®
= %0 = pI* + ra(rn = 20) | Ax, — Apll®
< llxn - pl*. (3.2)

Utilizing (2.1) and Lemma 2.10 we have

lvn =PIl = Ry an, L= Ann BNIAY "t = Try an, (L= An,n BNAY ' pll
< U= AN BNAY "ty — (= AnnBNAY ' pll

N-1 N-1

< A un— Ay pll
= llun=pl. (3:3)

Combining (3.2) and (3.3), we have

lv,—pll < llx,—pll. (3.4)

Since p=Gp = Tfil (I-v1A1) Tf)zz (I-v2A2)p, Ak is (-inverse-strongly monotone for k = 1,2,
and 0 < vy < 2{ for k= 1,2, we deduce that, forany n =1,

IGv, - pl?
= | T (I~ viAD Ty (I = V2 A v — Ty (I = vi A1) T2 (I = v2 Ap) plI?
< U= ViAD Ty 2 (I~ V2 A2) vy — (I = v AD Ty (I = v2 Ag) plI?
= (T2 (I = V2 Ap) v = Ty (I = v2 Ag) pl = Vi [ A1 T2 (I = Vo Ap) Uy — Ay Ty (I = v A) pl|I°
< | T2 (1= V2 A vy — Tyl (I = V2 A2) plI
+v1(v1 = 20D AL T2 (L= V2 Ag) vy — Ay Ty (1= V2 Ap) pl?
< | T2 (1= V2 A vy — Tyl (I = V2 A2) plI
< 1= v2A2)vp— (I =v2A) plI®
= l(wn— p) = v2(Azvy — Ao p)II?
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< lvn = plI* +v2(va—202) | A2vy — Az pll?
< v, —pl°. (3.5)

Since A, is a-inverse strongly monotone and {p ntoe, < (0,2al, utilizing (2.1), (3.1), (3.4) and
(3.5) we have

lyn =Pl = 182Gy = p)+ (1= ) Wy (vn — ppArva) - pl
< BullGup = pll+ (1= B) | W (v — prArvy) - pll
< Bullvn—pll+ A =B (Wn—prAr1v,) - pl
= Bullva—pll+ A =BT = prAD)va— = prA)p—prArpl
< Bullva—pll+ A =B UUT = prA) vy — I = ppA)pll+pall A pl)
< Ballvn—pl+A=Bu)lvy—pll+pall A pl)
< llva—pll +pall Arpll
< llxp = pll + pall A pll.

Utilizing Lemma 2.7, we obtain from (3.1) and p, < a, that

Ixps1 = pll = lyn — panAzy, - pl
< (I = panA2) yn— (I - pan A) pll + (I - pa, A2 p - pll
< (I-apDlyn—pl+paalipl
< (1-apDllxn—pl+pal Aipl] + anpl Azpll
< (1—ann)lxp—pll+pnll A1 pll + anpl A pll
< (1-apDlx, = pl+an(lA pl +plAzpl)

I A1 pll + pll Azpll
T
||A1P||+.U||A2P||}
‘L' M

=(l-apDlxp—-pl+a,t-

< max{llx, - pll,

where 7:=1-4/1 - u2f — uL?). By induction, we find that

||Alp||+u||ﬁzp||}
T M

lx, — pll < max{llx; — pl, vn=1.

Thus, {x,}2, is bounded and so are the sequences {u,}5" |, {v,}5., and {y,}5,.

Step 2. We prove that lim,, .o, W =0.
Indeed, put 7,, = v, — pnﬁl vy, for all n = 1. Utilizing (2.1) and (2.4), we obtain that

N N
11 = vall = AN, 11 = AN 1
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= 1Ry Awpes L= ANt BOAN T tn1 = Ty an L= Ann BNAR ™ il

< R s T = AN, st BMA N U1 = TRy A I = AN,n BN At Ut |
Ry Anmer L= ANa BOAN T tinir = TRy an (L= AN nBNIAY

< 1= AN,ne1 BOAN T tnar = U= An,u BNA R tinsr |

T = AN BMAY iy = (U= Ann BO ALY 7wl + AN ns1 = Annl

% ( 1
A

N,n+1

(T = AN,nBN)AN T st = TRy g o (T = ANn BNAY 1, 1)

1 Ry A s I = ANn BNIAN F thner = (T = Ay n BOAY il

/1Nn
N-1
< AN ne1 = ANl IBNAY T tn |+ M) + AN w1 = A g

< AN n+1 = ANl BN AN a1+ M)

7 N-2 N-2
+HAN-1n41 = A1l UIBN-1 AN et |+ M) + AN s = AN 2w

N-1 ~
< |ANn+1 _AN,nK”BNAn.H Ups1ll + M)

N-2 ~

+HAN-1,n41 = AN-1,nl(IBN-1 A1 Upsr |l + M)

0 AT 0 0
+eeet |/11,n+1 - Al,n'(”BlAm.l Ups1ll + M) + ||An+1 Ups1 — N upll

N
< Mo Y | Aipe1 = il + ltnsr — tnll, (3.6)
i=1

where

sup Ry Ay s (D= Aiyn BONG thnn = (T = A n BN)AL |

n=1,1<sisN Az n+1

+ A, (L= A n BN, iy = Tron,,, (= Ain BOAL  unllh < M,
nLn

»

for some M >0 and supn>1{zl L IIB; A’n+11 Up+1ll + M} < M, for some M, > 0. Hence, it follows
from (2.1) and {p .}, < (0,2a] that

” ﬁn+1 - ﬁn”
= | (Vn+1 = Pra1A1Uns1) = (Wn — pn A1 vl
< 1 (Wn+1 = Pns1A1Vn+1) = Wi = P 1 AL+ 1 (Vi = Prs1 AL UR) — (U — prArvp)

S Nvns1 = vull +1pne1 — eulll A1 vl

N
= M, Z |/1i,n+1 - Ai,nl + 1 — unll +1pn+1 = pnlllAyvgll. (3.7)
i=1

Also, utilizing (2.1), {rn}‘;f:l c [c,d] < (0,2¢) and Remark 2.1, we deduce that

41 — upll
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(€] 0,
= 1S = 1y A s = S0P (= 1 A) x|

rn+1
O, 0,
=S "’)(I—rnHA)an S©OP (-, A)x,

Tn+1
+S T =1y A xp = SO (T = 1y ) xyl

< ||£;(()<P)

