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ON THE TRIPLE HIERARCHICAL VARIATIONAL INEQUALITIES

WITH CONSTRAINTS OF MIXED EQUILIBRIA, VARIATIONAL

INCLUSIONS AND SYSTEMS OF GENERALIZED EQUILIBRIA

LU-CHUAN CENG AND JEN-CHIH YAO

Abstract. In this paper, we introduce and analyze a relaxed iterative algorithm by com-

bining Korpelevich’s extragradient method, hybrid steepest-descent method and Mann’s

iteration method. It is proven that under appropriate assumptions, the proposed algo-

rithm converges strongly to a common element of the fixed point set of infinitely many

nonexpansive mappings, the solution set of a generalized mixed equilibrium problem

(GMEP), the solution set of finitely many variational inclusions and the solution set of a

system of generalized equilibrium problems (SGEP), which is just a unique solution of a

triple hierarchical variational inequality (THVI) in a real Hilbert space. In addition, we

also consider the application of the proposed algorithm to solving a hierarchical vari-

ational inequality problem with constraints of the GMEP, the SGEP and finitely many

variational inclusions.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, C be a nonempty

closed convex subset of H and PC be the metric projection of H onto C . Let S : C → H be a

nonlinear mapping on C . We denote by Fix(S) the set of fixed points of S and by R the set of all

real numbers. A mapping S : C → H is called L-Lipschitz continuous if there exists a constant

L > 0 such that

‖Sx −Sy‖≤ L‖x − y‖, ∀x, y ∈C .

In particular, if L = 1 then S is called a nonexpansive mapping; if L ∈ (0,1) then S is called a

contraction.
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Let A : C → H be a nonlinear mapping on C . We consider the following variational in-

equality problem (VIP): find a point x ∈C such that

〈Ax, y −x〉 ≥ 0, ∀y ∈C . (1.1)

The solution set of VIP (1.1) is denoted by VI(C , A).

The VIP (1.1) was first discussed by Lions [13] and now is well known; there are a lot of

different approaches towards solving VIP (1.1) in finite-dimensional and infinite-dimensional

spaces, and the research is intensively continued. It is well known that, if A is a strongly mono-

tone and Lipschitz-continuous mapping on C , then VIP (1.1) has a unique solution.

In 1976, Korpelevich [2] proposed an iterative algorithm for solving the VIP (1.1) in Eu-

clidean space Rn : {
yn =PC (xn −τAxn),

xn+1 = PC (xn −τAyn), ∀n ≥ 0,

with τ > 0 a given number, which is known as the extragradient method. The literature on

the VIP is vast and Korpelevich’s extragradient method has received great attention given by

many authors, who improved it in various ways; see e.g., [8, 9, 10, 11, 12, 14, 18, 20, 23, 24, 25,

28, 29, 30, 34, 35, 36] and references therein, to name but a few.

Let ϕ : C → R be a real-valued function, A : H → H be a nonlinear mapping and Θ :

C ×C → R be a bifunction. In 2008, Peng and Yao [23] introduced the following generalized

mixed equilibrium problem (GMEP) of finding x ∈C such that

Θ(x, y)+ϕ(y)−ϕ(x)+〈Ax, y −x〉 ≥ 0, ∀y ∈C . (1.2)

We denote the set of solutions of GMEP (1.2) by GMEP(Θ,ϕ, A). The GMEP (1.2) is very general

in the sense that it includes, as special cases, optimization problems, variational inequalities,

minimax problems, Nash equilibrium problems in noncooperative games and others. The

GMEP is further considered and studied; see e.g., [20, 25, 26, 29, 36].

In particular, if A = 0, then GMEP (1.2) reduces to the mixed equilibrium problem (MEP)

which is to find x ∈C such that

Θ(x, y)+ϕ(y)−ϕ(x) ≥ 0, ∀y ∈C .

It was considered and studied in [15, 21]. The set of solutions of the above MEP is denoted by

MEP(Θ,ϕ).

In [23], Peng and Yao assumed that Θ : C ×C → R is a bifunction satisfying conditions

(H1)−(H4) and ϕ : C → R is a lower semicontinuous and convex function with restriction

(H5), where
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(H1) Θ(x, x) = 0 for all x ∈C ;

(H2) Θ is monotone, i.e., Θ(x, y)+Θ(y, x) ≤ 0 for any x, y ∈C ;

(H3) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈C ,

limsup
t→0+

Θ(t z + (1− t )x, y) ≤Θ(x, y);

(H4) Θ(x, ·) is convex and lower semicontinuous for each x ∈C ;

(H5) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊂C and yx ∈C such that for

any z ∈C \ Dx ,

Θ(z, yx )+ϕ(yx )−ϕ(z)+
1

r
〈yx − z, z −x〉 < 0.

Given a positive number r > 0. Let S
(Θ,ϕ)
r : H → C be the solution set of the auxiliary mixed

equilibrium problem, that is, for each x ∈ H ,

S
(Θ,ϕ)
r (x) := {y ∈C : Θ(y, z)+ϕ(z)−ϕ(y)+

1

r
〈K ′(y)−K ′(x), z − y〉 ≥ 0, ∀z ∈C },

where K is a Fréchet differential and strongly convex function on H . In particular, whenever

K (x)= 1
2‖x‖2,∀x ∈ H , S

(Θ,ϕ)
r is rewritten as T

(Θ,ϕ)
r .

Let Θ1,Θ2 : C ×C → R be two bifunctions, and A1, A2 : C → H be two nonlinear mappings.

Consider the following system of generalized equilibrium problems (SGEP): find (x∗, y∗) ∈

C ×C such that
{

Θ1(x∗, x)+〈A1 y∗, x −x∗〉+ 1
ν1
〈x∗− y∗, x −x∗〉 ≥ 0, ∀x ∈C ,

Θ2(y∗, y)+〈A2x∗, y − y∗〉+
1
ν2
〈y∗−x∗, y − y∗〉 ≥ 0, ∀y ∈C ,

(1.3)

where ν1 > 0 and ν2 > 0 are two constants. It was introduced and studied in [24]. Whenever

Θ1 ≡Θ2 ≡ 0, the SGEP reduces to a system of variational inequalities, which was considered

and studied in [9, 10, 30]. It is worth to mention that the system of variational inequalities is a

tool to solve the Nash equilibrium problem for noncooperative games.

Let f : H → H be a contraction and V : H → H be a bounded linear operator, which is

strongly positive, i.e., there exists a constant γ̄ ∈ (0,1] such that 〈V x, x〉 ≥ γ̄‖x‖2,∀x ∈ H . As-

sume that ϕ : H → R is a lower semicontinuous and convex functional, that Θ,Θ1,Θ2 : H×H →

R satisfy conditions (H1)-(H4), and that A, A1, A2 : H → H are inverse-strongly monotone. Put

G := T
Θ1
ν1

(I −ν1 A1)T
Θ2
ν2

(I −ν2 A2). For the case of C = H , Ceng, Ansari and Schaible [25] intro-

duced the following hybrid extragradient-like iterative algorithm

{
zn = S

(Θ,ϕ)
rn

(xn − rn Axn),

xn+1 =αn(u +γ f (xn))+βn xn + ((1−βn )I −αn(I +µV ))WnGzn , ∀n ≥ 0,
(1.4)
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for finding a common solution of GMEP (1.2), SGEP (1.3) and the fixed point problem of in-

finitely many nonexpansive mappings {Tn }∞n=1 on H , where {rn} ⊂ (0,∞), {αn }, {βn} ⊂ (0,1), νk ∈

(0,2ζk ),k = 1,2, x0,u ∈ H are given, and Wn is the W -mapping generated by Tn ,Tn−1, . . . ,T1

and λn ,λn−1, . . . ,λ1 ∈ (0,b] for some b ∈ (0,1) (see (2.2) in Sect. 2). The authors proved the

strong convergence of the sequence {xn} generated by (1.4) to a point x∗ ∈Ω :=∩∞
n=1Fix(Tn)∩

GMEP(Θ,ϕ, A)∩SGEP(G) under some suitable conditions, where SGEP(G) is the fixed point

set of the mapping G .

On the other hand, let B be a single-valued mapping of C into H and R be a set-valued

mapping with D(R) =C . Consider the following variational inclusion: find a point x ∈C such

that

0 ∈ B x +R x. (1.5)

We denote by I(B ,R) the solution set of the variational inclusion (1.5). In particular, if B =R =

0, then I(B ,R)=C . If B = 0, then problem (1.5) becomes the inclusion problem introduced by

Rockafellar [5]. It is known that problem (1.5) provides a convenient framework for the unified

study of optimal solutions in many optimization related areas including mathematical pro-

gramming, complementarity problems, variational inequalities, optimal control, mathemat-

ical economics, equilibria and game theory, etc. Let a set-valued mapping R : D(R) ⊂ H → 2H

be maximal monotone. We define the resolvent operator JR ,λ : H → D(R) associated with R

and λ as follows:

JR ,λ = (I +λR)−1, ∀x ∈ H , (1.6)

where λ is a positive number.

In 1998, Huang [33] studied problem (1.5) in the case where R is maximal monotone

and B is strongly monotone and Lipschitz continuous with D(R) = C = H . Subsequently,

Zeng, Guu and Yao [7] further studied problem (1.5) in the case which is more general than

Huang’s one [33]. Moreover, the authors [7] obtained the same strong convergence conclu-

sion as in Huang’s result [33]. In addition, the authors also gave the geometric convergence

rate estimate for approximate solutions. Also, various types of iterative algorithms for solv-

ing variational inclusions have been further studied and developed; for more details, refer to

[14, 22, 27, 29, 32] and the references therein.