0,
O (1 iy Ay = SO U= 1y Ayl

Tn+1

SOOI = 1y )y = SO (T = 1y A) x|

§ 0,
< (T = Fps1 A X = (L= rp A xnll + 18P (1 = 13 Ay = Se P (= 1 Ayl

Tn+1

,¢) (©,9)
< s = Xnll + 71 = Pl ll Ayl 4+ 15509 (1 - rnA)xn =S V(I -rpA)x,|

|Tne1 = Il 0,9)
S||xn+1_xn||+|rn+1_rn|”Axn”+r7 IIS

n+1

I =rpA)xy,— U —rpA)x,l

Tn+1

Tn+1

v o,
< ||xn+1—xn||+|rn+1—rn|(||Axn||+5ns( P = rpA)xp— (= rpA)xal)
< a1 = Xpll + g1 — 1l My, (3.8)

©,9)

Tn+1

I =1 A)x, — U -1 Ax,ll} < Ml for some Ml > 0. In the

meantime, from (2.2), since W,, T, and U,,; are all nonexpansive, we have

where sup,,. {llAxp |l + - IIS

Il Whyi10n— Wy oy, I = ”Al T Un+1,2 Up— Al T Un,2 Uy I
= Al ” Un+1,2 ijn - Un,2 ﬁn”
= MlA2ToUp1 305 = A2 ToUyp 3 Uyl

< MW Upi130n = Unz Ul

= 1112 Tt An” Un+1,n+1 ijn - Un,n+1 ﬁn”

n
< My [ Ai, (3.9)

i=1

where Mg is a constant such that |Uy+1,p+1Unll + 1 Up, pt1 Ul < Mg for each n = 1. Now, simple

calculation shows that

Yn+1=Yn = Pn(Guys1 = Gvy) + (Bus1 — Br) (Gupsr1r — Wis1 Uns1) + 1= Br) W1 Upe1 — Wy ).

So, utilizing (2.1), (3.6)-(3.9), from {1,} < (0,b] < (0,1), {a,} < (0,11, {pn} < (0,2a] and u €
(0, ZL—f) we deduce that

lYne1—yul
= ,6n||GUn+1 - Gugyll + |,3n+1 _,Bn|||GUn+1 Wy Ul + (1 _,Bn)” W1 Uns1 — WDl
= ﬁn” Un+1— Vn” + |ﬁn+1 - ,6n|”GUn+1 - Wn+1 5n+1 ” +(1- ﬁn)[”WrHl 5n+1 - Wn+1 ﬁn”

HWht10p = Wy Dpll]
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n
= ﬁn” Upn+1— Vn” + |ﬁn+1 _,BnIHGVrHl - Whi1 ijn+1 I+ (1- ﬁn)[” 5n+1 - ﬁn” + MZHAZ']
i=1

N
= ,Bn[MO Z |/1i,n+1 - Ai,nl +lltupe1 — unll + |,6n+1 _,Bn|||GUn+1 —Wis1 U4l
i=1

N n
+(1 _,Bn)[MO Z |/1i,n+1 _Ai,n| +llups1 — Unll +1pne1 = prlll Ay vgll +M2H1i]
i=1 i=1
N

=My Z Mi,n+1 - Ai,n| +lluper — unll + |,6n+1 - ,3n|||GVn+1 ~Whe1Upsll
i=1

n
+lone1 = pnll A vpl + Mo [T A
i=1
—_—~ N —_—~
< My Z Mi,n+1 _Ai,n| + 1 xpe1 = Xpll +1pe1 — 1l M

i=1
+1Bn+1 _ﬁn|”Gvn+1 ~Wha1Uns1ll +lpns1 — pnlllArvpll + Mzbn»

and by Lemma 2.7,

I X542 — Xp+1 |l
= |(I - pan+1A2) yne1 — (I = pan A) ynl
< 11 = pans1A2) Y1 — (I = paps1 A) yull + 11 = patns1 Az) yn — (I — pa, As) ynl

< A= api1 DI Yns1 = Yall + @1 = anlpll Ay,
N
< (I-apa1)[My Z Mi,n+1 - Ai,n| + 1 xpe1 = Xpll +1pe1 — 1l M
i=1
+|ﬁn+1 _,BnIHGVrHl ~ Wy Upall + lon+1 — Pn|||A~1 vnll + Mzbn] +lape1 — anI,U”EZ,Vn”

N
< (1= ap+1D)xp+1 — xpll + Mo Z |/1i,n+1 - Ai,nl +|rpe1 — rplMy
i=1

+Bn+1 = Bull Gy = W1 Vg1l + 1o ns1 — pnlll Ar vl + Mob" + |y — anlpllAzyal

N
<= (I-aps1DxXpe1 — xpll + M3 Z |/1i,n+1 _Ai,nl + M3|rpe1— 1l
i=1

+M3|Bus1 — Bul + Mslpps1 — pul + Msbh™ + M|y — ayl
N

= (1 -ap+10)Xp4+1 — Xnll +M3(Z Mi,n+1 _Ai,nl +rpe1 = 1al
i=1

+|,6n+1 = Bnl+ lon+1 —Pnl+lape —apl+ ™),

where supnzl{ﬁo + Ml + Mz + |Gv,, — Wy, 0, + |Iﬁ1 vnll +,u||ﬁzyn||} < Ms for some Ms > 0.
Consequently,

X741 — Xnll
Pn
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— X, N Adio =i —
S(l—anr)”x" Xn 1”+M3(Z| in in 1|+|7’n -1l
Pn i=1 Pn Pn
— _ — _ _ _ bn—l
+|,3n Bn 1|+|pn Pn 1|+|an an 1|+ )
Pn Pn Pn Pn
lxXn — Xpn-1ll 1 1
= (1-7a) 22— A —tan) %y — Xp1 | (— - —)
Pn-1 Pn  Pn-1
+Mg(§ Mi,n—ﬂi,n—ﬂ + [T —rp-1l n |Bn = Bn-1l n l0n— Pn-1 + la, —an—1l . bn—l)
i=1 Pn Pn Pn Pn Pn Pn
Xn— Xp_ M, 1 1 1
S(1__[“”)” n n 1”+T(Xn'—4{—|——
Pn-1 T Qn Pn Pn-1
NAin—Ain Tn—Tn- — Bn- 1 _ 1 A n-l
T e LS L L SR L S L LA ENT)
i=1 AnPn AnPn AnPn an Pn Pn an AnPn

where sup,,-1 {ll X4 1—Xp 1+ Mz} < My for some M, > 0. From (iii)- (vi) it follows that Yo Ta, =

oo and
M, 1 1 1 NAAin=Ain-1l  11p=Tne
lim _4{_|__ |+ | i,n i,n 1|+| n n 1|
= 7 @&n Pn Pn-1 41 AnPn AnPn
— Ba- 1 - 1 ap-1, bl
+M+_|1_M|+_|1_ n 1|+ }:0
AnPn an Pn Pn an AnPn

Thus, applying Lemma 2.8 to (3.10), we immediately conclude that

. 1 Xn41 = X5l
lim —— =

n—o0 p n

0.

So, from (iv) it follows that

lim [ xp+1 —xpl =0.

n—oo
Step 3. We prove that lim;,_.o | X, — unll =0, lim;—.o | X, — 5l =0, lim,—.o IV, — GUyll =0
and lim,,_o |1 7,,— W1, =0where 7, = v,, — pnﬁl Up.

Indeed, utilizing Lemmas 2.1 and 2.2 (b), from (3.1) and (3.4) we get

Ixp41 = pI®
= 1 - pan A2 yn - plI®
= (I - panA)yn— I - panA)p+ (I - pa, A)p - pl*
< |- panA2)yn— U - panAz) pll* - 2pan( Az p, Xpns1 — p)
< (L—anDllyn— pI* —2uan({Asp, Xni1 - p)
< lyn—pI* - 2pua,(A2p, xpe1 - P
= 11Bn(Gvn = p)+ (1= B) Wy D = p)I° = 2 n (A2 p, Xps1 — p)
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= Bl Gun— pl* + (1= B) I Wy 0y — plI = B (1= B | Guy — Wiy |
—2uan{Azp, Xp+1 — )

< BullGun—pl* + (L= B 51 — plI* = Bu(L = B Gry — Wy 0y I
—2p1a, (AP, X1 — P)

= BullGuy—plI? + (A= B)llvn— p = pnArvall® = Br(1 = B I Gvy — Wy 0y I
—2p1a, (A2 P, X1 — P)

< BullGun = pl* + (1= Bp)(lvn = pI* =20 (AL Un, T — PY)
—Bn( = BIGvy — Wy 01> = 200 (A2 p, Xns1 — P)

< llvn=pI* =2pn(1 = Br){A1 Uy, Un — P)
~Bn( = BIGVy = Wy 01> = 200 (A2 p, Xns1 — P)

< lxp = pI* =2pn(1 = Br){A1 Uy, U — P)
~Bn(1 = BIIGVy — Wy 01 = 200 (A2 p, Xns1 = P), (3.11)

which implies that

Br(1=BIGvy — Wy Dnll? < 11 — plI> = 1 Xp41 — PIZ =20, (1 = Bp)( AL vy, U — p)
—Zﬂan@zp, Xnt1—P)
< 1% = X1 U1 %n = Pl + [ Xns1 = pI) + 20l A vl 5, — pI
+2uanll A pllllxpe1 - pll.

Since @, — 0, p;, — 0, l|xp+1 — Xpll — 0 and {x,}, {v,}, {7} are bounded sequences, it follows
from {,Bn}‘;lo:1 cla, b] < (0,1) that

lim |Gv, - W, 7,ll=0. (3.12)
n—oo

On the other hand, for p € Q, we find that

0, o,
Nty = pl? = ISP (1 = 1 A xy — S U~ 1, A 12

<I-rpA)x,— U -r,Apl?
= llxp— p— ru(Ax, — Ap)II?
< llxn = pl? + ru(rn =201 Ax, — Apl12.

which together with (3.3) and (3.11), implies that

41 — pII?
<llvn—pl> =20, = Br)( A1V, Iy — p)
= Bn(1= B Gvy = Wy Dpll? = 2pan( Az p, X1 — P)
<llun—plI?+20nll A vl 5 — pll + 2pan | Az pll | Xns1 — pll
< 1%, = pII* + rp(rn = 201 Axn — ApI1? + 20| Ay vall| 5 — pll + 2l A2 pllll xpe1 — pll,
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which immediately yields

(20— rp) | Ax, — Apl1?

<llxn = pl2 = 1xn41 = pIZ + 200 A1 vp || 55 — pll + 2pan | A2 plll| Xne1 = I

<|llxn = Xpe1 U xn = pll + 1 X041 = D + 200l Ay vl U5 — pll + 2pag |l A2 plil xn+1 — pll.
Since a, = 0, p, — 0, | Xp+1 — xnll — 0 and {x,},{v,}, {7,} are bounded sequences, it follows
from {rn}‘;f:l c[c,d] < (0,20) that

lim || Ax, — Apll = 0. (3.13)
n—oo
Furthermore, from the firm nonexpansivity of S 5(3’(’)), we have

lun—pli?

= 1S (T = 1y Ay = SOV U~ 1, Al

=(U-rpA)xp—U=-1,A)p, up—p)

= 31T = rp A xn — T =1 APl + llun = pI? = 1T = rp A xp — I = 1y Ap = (un = p)I1%]
< 3lxn = pIZ + llun = pI* = 1 xp = i — 1 (Ax, — Ap)II?]

= 3 lxn — pIZ + lun = plI? = 1 xp — unll® + 27, (Axp — Ap, X — un) — 13| Ax, — Apll?],

which leads to
ln = plI® < l1xn — pIIZ = 1xn — unll® + 21l Ay — Apllllxp — unll. (3.14)
From (3.3), (3.11) and (3.14), we have

Ixn+1 = P12 < lvn— P12 =201 = B){ A1 v, Dy — p)
_,Bn(l_,ﬁn)”GUn_Wnﬁn||2_2llan<A2p»xn+1_p>
< lun—plI? + 20l A1 vl 5y — pll + 2ua, |l A pllilXns1 — pll
< llxp = plI? = 1x — unll® + 21l Axp — Apllll xn — unll + 20l Ay vl 55— Pl
+2uayll Az plillxns = pl,
which hence yields
”xn_un”2
< llxp = pl? = 1xp41 = pIZ + 21, Axp — Apll x5 = unll + 204 | Ay vallll 7 — pll
+2uayll Az plillxps — pl
< | xn = Xna1 1 Xn = pll+ 1 Xn41 — pI) + 21,1 Axy — Apllllxn — unll + 205l Ay vl 7, — pll
+2papll Az plilixpe1 — pll.
Since a;, — 0, p, — 0, | Xp+1 — Xull — 0 and {x,},{u,},{vy}, {7,} are bounded sequences, it

follows from (3.13) and {r,}5, < [c,d] = (0,2() that

lim ||x, — u,l =0. (3.15)
n—oo
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Next we show that lim,,_.o IIAl-Ailun -A;pl=0,1=1,2,...,N. Observe that