Let S and T be two nonexpansive mappings. In 2009, Yao, Liou and Marino [19] consid-

ered the following hierarchical VIP: find hierarchically a fixed point of T , which is a solution

to the VIP for monotone mapping I −S; namely, find x̃ ∈ Fix(T ) such that

〈(I −S)x̃, p − x̃〉 ≥ 0, ∀p ∈ Fix(T ). (1.7)
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The solution set of the hierarchical VIP (1.7) is denoted byΛ. It is not hard to check that solving

the hierarchical VIP (1.7) is equivalent to the fixed point problem of the composite mapping

PFix(T )S, i.e., find x̃ ∈C such that x̃ = PFix(T )Sx̃. The authors [19] introduced and analyzed the

following iterative algorithm for solving the hierarchical VIP (1.7):

{
yn =βnSxn + (1−βn )xn ,

xn+1 =αnV xn + (1−αn )T yn , ∀n ≥ 0.
(1.8)

Theorem YLM (see [19, Theorem 3.2]). Let C be a nonempty closed convex subset of a real

Hilbert space H. Let S and T be two nonexpansive mappings of C into itself. Let V : C → C be

a fixed contraction with α ∈ (0,1). Let {αn } and {βn} be two sequences in (0,1). For any given

x0 ∈ C , let {xn} be the sequence generated by (1.8). Assume that the sequence {xn} is bounded

and that

(i)
∑∞

n=0αn =∞;

(ii) limn→∞
1
αn

| 1
βn

− 1
βn−1

| = 0, limn→∞
1
βn

|1− αn−1

αn
| = 0;

(iii) limn→∞βn = 0, limn→∞
αn

βn
= 0 and limn→∞

β2
n

αn
= 0;

(iv) Fix(T )∩ intC 6= ;;

(v) there exists a constant k > 0 such that ‖x −T x‖ ≥ kDist(x,Fix(T )) for each x ∈ C , where

Dist(x,Fix(T )) = infy∈Fix(T ) ‖x−y‖. Then {xn} converges strongly to x̃ =PΛV x̃ which solves

the hierarchical VIP

〈(I −S)x̃, p − x̃〉 ≤ 0, ∀p ∈ Fix(T ).

Very recently, Iiduka [16, 17] considered a variational inequality with a variational in-

equality constraint over the set of fixed points of a nonexpansive mapping. Since this prob-

lem has a triple structure in contrast with bilevel programming problems or hierarchical con-

strained optimization problems or hierarchical fixed point problem, it is refereed as triple

hierarchical constrained optimization problem (THCOP). He presented some examples of

THCOP and developed iterative algorithms to find the solution of such a problem. The con-

vergence analysis of the proposed algorithms was also studied in [16, 17]. Since the original

problem is a variational inequality, in this paper, we call it a triple hierarchical variational

inequality (THVI). Subsequently, Zeng, Wong and Yao [22] introduced and considered the fol-

lowing triple hierarchical variational inequality (THVI):

Problem I. Assume that

(i) each Ti : H → H is a nonexpansive mapping with ∩N
i=1

Fix(Ti ) 6= ;;

(ii) A1 : H → H is α-inverse strongly monotone;



302 LU-CHUAN CENG AND JEN-CHIH YAO

(iii) A2 : H → H is β-strongly monotone and L-Lipschitz continuous;

(iv) VI(∩N
i=1

Fix(Ti ), A1) 6= ;.

Then the objective is to

find x∗ ∈ VI(VI(∩N
i=1

Fix(Ti ), A1), A2)

:= {x∗ ∈ VI(∩N
i=1

Fix(Ti ), A1) : 〈A2x∗, v −x∗〉 ≥ 0,∀v ∈ VI(∩N
i=1

Fix(Ti ), A1)}.

The authors [22] proposed the following algorithm for solving Problem I:

Algorithm ZWY ([22, Algorithm 3.2]). Let Ti : H → H (i = 1,2, . . . , N ) and Ai : H → H (i =

1,2) satisfy assumptions (i)-(iv) in Problem I. The following steps are presented for solving

Problem I.

Step 0. Take {αn}∞n=0 ⊂ (0,1], {ρn}∞n=0 ⊂ (0,2α], µ ∈ (0,2β/L2), choose x0 ∈ H arbitrarily, and let

n := 0.

Step 1. Given xn ∈ H , compute xn+1 ∈ H as

{
yn = T[n+1](xn −ρn A1xn),

xn+1 = yn −µαn A2 yn ,

where T[k] := TkmodN , for integer k ≥ 1, with the mod function taking values in the set {1,2, . . .,

N }, i.e., if k = j N+q for some integers j ≥ 0 and 0 ≤ q < N , then T[k] =TN if q = 0 and T[k] =Tq

if 1 ≤ q < N .

Update n := n +1 and go to Step 1.

The following convergence analysis was presented in [22] for Algorithm ZWY.

Theorem ZWY ([22, Theorem 3.2]). Let µ ∈ (0,2β/L2), {αn }∞n=0 ⊂ (0,1], and {ρn}∞n=0 ⊂ (0,2α]

such that (i) limn→∞αn = 0, (ii)
∑∞

n=0αn =∞, (iii) limn→∞(αn−αn+N )/αn+N = 0 or
∑∞

n=0 |αn+N

−αn | <∞, (iv) limn→∞(ρn −ρn+N )/ρn+N = 0 or
∑∞

n=0 |ρn+N −ρn| <∞, and (v) ρn ≤αn for all

n ≥ 0. Assume in addition that

N⋂

i=1

Fix(Ti ) = Fix(T1T2 · · ·TN ) = Fix(TN T1 · · ·TN−1) = ·· · = Fix(T2T3 · · ·TN T1).

Then the sequence {xn}∞n=0 generated by Algorithm ZWY satisfies the following properties:

(a) {xn}∞n=0 is bounded;

(b) limn→∞ ‖xn+N −xn‖ = 0 and limn→∞ ‖xn −Tn+N · · ·Tn+1xn‖= 0;

(c) {xn}∞n=0 converges strongly to the unique solution of Problem I provided ‖xn − yn‖= o(ρn).
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In this paper, we introduce and study the following triple hierarchical variational inequal-

ity (THVI) with constraints of GMEP (1.2), SGEP (1.3) and finitely many variational inclusions:

Problem II. Let N be an integer. Assume that

(i) {Tn}∞n=1 is a sequence of nonexpansive mappings on H , and A : H → H and Ak : C →

H are ζ-inverse-strongly monotone and ζk -inverse-strongly monotone, respectively, for

k = 1,2;

(ii) Ã1 : H → H is α-inverse strongly monotone and Ã2 : H → H is β-strongly monotone and

L-Lipschitz continuous;

(iii) Θ,Θ1,Θ2 are three bifunctions from C ×C to R satisfying (H1)-(H4), and ϕ : C → R is a

lower semicontinuous and convex functional;

(iv) Ri : C → 2H is a maximal monotone mapping and Bi : C → H is ηi -inverse strongly

monotone for i = 1,2, . . . , N ;

(v) VI(Ω, Ã1) 6= ; where Ω :=∩∞
n=1Fix(Tn)∩GMEP(Θ,ϕ, A)∩∩N

i=1
I(Bi ,Ri )∩SGEP(G).

Then the objective is to

find x∗ ∈ VI(VI(Ω, Ã1), Ã2)

:= {x∗ ∈ VI(Ω, Ã1) : 〈Ã2x∗, v −x∗〉 ≥ 0,∀v ∈ VI(Ω, Ã1)}.
(1.9)

Motivated and inspired by the above facts, we introduce and analyze a relaxed iterative al-

gorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method

and Mann’s iteration method. It is proven that under mild conditions, the proposed algo-

rithm converges strongly to a common element x∗ ∈ Ω := ∩∞
n=1Fix(Tn) ∩ GMEP(Θ,ϕ, A) ∩

∩N
i=1

I(Bi ,Ri )∩SGEP(G) of the solution set of GMEP (1.2), the solution set of SGEP (1.3), the

solution set of finitely many variational inclusions and the fixed point set of infinitely many

nonexpansive mappings {Tn}∞n=1, which is just a unique solution of the THVI (1.9). In ad-

dition, we also consider the application of the proposed algorithm to solving a hierarchical

variational inequality problem with constraints of GMEP (1.2), SGEP (1.3) and finitely many

variational inclusions. That is, under appropriate conditions, it is proven that the proposed al-

gorithm converges strongly to a unique solution u∗ ∈Ω of the VIP: 〈Ã2u∗, p −u∗〉 ≥ 0,∀p ∈Ω;

equivalently, PΩ(I − Ã2)u∗ = u∗. The results obtained in this paper improve and extend the

corresponding results announced by many others.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and

norm are denoted by 〈·, ·〉 and ‖ ·‖, respectively. Let C be a nonempty closed convex subset of

H . We write xn * x to indicate that the sequence {xn} converges weakly to x and xn → x to
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indicate that the sequence {xn} converges strongly to x. Moreover, we use ωw (xn) to denote

the weak ω-limit set of the sequence {xn}, i.e.,

ωw (xn) := {x ∈ H : xni
* x for some subsequence {xni

} of {xn}}.

Definition 2.1. A mapping A : C → H is called

(i) monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈C ;

(ii) η-strongly monotone if there exists a constant η> 0 such that

〈Ax − Ay, x − y〉 ≥ η‖x − y‖2, ∀x, y ∈C ;

(iii) ζ-inverse-strongly monotone if there exists a constant ζ> 0 such that

〈Ax − Ay, x − y〉 ≥ ζ‖Ax − Ay‖2, ∀x, y ∈C .

It is easy to see that the projection PC is 1-inverse-strongly monotone. Inverse strongly

monotone (also referred to as co-coercive) operators have been applied widely in solving

practical problems in various fields. It is obvious that if A is ζ-inverse-strongly monotone,

then A is monotone and 1
ζ

-Lipschitz continuous. Moreover, we also have that, for all u, v ∈C

and λ> 0,

‖(I −λA)u − (I −λA)v‖2 = ‖(u −v)−λ(Au − Av)‖2

= ‖u −v‖2−2λ〈Au − Av,u −v〉+λ2‖Au − Av‖2

≤ ‖u −v‖2+λ(λ−2ζ)‖Au − Av‖2.

(2.1)

So, if λ≤ 2ζ, then I −λA is a nonexpansive mapping from C to H .

Definition 2.2. A differentiable function K : H → R is called:

(i) convex, if

K (y)−K (x)≥ 〈K ′(x), y −x〉, ∀x, y ∈ H ,

where K ′(x) is the Frechet derivative of K at x;

(ii) strongly convex, if there exists a constant σ> 0 such that

K (y)−K (x)−〈K ′(x), y −x〉 ≥
σ

2
‖x − y‖2, ∀x, y ∈ H .

It is easy to see that if K : H → R is a differentiable strongly convex function with constant

σ> 0 then K ′ : H → H is strongly monotone with constant σ> 0.
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The metric (or nearest point) projection from H onto C is the mapping PC : H →C which

assigns to each point x ∈ H the unique point PC x ∈C satisfying the property

‖x −PC x‖= inf
y∈C

‖x − y‖=: d (x,C ).