1AL wn = pI* = 1T 20, (= Ain BN = Tro ., (L= Ain B I
< 1= A nBOAL  un — (1= 14, By plI?
< 1AL =PI+ Ain(Ain =200 I Bi A u = Bipll®
< llun = pI* + Ainin — 20 | Bi Ay 't — Bipl?
< llxn = pI® + Ai,n(Ain — 20 ) | Bi AL uy — Bipl*. (3.16)

Combining (3.11) and (3.16), we get

Ixp41 = PI® < llvn = plI* =2p (1= Br){A1 vy, U — P)
—Bn(L=B)IGvy — Wy yll* = 2pa( Az p, Xpa1 — p)
< ALty = plI* + 200l Ay vl | 5 — pll + 2 | Az plll Xns1 = pll
< X0 = pI* + AinAin = 20) | BiA}, un — Bip?
+20ll A1 vl 55 = pll + 20, | A2 pll | Xni1 — pll,

which hence yields

Ain@ni = A ) IBiA  uy, — Bipll?
< lxn = pI* = 1xn+1 = PIZ + 200l Ay vulll 5 — pll + 2uan | As pll| Xne1 — Pl
< 10 = Xps 1 11X = pll+ 1 Xns1 = I + 20l AL vl 5y — pll + 2pa, | Ao pll| X1 — Pl

Since @, — 0, p;, — 0, | xp+1 — Xnll — 0 and {x,}, {v,}, {7} are bounded sequences, it follows
from {A; ,} < la;, bil < (0,2n;),Vi€{1,2,...,N} that

lim |B;A'u, —B;pll=0, Vie{l,2,...,N}. (3.17)

oo
By Lemma 2.2 (a) and Lemma 2.10, we obtain
IALun - plI®
= gy, (L= Ain BOAL Yy = Tr, 00, (L= Ai,n B PP
< (I =AinB)AL  un — (I = A nBi)p, Ayt — p)
= %(n (I = AinBIAL iy — (= A4,n B pI? + | Aun — plI®
—1(I = A nBOAL  un = (1= A4, nBi)p — (Myun — p)I°)

< —(IA Y uy = pIP + 1AL uy = pI? = 1AL Yy = ALy = Ai (BN 1wy — Bip) 1)

—N | =

< S (lun - plIZ + 1AL wy = plI> = 1AL 1y — ALy — Ay (Bi AL iy, — Bip)I?)
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1 . . . .
2 2 -1 -1 2
= E(llxn = plI= + 1AL un = plI= = 1Ay un = Apun = Ain(BiAy " un = Bip)I1°),
which implies

1AL un=pI? < 0= pI? = 1AL tn = Aty = Ai n(Bi A un = Bip)I1?
= llxp = plI* = 1AL wp = Ajunll* = AZ I BiA) " un - Bipl?
+24i (A Yy — ALy, BiAL Yy, — Bip)
< 10— pI® = IAL  up— A unl®+24; n I AL tty— Al un 1Bi ALy tin—B; pll.(3.18)

Combining (3.11) and (3.18) we conclude that

Ixne1 = plI® < llvn—pl> =20, 1 = Bp)(A1 vy, U — p)
= Bn(L = B)IGUy — Wy 0y = 2p0 (A2 p, Xns1 — P)
< 1AL un— pl> + 20l A1 vallllon — pll + 2pa, | A2 pll | Xp41 — P
<130 = pI? = 1AL Yy = AL un |12+ 22 n | A Yy — AL ug |1 Bi AL Y uy — Bipll

+ 200l Ay vpllll 5 — Pl + 210, | A pll | Xne1 — P,
which implies

IAL Yy, — AL up 12

< 1% = pII> = X1 = P12+ 24 p | AL Y — AL gl Bi Al uy — Bipl
+2pnll A1 vl n — pll +2pa, | A2 pll 1 X041 — P

< 1% = X1 11 = Pl + 1 Xns1 = PID + 225 n 1AL g = AL ug 11 Bi AL wy — By pl
+2pnll A1 vl n — pll +2pa, | A2 pl 1 X041 — P

Since @, — 0, p, — 0, [ Xp+1 — Xxll — 0 and {x,},{u,},{vy}, {U,} are bounded sequences, it
follows from (3.17) and {A; ,} < [a;, bi] < (0,2n;),Vi € {1,2,..., N} that

r}ggollAil‘lun—AilunII:O, Vie{l,2,...,N}. (3.19)
Hence from (3.19) we get

0 N
lup—vpll = ”Anun_An Upll
0 1 1 2 N-1 N
< A un— Ayunll + 1A up — A upll +- -+ 1A up — Ay ugll

— 0 asn—oo. (3.20)
Thus, from (3.15) and (3.20) we obtain

lxn—vull = llxp—unll + llup — vyl

— 0 asn—oo. (3.21)
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On the other hand, for simplicity, we write p = Tf)zz (I=v2A2)p, 2= T‘(?ZZ (I-v2A2)v, and
Zn=Gv, = T‘(?l] (I-v1Ay)z, forall n=1. Then

p=Gp=To (I-viADP = To' (I-v1 A) T2 (I — v Ag) p.

We now show that lim,,_.o |Gv,, — v, =0, i.e, lim, . IZ;, — v, |l = 0. As a matter of fact, for
p € Q, it follows from (3.4), (3.5) and (3.11) that

Ixp+1 = plI* < BullGvp = plI* + A= Bu)(lvy = plI> =20 (A vp, B — P))

~Bn( = BIGVy = Wy 01> = 2pan( Az p, Xni1 — P)

< BullZn—plI* + A= B lva— pII* +2p )l A1 vl 5, -
+2uan | Azpllllxper - pll

< Bulllzn— PI* +vi(vi =201 A1 20 — A1 BIPT+ (1= B)lvn — pII?
+20nll A1l = pll + 2pa | A2 pll | Xps1 — plI

< Bulllvn = pI? +va(va = 202) | A vy — Ao pII* +vi(vy = 201) | A1 24 — Ay BII1%)
+(L=Ba)llvn— pl* + 20,4l A vallll 95 — pll + 2uan | A2 pll | Xne — Pl

= llvn— pI* + Bulva(va — 202) | Az vy — Az plI* +v1(vi — 201) | Ay 2 — AL P17
+20nll A1 vl = pll + 2pa | A2 pll | Xpe1 — pII

< 1xn = pII* + Bnlva(va = 202) | Az vy — Az pII* +v1(vi — 201) | At 2 — A1 PII%]
+20nll A1 vl 5n = pll + 2panl A2 pll | Xpe1 — I,

which leads to

Bnlv22Ls = vl Asvy — AaplI> +v1 20, —=v) Il A1z — AL PIIP]
< lxn = PI? = 1Xps1 = PI? + 200l A vl 5 — pll +2pa, | A pllll X i1 — P

< 1%n = Xps 1 11 X0 = I+ 1 Xps1 = pI) + 200l A vnllll 5 — pll +2pa, | As plll X1 — p.