Some important properties of projections are gathered in the following proposition.

Proposition 2.1. For given x ∈ H and z ∈C :

(i) z = PC x ⇔ 〈x − z, y − z〉 ≤ 0, ∀y ∈C ;

(ii) z = PC x ⇔ ‖x − z‖2 ≤‖x − y‖2 −‖y − z‖2, ∀y ∈C ;

(iii) 〈PC x −PC y, x − y〉 ≥ ‖PC x −PC y‖2, ∀y ∈ H. (This implies that PC is nonexpansive and

monotone.)

By using the technique of [21], we can readily obtain the following elementary result.

Proposition 2.2. (see [25, Lemma 1 and Proposition 1]) Let C be a nonempty closed convex

subset of a real Hilbert space H and let ϕ : C → R be a lower semicontinuous and convex func-

tion. Let Θ : C ×C → R be a bifunction satisfying the conditions (H1)−(H4). Assume that

(i) K : H → R is strongly convex with constant σ > 0 and the function x 7→ 〈y − x,K ′(x)〉 is

weakly upper semicontinuous for each y ∈ H;

(ii) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊂ C and yx ∈ C such that for

any z ∈C \ Dx ,

Θ(z, yx )+ϕ(yx )−ϕ(z)+
1

r
〈K ′(z)−K ′(x), yx − z〉 < 0.

Then the following hold:

(a) for each x ∈ H , S
(Θ,ϕ)
r (x) 6= ;;

(b) S
(Θ,ϕ)
r is single-valued;

(c) S
(Θ,ϕ)
r is nonexpansive if K ′ is Lipschitz continuous with constant ν> 0 and

〈K ′(x1)−K ′(x2),u1 −u2〉 ≤ 〈K ′(u1)−K ′(u2),u1 −u2〉, ∀(x1, x2)∈ H ×H ,

where ui = S
(Θ,ϕ)
r (xi ) for i = 1,2;

(d) for all s, t > 0 and x ∈ H

〈K ′(S
(Θ,ϕ)
s x)−K ′(S

(Θ,ϕ)
t x),S

(Θ,ϕ)
s x −S

(Θ,ϕ)
t x〉 ≤

s − t

s
〈K ′(S

(Θ,ϕ)
s x)−K ′(x),S

(Θ,ϕ)
s x −S

(Θ,ϕ)
t x〉;

(e) Fix(S
(Θ,ϕ)
r ) =MEP(Θ,ϕ);
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(f) MEP(Θ,ϕ) is closed and convex.

In particular, whenever Θ : C ×C → R is a bifunction satisfying the conditions (H1)-(H4) and

K (x) = 1
2‖x‖2,∀x ∈ H, then that is, for any x, y ∈ H,

‖S
(Θ,ϕ)
r x −S

(Θ,ϕ)
r y‖2

≤ 〈S
(Θ,ϕ)
r x −S

(Θ,ϕ)
r y, x − y〉

(S
(Θ,ϕ)
r is firmly nonexpansive) and

‖S
(Θ,ϕ)
s x −S

(Θ,ϕ)
t x‖ ≤

|s − t |

s
‖S

(Θ,ϕ)
s x −x‖, ∀s, t > 0, x ∈ H .

In this case, S
(Θ,ϕ)
r is rewritten as T

(Θ,ϕ)
r . If, in addition, ϕ≡ 0, then T

(Θ,ϕ)
r is rewritten as T Θ

r (see

[24, Lemma 2.1] for more details).

Remark 2.1. Suppose K : H → R is strongly convex with constant σ > 0 and K ′ : H → H is

Lipschitz continuous with constant ν > 0. Then K ′ : H → H is σ-strongly monotone and ν-

Lipschitz continuous with positive constants σ,ν > 0. Utilizing Proposition 2.2 (d) we obtain

that for all s, t > 0 and x ∈ H

σ‖S
(Θ,ϕ)
s x −S

(Θ,ϕ)
t x‖2 ≤ 〈K ′(S

(Θ,ϕ)
s x)−K ′(S

(Θ,ϕ)
t x),S

(Θ,ϕ)
s x −S

(Θ,ϕ)
t x〉

≤ s−t
s
〈K ′(S

(Θ,ϕ)
s x)−K ′(x),S

(Θ,ϕ)
s x −S

(Θ,ϕ)
t x〉

≤
|s−t |

s
‖K ′(S

(Θ,ϕ)
s x)−K ′(x)‖‖S

(Θ,ϕ)
s x −S

(Θ,ϕ)
t x‖

≤
|s−t |

s
ν‖S

(Θ,ϕ)
s x −x‖‖S

(Θ,ϕ)
s x −S

(Θ,ϕ)
t x‖,

which immediately implies that

‖S
(Θ,ϕ)
s x −S

(Θ,ϕ)
t x‖≤

|s − t |

s
·
ν

σ
‖S

(Θ,ϕ)
s x −x‖.

In 2010, Ceng and Yao [24] transformed the SGEP (1.3) into a fixed point problem in the

following way:

Proposition 2.3 (see [24]). Let Θ1,Θ2 : C×C → R be two bifunctions satisfying conditions (H1)-

(H4) and let Ak : C → H be ζk -inverse-strongly monotone for k = 1,2. Let νk ∈ (0,2ζk ) for

k = 1,2. Then, (x∗, y∗) ∈C ×C is a solution of SGEP (1.3) if and only if x∗ is a fixed point of the

mapping G : C → C defined by G := T
Θ1
ν1

(I −ν1 A1)T
Θ2
ν2

(I −ν2 A2), where y∗ = T
Θ2
ν2

(I −ν2 A2)x∗.

Here, we denote the fixed point set of G by SGEP(G).

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.1. Let X be a real inner product space. Then there holds the following inequality

‖x + y‖2
≤ ‖x‖2

+2〈y, x + y〉, ∀x, y ∈ X .
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Lemma 2.2. Let H be a real Hilbert space. Then the following hold:

(a) ‖x − y‖2 =‖x‖2 −‖y‖2 −2〈x − y, y〉 for all x, y ∈ H;

(b) ‖λx +µy‖2 =λ‖x‖2 +µ‖y‖2 −λµ‖x − y‖2 for all x, y ∈ H and λ,µ ∈ [0,1] with λ+µ= 1;

(c) If {xn} is a sequence in H such that xn * x, it follows that

limsup
n→∞

‖xn − y‖2
= limsup

n→∞

‖xn −x‖2
+‖x − y‖2, ∀y ∈ H .

Let {Tn}∞n=1 be an infinite family of nonexpansive mappings on H and {λn }∞n=1 be a se-

quence of nonnegative numbers in [0,1]. For any n ≥ 1, define a mapping Wn on H as follows:





Un,n+1 = I ,

Un,n =λnTnUn,n+1 + (1−λn )I ,

Un,n−1 =λn−1Tn−1Un,n + (1−λn−1)I ,

· · ·

Un,k =λk TkUn,k+1 + (1−λk )I ,

Un,k−1 =λk−1Tk−1Un,k + (1−λk−1)I ,

· · ·

Un,2 =λ2T2Un,3 + (1−λ2)I ,

Wn =Un,1 =λ1T1Un,2 + (1−λ1)I .

(2.2)

Such a mapping Wn is called the W -mapping generated by Tn ,Tn−1, . . . ,T1 and λn ,λn−1, . . . ,λ1.

We have the following crucial lemmas concerning the W -mappings defined by (2.2).

Lemma 2.3. (see [3, Lemma 3.2]). Let {Tn}∞n=1 be a sequence of nonexpansive mappings on H

such that ∩∞
n=1Fix(Tn) 6= ; and let {λn } be a sequence in (0,b] for some b ∈ (0,1). Then, for every

x ∈ H and k ≥ 1 the limit limn→∞Un,k x exists, where Un,k is defined by (2.2).

Remark 2.2. (see [31, Remark 3.1]). It can be known from Lemma 2.3 that if D is a nonempty

bounded subset of H , then for ǫ> 0 there exists n0 ≥ k such that for all n > n0

sup
x∈D

‖Un,k x −Uk x‖≤ ǫ.

Remark 2.3. (see [31, Remark 3.2]). Utilizing Lemma 2.3, we define a mapping W : H → H as

follows:

W x = lim
n→∞

Wn x = lim
n→∞

Un,1x, ∀x ∈ H .

Such a W is called the W -mapping generated by T1,T2, . . . and λ1,λ2, . . .. Since Wn is nonex-

pansive, W : H → H is also nonexpansive. Indeed, observe that for each x, y ∈ H

‖W x −W y‖= lim
n→∞

‖Wn x −Wn y‖≤ ‖x − y‖.
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If {xn} is a bounded sequence in H , then we put D = {xn : n ≥ 1}. Hence, it is clear from Remark

2.2 that for an arbitrary ǫ> 0 there exists N0 ≥ 1 such that for all n > N0

‖Wn xn −W xn‖= ‖Un,1xn −U1xn‖ ≤ sup
x∈D

‖Un,1x −U1x‖≤ ǫ.

This implies that

lim
n→∞

‖Wn xn −W xn‖ = 0.

Lemma 2.4. (see [3, Lemma 3.3]). Let {Tn}∞n=1 be a sequence of nonexpansive mappings on

H such that ∩∞
n=1Fix(Tn) 6= ;, and let {λn } be a sequence in (0,b] for some b ∈ (0,1). Then,

Fix(W ) =∩∞
n=1Fix(Tn).

Lemma 2.5. (see [4, Demiclosedness principle]). Let C be a nonempty closed convex subset of

a real Hilbert space H. Let T be a nonexpansive self-mapping on C . Then I −T is demiclosed.

That is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and the sequence

{(I − T )xn} strongly converges to some y, it follows that (I −T )x = y. Here I is the identity

operator of H.

Lemma 2.6. Let A : C → H be a monotone mapping. In the context of the variational inequality

problem the characterization of the projection (see Proposition 2.1 (i)) implies

u ∈ VI(C , A) ⇔ u =PC (u −λAu), λ> 0.

Let C be a nonempty closed convex subset of a real Hilbert space H . We introduce some

notations. Let λ be a number in (0,1] and let µ> 0. Associating with a nonexpansive mapping

T : C → H , we define the mapping T λ : C → H by

T λx := T x −λµF (T x), ∀x ∈C ,

where F : H → H is an operator such that, for some positive constantsκ,η> 0, F isκ-Lipschitzian

and η-strongly monotone on H ; that is, F satisfies the conditions:

‖F x −F y‖≤ κ‖x − y‖ and 〈F x −F y, x − y〉 ≥ η‖x − y‖2

for all x, y ∈ H .