Since @, — 0, p;, — 0, | xp+1 — Xpll — 0 and {x,}, {v,}, {7} are bounded sequences, it follows
from vy € (0,20%), k= 1,2 and {$,}9, < [a, bl < (0,1) that

lim [|[Ayv,—A2pll=0 and lim [|A1z,—A1pll=0. (3.22)
n—oo n—oo

Also, in terms of the firm nonexpansivity of Tf,ak’“ and the (x-inverse strong monotonicity of Ay
for k=1,2, we obtain from vy € (0,2{}), k= 1,2 and (3.4)-(3.5) that

Iz = pI% = 1 Ty? (I = V2 A2) vy — Ty (I = v2 A2) pl?
S (U =vaA) v, — (I —=Vv2A2)p, 2y — P)



ON THE TRIPLE HIERARCHICAL VARIATIONAL INEQUALITIES 323

_1
T2
(I =v2A2) vy — (I = V2 A2) p — (25— P) 1]

(11 = Vo AR) vy — (I = Vo AR plI* + Il 2, — PII?

vy —pli2 + 1l zn = BI* = | (vn — 2n) = V2 (A2 vy — Asp) — (p — P)II?]

< ~[lxn— pI* + 120 — PI* = 1 (wn—20) - (p - P)I?
+2Vo(Un— 20) = (p = P), A2 U — Ap p) = V31| Apvp — Ao pl1?),
and
12, = plI? = 1 Ty (L= v1ADzn — Ty (I = v AD I
< ((I-v1A1)zp — (I =V1AD P, Zn — p)
= %[nu—wAnzn —(I-viADPI*+ 112, - pI?
~II=v1ADzp— I =v1AD = (Zn— PII?]
< %[nzn—ﬁn%uzn—pnz— 1(zn — 2n) + (p = PII?
+2v1(A12y — A1 P, (2n — Zn) + (p— P)) = Vi1 A12 — A1 PII]
< U= pIE+ 120 = pI = 2= 20) + (= DI

+2vi{A1z2,— A1P, (2 — Zy) + (p— PN
Thus, we have

Izn— Pl < %= plI2 =1 (Wn = 20) = (p = P +2V2{(Vn — 20) — (p = P), A2 Uy — Az P)
V3l Ayv, — Az pll?, (3.23)

and
1Zn— Pl < lxp— plIZ = 1(zn = Zp) + (p = P)I* +2v1 1l Ar2n — AL Pl (20— Z0) + (= D). (3.24)

Consequently, from (3.4), (3.5), (3.11) and (3.23) it follows that

Ip+1 = plI
< Bl Gun— pIIP + (L= Bp)lvn — plI* =20 n{ AL U, T — PY)
~Bn(L=B)IGvy = Wy 0ylI” = 2 (A2 p, Xps1 — p)
< Ballzn— plI*+ A= B)llvn— plI* + 20l A vallll 94 — pll + 2uan |l A2 plll xpe1 - pll
< Bullzn— P>+ A= B)llvn— plI* + 20l A vallll 94 — pll + 2uanll A2 plll xpe1 — pll
< Balllxn = pI* =1 (wn — 2n) = (p = P +2v2l (U — 20) — (p = P), A2 Un — Ao p)
~V3ll Apvn — AaplI®] + (1= B)llxn = pIZ +2pnll Ay vl 9 — Pl + 2panll Az pll| Xns1 = P
< Balllxn = pI? = 1(n — 20) = (= PI* +2v2ll(vn = 20) = (p— P A2vn — Az pll]
+(L= B xn = plI* + 204l A vallll 95 — pll + 2uan | A2l | Xpe1 — plI
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< lxn = pI* = Bull(vn— 2n) — (P = PIIZ +2v2 (U — 2) = (p — Pl Az vy — Az pll
+20nll Ay vpllll 5 = pll + 20, | A pll | Xne1 — pl,

which leads to

Bull(vn—2zn) = (p— P)I?
< llxn = pII* = [ xne1 = pI* +2v2ll(vn — 20) = (P = P Avy — Al
+20ll A1 vl 5n = pll + 2pan | A2 pll | Xpe1 — plI
< 1 xn = Xps 1l Ulxn = pll+ 1 Xp41 = pID) +2v2 (v — 25) — (p = P A2vy — A2 pll
+20nll A1 vl n = pll + 2pa | A2 pll | Xni1 — pll,

Since a, — 0, p, — 0, | xXp+1 — Xull — 0 and {x,},{v,}, {U,},{z,} are bounded sequences, it
follows from (3.22) and {8,} < [a, b] < (0,1) that

r}l_{lgo l(vy—2zn)—(p—p)I=0. (3.25)
Furthermore, from (3.4), (3.11) and (3.24) it follows that

Ixp+1 = pII®
< BullGvn — pl* + (1= B)Ulvn — I = 205( A1 Uy, U — P))
—Bn(1 =BGy — Wy 01> = 2pan( Az p, Xns1 — P)
< Bullzn— pI* + A= ) lvn = pI* + 20 Ay vl 5 = pll + 2pan | A2 pll xpse1 = p
< Bulllxn = plI> = (zn = Z0) + (p = PII* +2v1 1| A2 — A1 Pl (2 — Z) + (p — P)I]
+(L= Bl xn = plI* + 20,4l Ay vallll 95 — pll + 2uan | A2 pll | Xne — Pl
< lxp = pI* = Bull(zn = Zn) + (p = PN +2v1 11 A1 20 — A1 Pl (20 — 2n) + (P = DI
+20ull AL vl 50 = pll + 2pa, | A2 pll | Xni1 — pll,
which yields
Bnll(zn—Zp) + (p— P)I?
< %0 = pI? = I xns1 = pI* +2vill A1z — AL Pl (zn = Z0) + (p = P)I
+20ll AL vl = pll + 2pa | A2 pll | Xpi1 — Pl
< 1xn = Xpe1 101 %0 = Pl + [ Xps1 = pI) +2v1 11 A1 2 — A1 Pl (2 — 20) + (P = D)

+20 0l Ay vpllll 5 = pll + 210, | A Il | Xne1 — P

Since a;, — 0, pr, — 0, [ Xp+1—Xnll = 0 and {x,}, {vy}, {U,}, {2z}, {Z,} are bounded sequences, it
follows from (3.22) and {8,,} < [a, b] = (0,1) that

1im [|(2, = 24) + (p = P = 0. (3.26)
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Note that
lvn—Zull <l (vn—2zn) = (p—PI +1(2n—Zp) + (p—P)II.

Hence from (3.25) and (3.26) we get
lim [[v,—Z,l = lim [|v, — Gyl =0,
n—o00 n—o00
Also, observe that || 7, — x, || < v, — x,l + pnllﬁl v,ll and
1yn = xnll < I Xpe1 = Xl + pn | A ypll.
Hence from (3.21), a;, — 0, p,, — 0 and ||x;,+1 — X, || — 0 we obtain that
lim |7, -x,1=0 and lim |ly,—x,ll=0.
n—oo n—oo
So, from (3.12), (3.27) and p, — 0 we deduce that

Wyon—0ull = IW,U,— Guull +1Guy — vpll + v, — Ul

= |WynU,— Guull +1Gvy — vpll + pullArvgll — 0 as n— oo.

In addition, it is clear that
10n =Woull < 10p = Wy Opll + | Wn 0y = Wl
Thus, we conclude from Remark 22, (3.29) and the boundedness of {7,,} that
Jim |5, = Wop| =0.

Step 4. We prove that w,,(x,) € Q.
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(3.27)

(3.28)

(3.29)

(3.30)

Indeed, since H is reflexive and {x,} is bounded, there exists at least a weak convergence

subsequence of {x,}. Hence it is known that w,,(x;) # @. Now, take an arbitrary w € w,, (x,).

Then there exists a subsequence {x;,} of {x,} such that x,,, — w. From (3.15), (3.19), (3.21) and

(3.28), we have that u,, - w, v,, — w, ¥,, — w and An’”l_ up, — wflorm=1,2,...,N. Utilizing
Lemma 2.3, we deduce from v,,, — w and 7,, — w, (3.27) and (3.20) that w € SGEP(G) and
w € Fix(W) = ﬁ‘;f:lFix(Tn) (due to Lemma 2.5). Next, we prove that w € m%zll(Bm,Rm). As

a matter of fact, since B, is 11, -inverse strongly monotone, B, is a monotone and Lipschitz

continuous mapping. It follows from Lemma 2.13 that R, + B, is maximal monotone. Let

(v,8) € G(Ryu+Bp), i.e., g—Byv € Ry v. Again, since Al u, = ]Rm,lm,n(l_/lm,an)Anm_l Uy, N =

1,me{l,2,...,N}, we have

AP V= Ay B AT Y1y € (T 4+ Ay n Ri) A i,
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that is, )
/1_( M = A Uy = A n B A Y1) € Ryp AT 1.
m,n

In terms of the monotonicity of R, we get

(v—A"uy,, g~ Bnv— A,i,n (A" Uy — A"ty = A n B AT 1)) = 0
and hence
(v=AJup, g
> (v—A"uy, B+ A;n (A" Uy — A"y = A n B AT 1))
= (v—A"Up, By — By A" up + By Aty — By AT My, + Ant - (A" Yy, — A" uy))

1

> (U= A"y, B A 1y — B AT uy) + (v — Ay, 7
m,n

APy — AT uy)).
In particular,

_ 1 _
(U—Anmiuni,g>z(v—Anmiuni,BmAZﬁuni—BmAnmi 1uni)+(v—Anmiuni,—/1 (Anmi luni—AZﬁuni».
m,n;

Since |AMu, — A" 1u,| — 0 (due to (3.19)) and || B A"ty — By A7 uy| — 0 (due to the

Lipschitz continuity of By,;), we conclude from A%_ up, — wand {A; »} < la;, b;] < (0,2n;) that

lim (v —Aj up, 8) = (v—w,g) =0.

1—00

It follows from the maximal monotonicity of B, + R, that0 € (R, + Bp,) w, i.e., w € I(By,, Rpy).
Therefore, w € NN _ 1(By, Ry).

Next, we show that w € GMEP(0, ¢, A). In fact, from u,, = S(r(;)’(p) (I-r,A)x,, we know that
Oun, y) +@(y) = p(un) + (Axp, y — Un) + r—1n<K’(un) ~K'(xp),y—un)20, VyeC.
From (H2) it follows that
P(¥) = p(up) +(Axp, y — up) + r—1n<K’(un) ~K'(xn),y = tn) 2 0(y,un), VyeC.

Replacing n by n;, we have

K/(un,-)_K/(xn,-)
) — Uy, +{Axy;, y — Up,) +< JY—Up) =0, uy), VyeC. (3.31)

I'n;

Putu,=ty+(1—1fwforall r€(0,1] and y € C. Then, from (3.31) we have

(U —up,, Auy)
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K/(un,-) _K/(xn,-)
= Uy — Up;, Aty — @) + @(Up,) — (U — Up,, Axp,) — < . U — Up,) + Oy, Up,)
n;
= (U — Up;, AUy — Alp,) + (U — Uy, AUy, — AXp,) — @(Ug) +@(Uy;)

K'(u,) =K' (x.
— ( "t)r ( nl);ut_um>+®(ut’u”i)'
.

i

Since |[u,, — xp, Il — 0 as i — oo, we deduce from the Lipschitz continuity of A and K " that
| Atn, — Axp, | — 0 and |K'(up,) — K'(x,,)| — 0 as i — oco. Further, from the monotonicity

of A, we have (u; — uy,, Au; — Auy,;) = 0. So, from (H4), the weakly lower semicontinuity of
K’ (14,) =K' ()

’
I'n.
ni

— 0and u,, — w, we have
(uy— w, Aug) = —@(uy) + (w) +O(uy, w), asi— oo. (3.32)

From (H1), (H4) and (3.32) we also have

0 =0(us, uy) +(uy) —@(ur)
<Oy, y)+ A -0D0(ur, w) + tp(y) + (1 - De(w) —@(ur)
=t[O(us, y) +@(y) —pu)l + (1 = DO(uy, w) + p(w) — p(w) — p(uy)]
< t[Ouny) + () —pudl + (1 - )us — w, Aug)
=t[Ouny) +o(y) —pu)l+ (1 -0ty — w, Auy),
and hence

0=0(u,Y)+e(y) —pu) + A -0y —w, Auy).

Letting t — 0, we have, for each y € C,
0=0(w,y)+py)—eWw)+{Aw,y — w).

This implies that w € GMEP(0, ¢, A). Therefore, w € N9 | Fix(T,,) N\GMEP(®, ¢, A)nSGEP(G)n
ﬁﬁ.\ill(Bi,Ri) := Q. This shows that w,,(x;) < Q.

Step 5. We prove that w,, (x;) < VI(Q, Ay) provided | x, — yxll = o(p,) additionally.