Lemma 2.7. (see [1, Lemma 3.1]). T λ is a contraction provided 0 <µ<
2η

κ2 ; that is,

‖T λx −T λy‖≤ (1−λτ)‖x − y‖, ∀x, y ∈C ,

where τ= 1−
√

1−µ(2η−µκ2) ∈ (0,1].
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Lemma 2.8. [see [1]] Let {sn} be a sequence of nonnegative numbers satisfying the conditions

sn+1 ≤ (1−αn )sn +αnβn , ∀n ≥ 1,

where {αn } and {βn} are sequences of real numbers such that

(i) {αn } ⊂ [0,1] and
∑∞

n=1αn =∞, or equivalently,

∞∏

n=1

(1−αn ) := lim
n→∞

n∏

k=1

(1−αk ) = 0;

(ii) limsupn→∞βn ≤ 0, or
∑∞

n=1 |αnβn | <∞.

Then limn→∞ sn = 0.

Finally, recall that a set-valued mapping T : D(T ) ⊂ H → 2H is called monotone if for all

x, y ∈ D(T ), f ∈ T x and g ∈ T y imply

〈 f − g , x − y〉 ≥ 0.

A set-valued mapping T is called maximal monotone if T is monotone and (I +λT )D(T ) = H

for each λ> 0, where I is the identity mapping of H . We denote by G(T ) the graph of T . It is

known that a monotone mapping T is maximal if and only if, for (x, f ) ∈ H×H , 〈 f −g , x−y〉 ≥ 0

for every (y, g ) ∈G(T ) implies f ∈ T x. Let A : C → H be a monotone, k-Lipschitz-continuous

mapping and let NC v be the normal cone to C at v ∈C , i.e.,

NC v = {u ∈ H : 〈v −p,u〉≥ 0, ∀p ∈C }.

Define

T̃ v =

{
Av +NC v, if v ∈C ,

;, if v 6∈C .

Then, T̃ is maximal monotone (see [5]) such that

0 ∈ T̃ v ⇐⇒ v ∈ VI(C , A). (2.3)

Let R : D(R) ⊂ H → 2H be a maximal monotone mapping. Let λ,µ > 0 be two positive

numbers.

Lemma 2.9. [see [6]] There holds the resolvent identity

JR ,λx = JR ,µ(
µ

λ
x + (1−

µ

λ
)JR ,λx), ∀x ∈ H .

Remark 2.4. For λ,µ> 0, there holds the following relation

‖JR ,λx − JR ,µy‖≤ ‖x − y‖+|λ−µ|(
1

λ
‖JR ,λx − y‖+

1

µ
‖x − JR ,µy‖), ∀x, y ∈ H . (2.4)
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In terms of Huang [33] (see also [7]), there holds the following property for the resolvent

operator JR ,λ : H → D(R).

Lemma 2.10. JR ,λ is single-valued and firmly nonexpansive, i.e.,

〈JR ,λx − JR ,λy, x − y〉 ≥ ‖JR ,λx − JR ,λy‖2, ∀x, y ∈ H .

Consequently, JR ,λ is nonexpansive and monotone.

Lemma 2.11 (see [14]). Let R be a maximal monotone mapping with D(R) =C . Then for any

given λ> 0, u ∈C is a solution of problem (1.6) if and only if u ∈C satisfies

u = JR ,λ(u −λBu).

Lemma 2.12 (see [7]). Let R be a maximal monotone mapping with D(R) =C and let B : C →

H be a strongly monotone, continuous and single-valued mapping. Then for each z ∈ H, the

equation z ∈ (B +λR)x has a unique solution xλ for λ> 0.

Lemma 2.13 (see [14]). Let R be a maximal monotone mapping with D(R) =C and B : C → H

be a monotone, continuous and single-valued mapping. Then (I +λ(R +B ))C = H for each

λ> 0. In this case, R +B is maximal monotone.

3. Main results

In this section, we will introduce and analyze a relaxed iterative algorithm for finding a

solution of the THVI (1.9) with constraints of several problems: the GMEP (1.2), the SGEP

(1.3) and finitely many variational inclusions in a real Hilbert space. This algorithm is based

on Korpelevich’s extragradient method, hybrid steepest-descent method and Mann’s iteration

method. We prove the strong convergence of the proposed algorithm to a unique solution of

THVI (1.9) under suitable conditions. In addition, we also consider the application of the

proposed algorithm to solving a hierarchical VIP with the same constraints.

We are now in a position to state and prove the first main result in this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let N be an

integer. Let Θ,Θ1,Θ2 be three bifunctions from C ×C to R satisfying (H1)-(H4) and ϕ : C → R

be a lower semicontinuous and convex functional. Let Ri : C → 2H be a maximal monotone

mapping and Bi : C → H be ηi -inverse strongly monotone for i = 1,2, . . . , N . Let A : H → H and

Ak : C → H be ζ-inverse-strongly monotone and ζk -inverse-strongly monotone, respectively, for

k = 1,2. Let {Tn}∞n=1 be a sequence of nonexpansive mappings on H and {λn }∞n=1 be a sequence

in (0,b] for some b ∈ (0,1). Let Ã1 : H → H be α-inverse strongly monotone and Ã2 : H → H

be β-strongly monotone and L-Lipschitz continuous. Assume that VI(Ω, Ã1) 6= ; where Ω :=

∩∞
n=1Fix(Tn)∩GMEP(Θ,ϕ, A)∩SGEP(G)∩∩N

i=1
I(Bi ,Ri ) 6= ; where G is defined as in Proposition

2.3 with νk ∈ (0,2ζk ) for k = 1,2. Let µ ∈ (0,2β/L2), {αn }∞n=1 ⊂ (0,1], {ρn}∞n=1 ⊂ (0,2α], {βn }∞n=1 ⊂

[a,b]⊂ (0,1) and {rn}∞n=1 ⊂ [c ,d ]⊂ (0,2ζ). Assume that:



ON THE TRIPLE HIERARCHICAL VARIATIONAL INEQUALITIES 311

(i) K : H → R is strongly convex with constant σ > 0 and its derivative K ′ is Lipschitz con-

tinuous with constant ν > 0 such that the function x 7→ 〈y − x,K ′(x)〉 is weakly upper

semicontinuous for each y ∈ H;

(ii) for each x ∈ H, there exist a bounded subset Dx ⊂C and zx ∈C such that for any y ∉ Dx ,

Θ(y, zx )+ϕ(zx )−ϕ(y)+
1

r
〈K ′(y)−K ′(x), zx − y〉 < 0;

(iii) limn→∞αn = 0,
∑∞

n=1αn =∞ and limn→∞
1
αn

|1−
ρn−1

ρn
| = 0;

(iv) limn→∞
ρn

αn
= 0, limn→∞

1
αn

|
1
ρn

−
1

ρn−1
| = 0 and limn→∞

1
ρn

|1−
αn−1

αn
| = 0;

(v) limn→∞
bn

αnρn
= 0, limn→∞

|βn−βn−1|

αnρn
= 0 and limn→∞

|rn−rn−1 |

αnρn
= 0;

(vi) {λi ,n} ⊂ [ai ,bi ] ⊂ (0,2ηi ) and limn→∞
|λi ,n−λi ,n−1|

αnρn
= 0 for i = 1,2, . . . , N .

For arbitrarily given x1 ∈ H, let {xn} be a sequence generated by





un = S
(Θ,ϕ)
rn

(I − rn A)xn ,

vn = JRN ,λN ,n
(I −λN ,n BN )JRN−1,λN−1,n

(I −λN−1,nBN−1) · · · JR1,λ1,n
(I −λ1,nB1)un ,

yn =βnGvn + (1−βn )Wn(vn −ρn Ã1vn),

xn+1 = yn −µαn Ã2 yn , ∀n ≥ 1,

(3.1)

where Wn be the W -mapping defined by (2.2). Then, whenever S
(Θ,ϕ)
r is firmly nonexpansive,

there hold the following:

(i) limn→∞
‖xn+1−xn‖

ρn
= 0;

(ii) ωw (xn)⊂Ω;

(iii) ωw (xn)⊂ VI(Ω, Ã1) provided ‖xn − yn‖= o(ρn) additionally.

Proof. Let {x∗} = VI(VI(Ω, Ã1), Ã2). Taking into account that limn→∞
ρn

αn
= 0, we may assume,

without loss of generality, that ρn ≤ αn for all n ≥ 1. Since Ã2 is L-Lipschitz continuous, we

get

‖Ã2 yn − Ã2x∗
‖ ≤ L‖yn −x∗

‖, ∀n ≥ 1.

Put

Λ
i
n = JRi ,λi ,n

(I −λi ,nBi )JRi−1,λi−1,n
(I −λi−1,nBi−1) · · · JR1,λ1,n

(I −λ1,nB1)

for all i ∈ {1,2, . . . , N } and Λ
0
n = I , where I is the identity mapping on H . Then we have vn =

Λ
N
n un .

We divide the rest of the proof into several steps.

Step 1. We prove that {xn} is bounded.
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Indeed, take p ∈Ω arbitrarily. Since p = S
(Θ,ϕ)
rn

(p − rn Ap), A is ζ-inverse strongly mono-

tone and 0 ≤ rn ≤ 2ζ, utilizing (2.1) and the nonexpansivity of S
(Θ,ϕ)
rn

, we have, for any n ≥ 1,

‖un −p‖2
= ‖S

(Θ,ϕ)
rn

(I − rn A)xn −S
(Θ,ϕ)
rn

(I − rn A)p‖2

≤ ‖(I − rn A)xn − (I − rn A)p‖2

= ‖(xn −p)− rn(Axn − Ap)‖2

= ‖xn −p‖2
−2rn〈xn −p, Axn − Ap〉+ r 2

n‖Axn − Ap‖2

≤ ‖xn −p‖2
−2rnζ‖Axn − Ap‖2

+ r 2
n‖Axn − Ap‖2

= ‖xn −p‖2
+ rn(rn −2ζ)‖Axn − Ap‖2

≤ ‖xn −p‖2. (3.2)

Utilizing (2.1) and Lemma 2.10 we have

‖vn −p‖ = ‖JRN ,λN ,n
(I −λN ,n BN )ΛN−1

n un − JRN ,λN ,n
(I −λN ,n BN )ΛN−1

n p‖

≤ ‖(I −λN ,n BN )ΛN−1
n un − (I −λN ,n BN )ΛN−1

n p‖

≤ ‖Λ
N−1
n un −Λ

N−1
n p‖

· · ·

≤ ‖Λ
0
nun −Λ

0
n p‖

= ‖un −p‖. (3.3)

Combining (3.2) and (3.3), we have

‖vn −p‖≤ ‖xn −p‖. (3.4)

Since p =Gp = T
Θ1
ν1

(I −ν1 A1)T
Θ2
ν2

(I −ν2 A2)p, Ak is ζk -inverse-strongly monotone for k = 1,2,

and 0≤ νk ≤ 2ζk for k = 1,2, we deduce that, for any n ≥ 1,

‖Gvn −p‖2

= ‖T
Θ1
ν1

(I −ν1 A1)T
Θ2
ν2

(I −ν2 A2)vn −T
Θ1
ν1

(I −ν1 A1)T
Θ2
ν2

(I −ν2 A2)p‖2

≤ ‖(I −ν1 A1)T
Θ2
ν2

(I −ν2 A2)vn − (I −ν1 A1)T
Θ2
ν2

(I −ν2 A2)p‖2

= ‖[T
Θ2
ν2

(I −ν2 A2)vn −T
Θ2
ν2

(I −ν2 A2)p]−ν1[A1T
Θ2
ν2

(I −ν2 A2)vn − A1T
Θ2
ν2

(I −ν2 A2)p]‖2

≤ ‖T
Θ2
ν2

(I −ν2 A2)vn −T
Θ2
ν2

(I −ν2 A2)p‖2

+ν1(ν1 −2ζ1)‖A1T
Θ2
ν2

(I −ν2 A2)vn − A1T
Θ2
ν2

(I −ν2 A2)p‖2

≤ ‖T
Θ2
ν2

(I −ν2 A2)vn −T
Θ2
ν2

(I −ν2 A2)p‖2

≤ ‖(I −ν2 A2)vn − (I −ν2 A2)p‖2

= ‖(vn −p)−ν2(A2vn − A2p)‖2
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≤ ‖vn −p‖2
+ν2(ν2 −2ζ2)‖A2vn − A2p‖2

≤ ‖vn −p‖2. (3.5)

Since Ã1 is α-inverse strongly monotone and {ρn}∞n=1 ⊂ (0,2α], utilizing (2.1), (3.1), (3.4) and

(3.5) we have

‖yn −p‖ = ‖βn(Gvn −p)+ (1−βn )[Wn(vn −ρn Ã1vn)−p]‖

≤ βn‖Gvn −p‖+ (1−βn )‖Wn(vn −ρn Ã1vn)−p‖

≤ βn‖vn −p‖+ (1−βn )‖(vn −ρn Ã1vn)−p‖

= βn‖vn −p‖+ (1−βn )‖(I −ρn Ã1)vn − (I −ρn Ã1)p −ρn Ã1p‖

≤ βn‖vn −p‖+ (1−βn )(‖(I −ρn Ã1)vn − (I −ρn Ã1)p‖+ρn‖Ã1p‖)

≤ βn‖vn −p‖+ (1−βn )(‖vn −p‖+ρn‖Ã1p‖)

≤ ‖vn −p‖+ρn‖Ã1p‖

≤ ‖xn −p‖+ρn‖Ã1p‖.

Utilizing Lemma 2.7, we obtain from (3.1) and ρn ≤αn that

‖xn+1 −p‖ = ‖yn −µαn Ã2 yn −p‖

≤ ‖(I −µαn Ã2)yn − (I −µαn Ã2)p‖+‖(I −µαn Ã2)p −p‖

≤ (1−αnτ)‖yn −p‖+µαn‖Ã2p‖

≤ (1−αnτ)[‖xn −p‖+ρn‖Ã1p‖]+αnµ‖Ã2p‖

≤ (1−αnτ)‖xn −p‖+ρn‖Ã1p‖+αnµ‖Ã2p‖

≤ (1−αnτ)‖xn −p‖+αn(‖Ã1p‖+µ‖Ã2p‖)

= (1−αnτ)‖xn −p‖+αnτ ·
‖Ã1p‖+µ‖Ã2p‖

τ

≤ max{‖xn −p‖,
‖Ã1p‖+µ‖Ã2p‖

τ
},

where τ := 1−
√

1−µ(2β−µL2). By induction, we find that

‖xn −p‖≤ max{‖x1 −p‖,
‖Ã1p‖+µ‖Ã2p‖

τ
}, ∀n ≥ 1.

Thus, {xn}∞n=1 is bounded and so are the sequences {un}∞n=1, {vn}∞n=1 and {yn}∞n=1.

Step 2. We prove that limn→∞
‖xn+1−xn‖

ρn
= 0.

Indeed, put ṽn = vn −ρn Ã1vn for all n ≥ 1. Utilizing (2.1) and (2.4), we obtain that

‖vn+1 −vn‖ = ‖Λ
N
n+1un+1 −Λ

N
n un‖
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= ‖JRN ,λN ,n+1
(I −λN ,n+1BN )ΛN−1

n+1 un+1 − JRN ,λN ,n
(I −λN ,n BN )ΛN−1

n un‖

≤ ‖JRN ,λN ,n+1
(I −λN ,n+1BN )ΛN−1

n+1 un+1 − JRN ,λN ,n+1
(I −λN ,n BN )ΛN−1

n+1 un+1‖

+‖JRN ,λN ,n+1
(I −λN ,n BN )ΛN−1

n+1 un+1 − JRN ,λN ,n
(I −λN ,n BN )ΛN−1

n un‖

≤ ‖(I −λN ,n+1BN )ΛN−1
n+1 un+1 − (I −λN ,n BN )ΛN−1

n+1 un+1‖

+‖(I −λN ,n BN )ΛN−1
n+1 un+1 − (I −λN ,n BN )ΛN−1

n un‖+|λN ,n+1 −λN ,n |

×(
1

λN ,n+1
‖JRN ,λN ,n+1

(I −λN ,n BN )ΛN−1
n+1 un+1 − (I −λN ,n BN )ΛN−1

n un‖

+
1

λN ,n
‖(I −λN ,nBN )ΛN−1

n+1 un+1 − JRN ,λN ,n
(I −λN ,n BN )ΛN−1

n un‖)

≤ |λN ,n+1 −λN ,n |(‖BNΛ
N−1
n+1 un+1‖+ M̃ )+‖Λ

N−1
n+1 un+1 −Λ

N−1
n un‖

≤ |λN ,n+1 −λN ,n |(‖BNΛ
N−1
n+1 un+1‖+ M̃ )

+|λN−1,n+1 −λN−1,n |(‖BN−1Λ
N−2
n+1 un+1‖+ M̃ )+‖Λ

N−2
n+1 un+1 −Λ

N−2
n un‖

· · ·

≤ |λN ,n+1 −λN ,n |(‖BNΛ
N−1
n+1 un+1‖+ M̃ )

+|λN−1,n+1 −λN−1,n |(‖BN−1Λ
N−2
n+1 un+1‖+ M̃ )

+·· ·+ |λ1,n+1 −λ1,n |(‖B1Λ
0
n+1un+1‖+ M̃)+‖Λ

0
n+1un+1 −Λ

0
nun‖

≤ M̃0

N∑

i=1

|λi ,n+1 −λi ,n |+‖un+1 −un‖, (3.6)

where

sup
n≥1,1≤i≤N

{
1

λi ,n+1
‖JRi ,λi ,n+1

(I −λi ,nBi )Λi−1
n+1un+1 − (I −λi ,nBN )Λi−1

n un‖

+
1

λi ,n
‖(I −λi ,nBi )Λi−1

n+1un+1 − JRi ,λi ,n
(I −λi ,nBi )Λi−1

n un‖}≤ M̃ ,

for some M̃ > 0 and supn≥1{
∑N

i=1‖BiΛ
i−1
n+1un+1‖+ M̃ } ≤ M̃0 for some M̃0 > 0. Hence, it follows

from (2.1) and {ρn}∞n=1 ⊂ (0,2α] that

‖ṽn+1− ṽn‖

= ‖(vn+1 −ρn+1 Ã1vn+1)− (vn −ρn Ã1vn)‖

≤ ‖(vn+1 −ρn+1 Ã1vn+1)− (vn −ρn+1 Ã1vn)‖+‖(vn −ρn+1 Ã1vn)− (vn −ρn Ã1vn)‖

≤ ‖vn+1 −vn‖+|ρn+1 −ρn|‖Ã1vn‖

≤ M̃0

N∑

i=1

|λi ,n+1 −λi ,n |+‖un+1 −un‖+|ρn+1 −ρn |‖Ã1vn‖. (3.7)

Also, utilizing (2.1), {rn}∞n=1 ⊂ [c ,d ]⊂ (0,2ζ) and Remark 2.1, we deduce that

‖un+1 −un‖
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= ‖S
(Θ,ϕ)
rn+1

(I − rn+1 A)xn+1 −S
(Θ,ϕ)
rn

(I − rn A)xn‖

= ‖S
(Θ,ϕ)
rn+1

(I − rn+1 A)xn+1 −S
(Θ,ϕ)
rn+1

(I − rn A)xn

+S
(Θ,ϕ)
rn+1

(I − rn A)xn −S
(Θ,ϕ)
rn

(I − rn A)xn‖

≤ ‖S
(Θ,ϕ)
rn+1

(I − rn+1 A)xn+1 −S
(Θ,ϕ)
rn+1

(I − rn A)xn‖

+‖S
(Θ,ϕ)
rn+1

(I − rn A)xn −S
(Θ,ϕ)
rn

(I − rn A)xn‖

≤ ‖(I − rn+1 A)xn+1 − (I − rn A)xn‖+‖S
(Θ,ϕ)
rn+1

(I − rn A)xn −S
(Θ,ϕ)
rn

(I − rn A)xn‖

≤ ‖xn+1 −xn‖+|rn+1 − rn|‖Axn‖+‖S
(Θ,ϕ)
rn+1

(I − rn A)xn −S
(Θ,ϕ)
rn

(I − rn A)xn‖

≤ ‖xn+1 −xn‖+|rn+1 − rn|‖Axn‖+
|rn+1 − rn|

rn+1
·
ν

σ
‖S

(Θ,ϕ)
rn+1

(I − rn A)xn − (I − rn A)xn‖

≤ ‖xn+1 −xn‖+|rn+1 − rn|(‖Axn‖+
ν

cσ
‖S

(Θ,ϕ)
rn+1

(I − rn A)xn − (I − rn A)xn‖)