Indeed, take an arbitrary w € w,,(x,). Then there exists a subsequence {x,,} of {x,} such
that x,,, — w. Since A, is a-inverse strongly monotone, from (3.1), (3.4) and (3.5) we conclude
that for all p e Q

1yn=pI? = 182(Gvp = p)+ (A= Br) (W, 0 — p)IP
< Bl Gun — plI* + (L= B I W, 7y, — pI?
< Ballva—plI* + (L= Ba)l 9 — plI®
= Bullvn—plI*+ 1 =B)llvn—p—pnAival?
< Bullva—pII* + (L= B)lllvn = pI* =20 1( A1 U, T — p)]
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= Bullvn—pII* + (L= B)lllvn — pI? = 2p (A1 v, U — D) + (A U, T — U))]
= Bullva—pII*+ A= B)lllvn — pI* = 2p (A1 vy — Ay p, vy — )

+( AP, V= P) + (AL U, Dy — Up))]
= llvn=pI*=2pn(1 = Bp) (A vy — A1 p, vp — p) + (A1 p, vy — P)

+( ALV, Tp = Un))

< lxn = pI> =20, (1= B){A1p, vy — P + 20,1 = B Ay vpllll 5 — vill,  (3.33)

which implies that
~ 1 -
(Ap,vn—p) < ————(lxp— pI> = lyn— pI>) + | A vnllll 5 — vy
1P Un—pP an(l—ﬂn) n—pP Yn—"P 1Un n n
”xn_yn” 20 % 2
< T (llxp— pll+1yn—pl)+ 041 Ay v,l?.
200(L— B) n—pP Yn—"P PrllA1Vn

So, from p,, — 0 and the assumption ||x,, — y, | = 0(p,), we get

limsup (A, p, v,, — p) < 0.

n—oo
Thus, it follows from (3.21) that for all p € Q
(A1p,w=p) = lim (A, p, xu, = p)
—00
<limsup(A, p, x,, — p)

n—oo
=limsup((A1 p, vy, — p) + (A1 p, X — Up))
n—oo
= limsup(A; p, v, — p)
n—oo
<0,
that is,
(Aip,p—w)y=0, VpeqQ. (3.34)

Since ]{1 is a-inverse strongly monotone, by Minty’s Lemma [4] we know that (3.34) is equiv-
alent to the VIP
(Ajw,p-w)=0, VpeQ. (3.35)

This shows that w € VI(Q, A;). Therefore, w,,(x,,) < VI(Q, A;).
Theorem 3.2. Assume that all the conditions in Theorem 3.1 are satisfied. Then we have
(i) {xn} converges strongly to a point u* € Q, which is a unique solution of the VIP
(Aqu*,p-u*y=0, VpeQ;

(i) {x,} converges strongly to a unique solution of THVI (1.9) provided || x;,, — y»| = 0(8,) ad-
ditionally.
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Proof. Since A, is f-strongly monotone and L-Lipschitz continuous, there exists a unique
solution u* € Q of the VIP
(Apu*,p—u*y=0, VpeQ. (3.36)

Now, let us show that

limsup(A,u*, u* — x,) <0.
n—o00

Since {x,} is bounded, we may assume, without loss of generality, that there exists a subse-

quence {x,,} of {x,,} such that x,,, — w and

limsup(A,u*, u* — x,,) = lim (Ayu*,u* — Xp,) = (Ayu*, u* — wy.
n—oo 1—00

In terms of Theorem 3.1 (ii), we know that w € w,,(x,) < Q. So, from (3.36) it follows that

limsup(A,u*, u* — x,,) = (A u*, u* — w) < 0. (3.37)
n—oo

Next, let us show that lim,_ | x, — ©*| = 0. In fact, utilizing Lemma 2.1, from (3.1) and
(3.33) with p = u* we get

e — u* 12
= /(I - panA)yn— u*l?
= 1 - panA)yn — (I — pan A u* + (I — pay Ap)u* — u*|?
< (I - payA)yn — I - pay A u* I* = 2pan(Asu*, Xpey — u™)
< (- anDlyn—u*1? —2pa,(Aou™, Xper — u*)
< (L= anDlxn— 17 = 20,0 = Bu){Aru*, vy — u®)
+20,(1= Bl AL vl 0 — valll = 2pa (Ao u™, Xpiy — 1)
< (L—anDllxp —u* 12+ 20l Ayt [lvn — u’ | + 205 | A vall® - 2pan (A u®, Xpin — u*)
o5

* 2 e * * X X * *
= (1—a,7)lxp—u ||2+anr-;{%nA1u M vn—u* I+ =21 Ay v 2+l An ™, u* |1 —xp11)}(3.38)
n n

where 7 =1—/1—u2p — ul?).

Since Y37, @, = 0o, lim; .o a—’; =0and limsupn_,oo(ﬁz u*,u* —x,+41) <0 (due to (3.37)),

we deduce that }9° |, @, 7 = 0o, and

) 2 ~ 2 _
limsup —{@IIAlu*II lv,—u™l+ &”Al Vall? + pu(Agu*, u* — xp11)} <O0.
n—-oo T Qp n

Therefore, applying Lemma 2.8 to (3.38) we infer that lim;,—., | X, — u*|| = 0.

Finally, we prove thatlim_., [|x,—x*| = 0 provided || x,, — y» || = o(a,) additionally, where
{x*} = VI(VI(Q, A7), Ay).
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Indeed, first of all, let us show that w,,(x,) = {x*}. As a matter of fact, take an arbitrary
w € wy(x,). Then there exists a subsequence {xnj} of {x,} such that x, ;= w. Moreover, by
Theorem 3.1 (iii) we know that w € w,,(x;) < VI(Q, AH). Utilizing Lemmas 2.1 and 2.7, from
(3.1) and (3.33) we deduce that for all p € VI(Q, ]{1)

Ixp41 = pII®

=l - panA2)yn - pl*

= (I - panA2)yn— (I - pa, A)p+ (I - payA)p—pl?