≤ ‖xn+1 −xn‖+|rn+1 − rn|M̃1, (3.8)

where supn≥1{‖Axn‖+
ν

cσ
‖S

(Θ,ϕ)
rn+1

(I − rn A)xn − (I − rn A)xn‖} ≤ M̃1 for some M̃1 > 0. In the

meantime, from (2.2), since Wn , Tn and Un,i are all nonexpansive, we have

‖Wn+1 ṽn −Wn ṽn‖ = ‖λ1T1Un+1,2 ṽn −λ1T1Un,2 ṽn‖

≤ λ1‖Un+1,2 ṽn −Un,2 ṽn‖

= λ1‖λ2T2Un+1,3 ṽn −λ2T2Un,3 ṽn‖

≤ λ1λ2‖Un+1,3 ṽn −Un,3 ṽn‖

· · ·

≤ λ1λ2 · · ·λn‖Un+1,n+1 ṽn −Un,n+1 ṽn‖

≤ M̃2

n∏

i=1

λi , (3.9)

where M̃2 is a constant such that ‖Un+1,n+1 ṽn‖+‖Un,n+1 ṽn‖ ≤ M̃2 for each n ≥ 1. Now, simple

calculation shows that

yn+1 − yn =βn(Gvn+1 −Gvn)+ (βn+1 −βn)(Gvn+1 −Wn+1 ṽn+1)+ (1−βn )(Wn+1 ṽn+1 −Wn ṽn).

So, utilizing (2.1), (3.6)-(3.9), from {λn} ⊂ (0,b] ⊂ (0,1), {αn } ⊂ (0,1], {ρn} ⊂ (0,2α] and µ ∈

(0,
2β

L2 ) we deduce that

‖yn+1 − yn‖

≤ βn‖Gvn+1 −Gvn‖+|βn+1 −βn |‖Gvn+1 −Wn+1 ṽn+1‖+ (1−βn )‖Wn+1 ṽn+1 −Wn ṽn‖

≤ βn‖vn+1 −vn‖+|βn+1 −βn |‖Gvn+1 −Wn+1 ṽn+1‖+ (1−βn )[‖Wn+1 ṽn+1 −Wn+1 ṽn‖

+‖Wn+1 ṽn −Wn ṽn‖]
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≤ βn‖vn+1 −vn‖+|βn+1 −βn |‖Gvn+1 −Wn+1 ṽn+1‖+ (1−βn )[‖ṽn+1− ṽn‖+ M̃2

n∏

i=1

λi ]

≤ βn[M̃0

N∑

i=1

|λi ,n+1 −λi ,n |+‖un+1 −un‖]+|βn+1 −βn |‖Gvn+1 −Wn+1 ṽn+1‖

+(1−βn )[M̃0

N∑

i=1

|λi ,n+1 −λi ,n|+‖un+1 −un‖+|ρn+1 −ρn|‖Ã1vn‖+ M̃2

n∏

i=1

λi ]

≤ M̃0

N∑

i=1

|λi ,n+1 −λi ,n |+‖un+1 −un‖+|βn+1 −βn |‖Gvn+1 −Wn+1 ṽn+1‖

+|ρn+1 −ρn|‖Ã1vn‖+ M̃2

n∏

i=1

λi

≤ M̃0

N∑

i=1

|λi ,n+1 −λi ,n |+‖xn+1 −xn‖+|rn+1 − rn|M̃1

+|βn+1 −βn |‖Gvn+1 −Wn+1 ṽn+1‖+|ρn+1 −ρn|‖Ã1vn‖+ M̃2bn ,

and by Lemma 2.7,

‖xn+2 −xn+1‖

= ‖(I −µαn+1 Ã2)yn+1 − (I −µαn Ã2)yn‖

≤ ‖(I −µαn+1 Ã2)yn+1 − (I −µαn+1 Ã2)yn‖+‖(I −µαn+1 Ã2)yn − (I −µαn Ã2)yn‖

≤ (1−αn+1τ)‖yn+1 − yn‖+|αn+1 −αn |µ‖Ã2 yn‖

≤ (1−αn+1τ)[M̃0

N∑

i=1

|λi ,n+1 −λi ,n |+‖xn+1 −xn‖+|rn+1 − rn|M̃1

+|βn+1 −βn |‖Gvn+1 −Wn+1 ṽn+1‖+|ρn+1 −ρn |‖Ã1vn‖+ M̃2bn]+|αn+1 −αn |µ‖Ã2 yn‖

≤ (1−αn+1τ)‖xn+1 −xn‖+ M̃0

N∑

i=1

|λi ,n+1 −λi ,n |+ |rn+1 − rn |M̃1

+|βn+1 −βn |‖Gvn+1 −Wn+1 ṽn+1‖+|ρn+1 −ρn |‖Ã1vn‖+ M̃2bn
+|αn+1 −αn |µ‖Ã2 yn‖

≤ (1−αn+1τ)‖xn+1 −xn‖+ M̃3

N∑

i=1

|λi ,n+1 −λi ,n |+ M̃3|rn+1 − rn|

+M̃3|βn+1 −βn |+ M̃3|ρn+1 −ρn|+ M̃3bn
+ M̃3|αn+1 −αn |

= (1−αn+1τ)‖xn+1 −xn‖+ M̃3(
N∑

i=1

|λi ,n+1 −λi ,n|+ |rn+1 − rn|

+|βn+1 −βn |+ |ρn+1 −ρn |+ |αn+1 −αn |+bn),

where supn≥1{M̃0 + M̃1 + M̃2 +‖Gvn −Wn ṽn‖+ ‖Ã1vn‖+µ‖Ã2 yn‖} ≤ M̃3 for some M̃3 > 0.

Consequently,

‖xn+1 −xn‖

ρn
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≤ (1−αnτ)
‖xn −xn−1‖

ρn
+ M̃3(

N∑

i=1

|λi ,n −λi ,n−1|

ρn
+
|rn − rn−1|

ρn

+
|βn −βn−1|

ρn
+
|ρn −ρn−1|

ρn
+
|αn −αn−1|

ρn
+

bn−1

ρn
)

= (1−ταn )
‖xn −xn−1‖

ρn−1
+ (1−ταn )‖xn −xn−1‖(

1

ρn
−

1

ρn−1
)

+M̃3(
N∑

i=1

|λi ,n −λi ,n−1|

ρn
+
|rn − rn−1|

ρn
+
|βn −βn−1|

ρn
+
|ρn −ρn−1|

ρn
+
|αn −αn−1|

ρn
+

bn−1

ρn
)

≤ (1−ταn )
‖xn −xn−1‖

ρn−1
+ταn ·

M̃4

τ
{

1

αn
|

1

ρn
−

1

ρn−1
|

+

N∑

i=1

|λi ,n −λi ,n−1|

αnρn
+
|rn − rn−1|

αnρn
+
|βn −βn−1|

αnρn
+

1

αn
|1−

ρn−1

ρn
|+

1

ρn
|1−

αn−1

αn
|+

bn−1

αnρn
}, (3.10)

where supn≥1{‖xn+1−xn‖+M̃3} ≤ M̃4 for some M̃4 > 0. From (iii)-(vi) it follows that
∑∞

n=1ταn =

∞ and

lim
n→∞

M̃4

τ
{

1

αn
|

1

ρn
−

1

ρn−1
|+

N∑

i=1

|λi ,n −λi ,n−1|

αnρn
+
|rn − rn−1|

αnρn

+
|βn −βn−1|

αnρn
+

1

αn
|1−

ρn−1

ρn
|+

1

ρn
|1−

αn−1

αn
|+

bn−1

αnρn
} = 0.

Thus, applying Lemma 2.8 to (3.10), we immediately conclude that

lim
n→∞

‖xn+1 −xn‖

ρn
= 0.

So, from (iv) it follows that

lim
n→∞

‖xn+1 −xn‖ = 0.

Step 3. We prove that limn→∞ ‖xn −un‖ = 0, limn→∞ ‖xn − vn‖ = 0, limn→∞ ‖vn −Gvn‖ = 0

and limn→∞ ‖ṽn −W ṽn‖ = 0 where ṽn = vn −ρn Ã1vn .

Indeed, utilizing Lemmas 2.1 and 2.2 (b), from (3.1) and (3.4) we get

‖xn+1 −p‖2

= ‖(I −µαn Ã2)yn −p‖2

= ‖(I −µαn Ã2)yn − (I −µαn Ã2)p + (I −µαn Ã2)p −p‖2

≤ ‖(I −µαn Ã2)yn − (I −µαn Ã2)p‖2
−2µαn〈Ã2p, xn+1 −p〉

≤ (1−αnτ)‖yn −p‖2
−2µαn〈Ã2p, xn+1 −p〉

≤ ‖yn −p‖2
−2µαn〈Ã2p, xn+1 −p〉

= ‖βn(Gvn −p)+ (1−βn )(Wn ṽn −p)‖2
−2µαn〈Ã2p, xn+1 −p〉
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= βn‖Gvn −p‖2
+ (1−βn )‖Wn ṽn −p‖2

−βn(1−βn )‖Gvn −Wn ṽn‖
2

−2µαn〈Ã2p, xn+1 −p〉

≤ βn‖Gvn −p‖2
+ (1−βn )‖ṽn −p‖2

−βn(1−βn )‖Gvn −Wn ṽn‖
2

−2µαn〈Ã2p, xn+1 −p〉

= βn‖Gvn −p‖2
+ (1−βn )‖vn −p −ρn Ã1vn‖

2
−βn(1−βn)‖Gvn −Wn ṽn‖

2

−2µαn〈Ã2p, xn+1 −p〉

≤ βn‖Gvn −p‖2
+ (1−βn )(‖vn −p‖2

−2ρn〈Ã1vn , ṽn −p〉)

−βn(1−βn )‖Gvn −Wn ṽn‖
2
−2µαn〈Ã2p, xn+1 −p〉

≤ ‖vn −p‖2
−2ρn(1−βn )〈Ã1vn , ṽn −p〉

−βn(1−βn )‖Gvn −Wn ṽn‖
2
−2µαn〈Ã2p, xn+1 −p〉

≤ ‖xn −p‖2
−2ρn(1−βn )〈Ã1vn, ṽn −p〉

−βn(1−βn )‖Gvn −Wn ṽn‖
2
−2µαn〈Ã2p, xn+1 −p〉, (3.11)

which implies that

βn(1−βn )‖Gvn −Wn ṽn‖
2 ≤ ‖xn −p‖2 −‖xn+1 −p‖2 −2ρn(1−βn)〈Ã1vn , ṽn −p〉

−2µαn〈Ã2p, xn+1 −p〉

≤ ‖xn −xn+1‖(‖xn −p‖+‖xn+1 −p‖)+2ρn‖Ã1vn‖‖ṽn −p‖

+2µαn‖Ã2p‖‖xn+1 −p‖.

Since αn → 0, ρn → 0, ‖xn+1 − xn‖→ 0 and {xn}, {vn}, {ṽn} are bounded sequences, it follows

from {βn}∞n=1 ⊂ [a,b]⊂ (0,1) that

lim
n→∞

‖Gvn −Wn ṽn‖= 0. (3.12)

On the other hand, for p ∈Ω, we find that

‖un −p‖2 = ‖S
(Θ,ϕ)
rn

(I − rn A)xn −S
(Θ,ϕ)
rn

(I − rn A)p‖2

≤ ‖(I − rn A)xn − (I − rn A)p‖2

= ‖xn −p − rn(Axn − Ap)‖2

≤ ‖xn −p‖2 + rn(rn −2ζ)‖Axn − Ap‖2.

which together with (3.3) and (3.11), implies that

‖xn+1 −p‖2

≤‖vn −p‖2 −2ρn(1−βn )〈Ã1vn , ṽn −p〉

−βn(1−βn )‖Gvn −Wn ṽn‖
2 −2µαn〈Ã2p, xn+1 −p〉

≤ ‖un −p‖2 +2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −p‖2 + rn(rn −2ζ)‖Axn − Ap‖2 +2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖,
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which immediately yields

rn(2ζ− rn)‖Axn − Ap‖2

≤‖xn −p‖2 −‖xn+1 −p‖2 +2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −xn+1‖(‖xn −p‖+‖xn+1 −p‖)+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖.

Since αn → 0, ρn → 0, ‖xn+1 − xn‖ → 0 and {xn}, {vn}, {ṽn} are bounded sequences, it follows

from {rn}∞n=1 ⊂ [c ,d ]⊂ (0,2ζ) that

lim
n→∞

‖Axn − Ap‖ = 0. (3.13)

Furthermore, from the firm nonexpansivity of S
(Θ,ϕ)
rn

, we have

‖un −p‖2

=‖S
(Θ,ϕ)
rn

(I − rn A)xn −S
(Θ,ϕ)
rn

(I − rn A)p‖2

≤ 〈(I − rn A)xn − (I − rn A)p,un −p〉

=
1
2 [‖(I − rn A)xn − (I − rn A)p‖2 +‖un −p‖2 −‖(I − rn A)xn − (I − rn A)p − (un −p)‖2]

≤ 1
2

[‖xn −p‖2 +‖un −p‖2 −‖xn −un − rn(Axn − Ap)‖2]

=
1
2

[‖xn −p‖2 +‖un −p‖2 −‖xn −un‖
2 +2rn〈Axn − Ap, xn −un〉− r 2

n‖Axn − Ap‖2],

which leads to

‖un −p‖2
≤ ‖xn −p‖2

−‖xn −un‖
2
+2rn‖Axn − Ap‖‖xn −un‖. (3.14)

From (3.3), (3.11) and (3.14), we have

‖xn+1 −p‖2 ≤ ‖vn −p‖2 −2ρn(1−βn)〈Ã1vn , ṽn −p〉

−βn(1−βn)‖Gvn −Wn ṽn‖
2 −2µαn〈Ã2p, xn+1 −p〉

≤ ‖un −p‖2 +2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −p‖2 −‖xn −un‖
2 +2rn‖Axn − Ap‖‖xn −un‖+2ρn‖Ã1vn‖‖ṽn −p‖

+2µαn‖Ã2p‖‖xn+1 −p‖,

which hence yields

‖xn −un‖
2

≤ ‖xn −p‖2 −‖xn+1 −p‖2 +2rn‖Axn − Ap‖‖xn −un‖+2ρn‖Ã1vn‖‖ṽn −p‖

+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −xn+1‖(‖xn −p‖+‖xn+1 −p‖)+2rn‖Axn − Ap‖‖xn −un‖+2ρn‖Ã1vn‖‖ṽn −p‖

+2µαn‖Ã2p‖‖xn+1 −p‖.

Since αn → 0, ρn → 0, ‖xn+1 − xn‖ → 0 and {xn}, {un}, {vn}, {ṽn} are bounded sequences, it

follows from (3.13) and {rn}∞n=1 ⊂ [c ,d ]⊂ (0,2ζ) that

lim
n→∞

‖xn −un‖ = 0. (3.15)
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Next we show that limn→∞ ‖AiΛ
i
nun − Ai p‖= 0, i = 1,2, . . . , N . Observe that

‖Λ
i
nun −p‖2

= ‖JRi ,λi ,n
(I −λi ,nBi )Λi−1

n un − JRi ,λi ,n
(I −λi ,nBi )p‖2

≤ ‖(I −λi ,nBi )Λi−1
n un − (I −λi ,nBi )p‖2

≤ ‖Λ
i−1
n un −p‖2

+λi ,n(λi ,n −2ηi )‖BiΛ
i−1
n un −Bi p‖2

≤ ‖un −p‖2
+λi ,n(λi ,n −2ηi )‖BiΛ

i−1
n un −Bi p‖2

≤ ‖xn −p‖2
+λi ,n(λi ,n −2ηi )‖BiΛ

i−1
n un −Bi p‖2. (3.16)

Combining (3.11) and (3.16), we get

‖xn+1 −p‖2
≤ ‖vn −p‖2

−2ρn(1−βn )〈Ã1vn , ṽn −p〉

−βn(1−βn )‖Gvn −Wn ṽn‖
2
−2µαn〈Ã2p, xn+1 −p〉

≤ ‖Λ
i
nun −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −p‖2
+λi ,n(λi ,n −2ηi )‖BiΛ

i−1
n un −Bi p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖,

which hence yields

λi ,n(2ηi −λi ,n)‖BiΛ
i−1
n un −Bi p‖2

≤ ‖xn −p‖2
−‖xn+1 −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −xn+1‖(‖xn −p‖+‖xn+1 −p‖)+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖.

Since αn → 0, ρn → 0, ‖xn+1 − xn‖→ 0 and {xn}, {vn}, {ṽn} are bounded sequences, it follows

from {λi ,n} ⊂ [ai ,bi ] ⊂ (0,2ηi ),∀i ∈ {1,2, . . . , N } that

lim
n→∞

‖BiΛ
i−1
n un −Bi p‖= 0, ∀i ∈ {1,2, . . . , N }. (3.17)

By Lemma 2.2 (a) and Lemma 2.10, we obtain

‖Λ
i
nun −p‖2

= ‖JRi ,λi ,n
(I −λi ,nBi )Λi−1

n un − JRi ,λi ,n
(I −λi ,nBi )p‖2

≤ 〈(I −λi ,nBi )Λi−1
n un − (I −λi ,nBi )p,Λi

nun −p〉

=
1

2
(‖(I −λi ,nBi )Λi−1

n un − (I −λi ,nBi )p‖2
+‖Λ

i
nun −p‖2

−‖(I −λi ,nBi )Λi−1
n un − (I −λi ,nBi )p − (Λi

nun −p)‖2)

≤
1

2
(‖Λi−1

n un −p‖2
+‖Λ

i
nun −p‖2

−‖Λ
i−1
n un −Λ

i
nun −λi ,n(BiΛ

i−1
n un −Bi p)‖2)

≤
1

2
(‖un −p‖2

+‖Λ
i
nun −p‖2

−‖Λ
i−1
n un −Λ

i
nun −λi ,n(BiΛ

i−1
n un −Bi p)‖2)
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≤
1

2
(‖xn −p‖2

+‖Λ
i
nun −p‖2

−‖Λ
i−1
n un −Λ

i
nun −λi ,n(BiΛ

i−1
n un −Bi p)‖2),

which implies

‖Λ
i
nun−p‖2

≤ ‖xn −p‖2
−‖Λ

i−1
n un −Λ

i
nun −λi ,n(BiΛ

i−1
n un −Bi p)‖2

= ‖xn −p‖2
−‖Λ

i−1
n un −Λ

i
nun‖

2
−λ2

i ,n‖BiΛ
i−1
n un −Bi p‖2

+2λi ,n〈Λ
i−1
n un −Λ

i
nun ,BiΛ

i−1
n un −Bi p〉

≤ ‖xn −p‖2
−‖Λ

i−1
n un−Λ

i
nun‖

2
+2λi ,n‖Λ

i−1
n un−Λ

i
nun‖‖BiΛ

i−1
n un−Bi p‖.(3.18)

Combining (3.11) and (3.18) we conclude that

‖xn+1 −p‖2 ≤ ‖vn −p‖2 −2ρn(1−βn)〈Ã1vn , ṽn −p〉

−βn(1−βn)‖Gvn −Wn ṽn‖
2 −2µαn〈Ã2p, xn+1 −p〉

≤ ‖Λi
nun −p‖2 +2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −p‖2 −‖Λi−1
n un −Λ

i
nun‖

2 +2λi ,n‖Λ
i−1
n un −Λ

i
nun‖‖BiΛ

i−1
n un −Bi p‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖,

which implies

‖Λi−1
n un −Λ

i
nun‖

2

≤ ‖xn −p‖2 −‖xn+1 −p‖2 +2λi ,n‖Λ
i−1
n un −Λ

i
nun‖‖BiΛ

i−1
n un −Bi p‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −xn+1‖(‖xn −p‖+‖xn+1 −p‖)+2λi ,n‖Λ
i−1
n un −Λ

i
nun‖‖BiΛ

i−1
n un −Bi p‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖.