< IU = papAz) yn — (I — pan A) plI* — 2pan(Azp, Xps1 = p)

< (L—anDlyn—pI* —2pan{Asp, Xne1 — p)

< (1= apDllxp = plI* =201 = Bu){AL1P, v = P) +20u (L= B) | A vl 5 — vall]

—2pa (A p, Xne1 — p)
< llxn = plI*+2pall A1 pll vy — pll + 2051 A vall® = 2uan Az p, Xpa1 — P, (3.39)

where 7 =1-/1-pu(2f— uL?). So, it follows that

(Aap, Xps1— D)

1 -~ o~
< 2nay (n =PI = lnes = pI) + Mp;n AL Pl Dn = pll+ pall Ay val2)

lXpn — Xp+1l ~ -
= "—M(len—pll+llxn+1—pll)+ P A plllvn—pll+pall A1 val®].  (3.40)
2uay Han

Since a; — 0, p,, = o(ay) and || x,+1 — X, |l = 0(p5), we find that

lim et =Xl e Xner = Xnll pn _
n—oo an n—oo On an
Hence we conclude from (3.40) that for all p € VI(Q, }L)
(Aop,w—p) = lim (A3 p, X, — p)
j—oo
< limsup(A, p, x,, — p)
n—oo
= limsup((Az2 p, Xp — Xn+1) + (A2, Xns1 — P))
n—oo

=lim sup(gz P Xn+1— P)

n—oo

<0,

that is,
(App,p—w)=0, VpeVIQ,A)). (3.41)
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Since A, is B-strongly monotone and L-Lipschitz continuous, by Minty’s Lemma [4] we know
that (3.41) is equivalent to the VIP

(Ayw,p—w)=0, VYpeVIQ,A). (3.42)

This shows that w € VI(VI(Q, A;), A,). Taking into account {x*} = VI(VI(Q, A), A), we know
that w = x*. Thus, w,,(x;) = {x*}; thatis, x, — x*.

Next we prove that lim,_ | x, — x* || = 0. As a matter of fact, utilizing (3.39) with p = x*,
we get

X1 — X117
< (1-apD) Xy = x* 17 =20, = B (A1 x*, vy — X*) + 20, (1= B AL vp |5y — v ]
—2p0n (Apx*, X1 — X
< (I—apD)lxn—x* 17+ 20l A1 x* vy — x* 1| +20% | Ay vpll® = 200, (Apx™, Xps — X*)
* 2 X * * 2 3 X * *
=(1-a,D)lx,—x ||2+anr-;[%||A1x M on=x" 1+ 221 Ay vl 2= i Apx™, i1 —x*)1.(3.43)
n n

Since Y57, a, = oo, lim, . % =0 and lim,,_.oo(A2x*, X* — Xp+1) = 0 (due to x,, — x*), we
deduce that Y., @, T = 0o, and
2

. 2 e * p e A * *
lim —[&IIAlx vy —x* 1+ S22 1Ay vl = u(Arx™, xpe1 — x*)]1 = 0.
n—oo T oy, an,

Therefore, applying Lemma 2.8 to (3.43) we infer that lim,,_. [|x, — x*|| = 0. This completes
the proof. O

Remark 3.1. It is obvious that our iterative scheme (3.1) is very different from Ceng, Ansari
and Schaible iterative one (1.4), Yao, Liou and Marino iterative one (1.8) and Zeng, Wong and
Yao iterative one in Algorithm ZWY. Here, the two-step iterative scheme in [22, Algorithm 3.2]
is extended to develop our four-step iterative scheme (3.1) for the THVI (1.9) by combining
Korpelevich’s extragradient method, hybrid steepest-descent method and Mann’s iteration
method. The problem of finding a point x* € N° , Fix(T;,) n\GMEP(®, ¢, A)nSGEP(G) in [25] is
extended to the more general problem of finding a point x* € N9~ Fix(T,) n GMEP(@, ¢, A) n
méV: 11(Bi, R;) N SGEP(G), which is involved in THVI (1.9). It is worth pointing out that un-
der the lack of the assumptions similar to those in [19, Theorem 3.2], e.g., {x,} is bounded,
Fix(T)nintC # @ and ||x—Tx|| = kDist(x, Fix(T)), Vx € C for some k > 0, the sequence {x,} gen-
erated by (3.1) converges strongly to a point u™* € N9, Fix(T;,) n\GMEP(0, ¢, A) nméV:lI(B,-, RN
SGEP(G) =: Q, which is a unique solution of the VIP: (A, u*, p—u*) =0,Vp e Q.

Remark 3.2. Our Theorems 3.1 and 3.2 improve, extend, supplement and develop Yao, Liou
and Marino [19, Theorems 3.1 and 3.2] and Zeng, Wong and Yao [22, Theorem 3.2] in the
following aspects:
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Our THVI (1.9) with the unique solution x* € Q satisfying

* A *
X = Pﬂ;"leiX(Tn)ﬂGMEP(G),tp,A)ﬂﬂﬁll(B,-,R,-)ﬂSGEP(G) (I - Al)x

is more general than the problem of finding a point X € C satisfying X = Prix(r)SX in [19]
and than the problem of finding a point x* € né\i | Fix(T;) satisfying x* = Pmﬁ 1Fix(Ti)(I -
Ay)x* in [22, Theorem 3.2]. It is worth pointing out that S is nonexpansive if and only if

the complement I — S is %-inverse strongly monotone; see [27].

Our four-step iterative scheme (3.1) for THVI (1.9) is more flexible, more advantageous
and more subtle than Zeng, Wong and Yao’s two-step iterative one in [22, Algorithm 3.2]
and than Yao, Liou and Marino’s two-step iterative one (1.8) because it can be used to
solve several kinds of problems, e.g., the THVI, the hierarchical VIP and the problem
of finding a common point of four sets: N, Fix(T,,), GMEP(6, ¢, A), ng\il I(B;i, R;) and
SGEP(G). In addition, it also drops the crucial requirements that Fix(T) nintC # @ and
lx — Txl|l = kDist(x, Fix(T)), Vx € C for some k >0 in [19, Theorem 3.2 (v)].

The argument techniques in our Theorems 3.1 and 3.2 are very different from the argu-
ment ones in [19, Theorems 3.1 and 3.2] and from the argument ones in [22, Theorem 3.2]
because we use the W-mapping approach to fixed points of infinitely many nonexpan-
sive mappings {T,,}}., (see Lemmas 2.4 and 2.5), the properties of resolvent operators
and maximal monotone mappings (see Proposition 2.2, Remarks 2.1, 2.4 and Lemmas
2.9-2.13), the fixed point equation x* = Tal (I-viAy) TVG;Z (I -v,A2)x* equivalent to the
SGEP (1.4) (see Proposition 2.3) and the contractive coefficient estimates for the contrac-

tions associating with nonexpansive mappings (see Lemma 2.7).

Compared with the restrictions on the parameter sequences of [19, Theorem 3.2] and [22,
Theorem 3.2], respectively, the hypotheses (v)—(vi) in our Theorem 3.1 are additionally
added because our Theorem 3.1 involves the quite complex problem, i.e., the THVI (1.9)
(over the set N}, Fix(T},)) with constraints of several problems: GMEP (1.2), finitely many
variational inclusions and SGEP(1.4).
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