Since αn → 0, ρn → 0, ‖xn+1 − xn‖ → 0 and {xn}, {un}, {vn}, {ṽn} are bounded sequences, it

follows from (3.17) and {λi ,n} ⊂ [ai ,bi ] ⊂ (0,2ηi ),∀i ∈ {1,2, . . . , N } that

lim
n→∞

‖Λ
i−1
n un −Λ

i
nun‖= 0, ∀i ∈ {1,2, . . . , N }. (3.19)

Hence from (3.19) we get

‖un −vn‖ = ‖Λ
0
nun −Λ

N
n un‖

≤ ‖Λ
0
nun −Λ

1
nun‖+‖Λ

1
nun −Λ

2
nun‖+·· ·+‖Λ

N−1
n un −Λ

N
n un‖

→ 0 as n →∞. (3.20)

Thus, from (3.15) and (3.20) we obtain

‖xn −vn‖ ≤ ‖xn −un‖+‖un −vn‖

→ 0 as n →∞. (3.21)
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On the other hand, for simplicity, we write p̃ =T
Θ2
ν2

(I −ν2 A2)p, zn = T
Θ2
ν2

(I −ν2 A2)vn and

z̃n =Gvn = T
Θ1
ν1

(I −ν1 A1)zn for all n ≥ 1. Then

p =Gp = T
Θ1
ν1

(I −ν1 A1)p̃ = T
Θ1
ν1

(I −ν1 A1)T
Θ2
ν2

(I −ν2 A2)p.

We now show that limn→∞ ‖Gvn − vn‖ = 0, i.e., limn→∞ ‖z̃n − vn‖ = 0. As a matter of fact, for

p ∈Ω, it follows from (3.4), (3.5) and (3.11) that

‖xn+1 −p‖2
≤ βn‖Gvn −p‖2

+ (1−βn )(‖vn −p‖2
−2ρn〈Ã1vn , ṽn −p〉)

−βn(1−βn )‖Gvn −Wn ṽn‖
2
−2µαn〈Ã2p, xn+1 −p〉

≤ βn‖z̃n −p‖2
+ (1−βn )‖vn −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖

+2µαn‖Ã2p‖‖xn+1 −p‖

≤ βn[‖zn − p̃‖2
+ν1(ν1 −2ζ1)‖A1zn − A1p̃‖2]+ (1−βn)‖vn −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ βn[‖vn −p‖2
+ν2(ν2 −2ζ2)‖A2vn − A2p‖2

+ν1(ν1 −2ζ1)‖A1zn − A1p̃‖2]

+(1−βn )‖vn −p‖2
+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

= ‖vn −p‖2
+βn[ν2(ν2 −2ζ2)‖A2vn − A2p‖2

+ν1(ν1 −2ζ1)‖A1zn − A1p̃‖2]

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −p‖2
+βn[ν2(ν2 −2ζ2)‖A2vn − A2p‖2

+ν1(ν1 −2ζ1)‖A1zn − A1p̃‖2]

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖,

which leads to

βn[ν2(2ζ2 −ν2)‖A2vn − A2p‖2
+ν1(2ζ1 −ν1)‖A1zn − A1p̃‖2]

≤ ‖xn −p‖2
−‖xn+1 −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −xn+1‖(‖xn −p‖+‖xn+1 −p‖)+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖.

Since αn → 0, ρn → 0, ‖xn+1 − xn‖→ 0 and {xn}, {vn}, {ṽn} are bounded sequences, it follows

from νk ∈ (0,2ζk ),k = 1,2 and {βn}∞n=1 ⊂ [a,b]⊂ (0,1) that

lim
n→∞

‖A2vn − A2p‖= 0 and lim
n→∞

‖A1zn − A1p̃‖ = 0. (3.22)

Also, in terms of the firm nonexpansivity of T
Θk
νk

and the ζk -inverse strong monotonicity of Ak

for k = 1,2, we obtain from νk ∈ (0,2ζk ),k = 1,2 and (3.4)-(3.5) that

‖zn − p̃‖2
= ‖T

Θ2
ν2

(I −ν2 A2)vn −T
Θ2
ν2

(I −ν2 A2)p‖2

≤ 〈(I −ν2 A2)vn − (I −ν2 A2)p, zn − p̃〉
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=
1

2
[‖(I −ν2 A2)vn − (I −ν2 A2)p‖2

+‖zn − p̃‖2

−‖(I −ν2 A2)vn − (I −ν2 A2)p − (zn − p̃)‖2]

≤
1

2
[‖vn −p‖2

+‖zn − p̃‖2
−‖(vn − zn)−ν2(A2vn − A2p)− (p − p̃)‖2]

≤
1

2
[‖xn −p‖2

+‖zn − p̃‖2
−‖(vn − zn)− (p − p̃)‖2

+2ν2〈(vn − zn)− (p − p̃), A2vn − A2p〉−ν2
2‖A2vn − A2p‖2],

and

‖z̃n −p‖2
= ‖T

Θ1
ν1

(I −ν1 A1)zn −T
Θ1
ν1

(I −ν1 A1)p̃‖2

≤ 〈(I −ν1 A1)zn − (I −ν1 A1)p̃, z̃n −p〉

=
1

2
[‖(I −ν1 A1)zn − (I −ν1 A1)p̃‖2

+‖z̃n −p‖2

−‖(I −ν1 A1)zn − (I −ν1 A1)p̃ − (z̃n −p)‖2]

≤
1

2
[‖zn − p̃‖2

+‖z̃n −p‖2
−‖(zn − z̃n)+ (p − p̃)‖2

+2ν1〈A1zn − A1p̃, (zn − z̃n)+ (p − p̃)〉−ν2
1‖A1zn − A1p̃‖2]

≤
1

2
[‖xn −p‖2

+‖z̃n −p‖2
−‖(zn − z̃n)+ (p − p̃)‖2

+2ν1〈A1zn − A1p̃, (zn − z̃n)+ (p − p̃)〉].

Thus, we have

‖zn − p̃‖2
≤ ‖xn −p‖2

−‖(vn − zn)− (p − p̃)‖2
+2ν2〈(vn − zn)− (p − p̃), A2vn − A2p〉

−ν2
2‖A2vn − A2p‖2, (3.23)

and

‖z̃n −p‖2
≤ ‖xn −p‖2

−‖(zn − z̃n)+ (p − p̃)‖2
+2ν1‖A1zn − A1p̃‖‖(zn − z̃n)+ (p − p̃)‖. (3.24)

Consequently, from (3.4), (3.5), (3.11) and (3.23) it follows that

‖xn+1 −p‖2

≤ βn‖Gvn −p‖2
+ (1−βn )(‖vn −p‖2

−2ρn〈Ã1vn, ṽn −p〉)

−βn(1−βn )‖Gvn −Wn ṽn‖
2
−2µαn〈Ã2p, xn+1 −p〉

≤ βn‖z̃n −p‖2
+ (1−βn )‖vn −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ βn‖zn − p̃‖2
+ (1−βn )‖vn −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ βn[‖xn −p‖2
−‖(vn − zn)− (p − p̃)‖2

+2ν2〈(vn − zn)− (p − p̃), A2vn − A2p〉

−ν2
2‖A2vn − A2p‖2]+ (1−βn )‖xn −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ βn[‖xn −p‖2
−‖(vn − zn)− (p − p̃)‖2

+2ν2‖(vn − zn)− (p − p̃)‖‖A2vn − A2p‖]

+(1−βn )‖xn −p‖2
+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖
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≤ ‖xn −p‖2
−βn‖(vn − zn)− (p − p̃)‖2

+2ν2‖(vn − zn)− (p − p̃)‖‖A2vn − A2p‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖,

which leads to

βn‖(vn − zn)− (p − p̃)‖2

≤ ‖xn −p‖2
−‖xn+1 −p‖2

+2ν2‖(vn − zn)− (p − p̃)‖‖A2vn − A2p‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −xn+1‖(‖xn −p‖+‖xn+1 −p‖)+2ν2‖(vn − zn)− (p − p̃)‖‖A2vn − A2p‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖,

Since αn → 0, ρn → 0, ‖xn+1 − xn‖ → 0 and {xn}, {vn}, {ṽn}, {zn } are bounded sequences, it

follows from (3.22) and {βn} ⊂ [a,b]⊂ (0,1) that

lim
n→∞

‖(vn − zn)− (p − p̃)‖ = 0. (3.25)

Furthermore, from (3.4), (3.11) and (3.24) it follows that

‖xn+1 −p‖2

≤ βn‖Gvn −p‖2
+ (1−βn )(‖vn −p‖2

−2ρn〈Ã1vn , ṽn −p〉)

−βn(1−βn )‖Gvn −Wn ṽn‖
2
−2µαn〈Ã2p, xn+1 −p〉

≤ βn‖z̃n −p‖2
+ (1−βn )‖vn −p‖2

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ βn[‖xn −p‖2
−‖(zn − z̃n)+ (p − p̃)‖2

+2ν1‖A1zn − A1p̃‖‖(zn − z̃n)+ (p − p̃)‖]

+(1−βn )‖xn −p‖2
+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −p‖2
−βn‖(zn − z̃n)+ (p − p̃)‖2

+2ν1‖A1zn − A1p̃‖‖(zn − z̃n)+ (p − p̃)‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖,

which yields

βn‖(zn − z̃n)+ (p − p̃)‖2

≤ ‖xn −p‖2
−‖xn+1 −p‖2

+2ν1‖A1zn − A1p̃‖‖(zn − z̃n)+ (p − p̃)‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖

≤ ‖xn −xn+1‖(‖xn −p‖+‖xn+1 −p‖)+2ν1‖A1zn − A1p̃‖‖(zn − z̃n)+ (p − p̃)‖

+2ρn‖Ã1vn‖‖ṽn −p‖+2µαn‖Ã2p‖‖xn+1 −p‖.

Since αn → 0, ρn → 0, ‖xn+1−xn‖→ 0 and {xn}, {vn}, {ṽn}, {zn }, {z̃n} are bounded sequences, it

follows from (3.22) and {βn} ⊂ [a,b]⊂ (0,1) that

lim
n→∞

‖(zn − z̃n)+ (p − p̃)‖= 0. (3.26)
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Note that

‖vn − z̃n‖≤ ‖(vn − zn)− (p − p̃)‖+‖(zn − z̃n)+ (p − p̃)‖.

Hence from (3.25) and (3.26) we get

lim
n→∞

‖vn − z̃n‖ = lim
n→∞

‖vn −Gvn‖= 0, (3.27)

Also, observe that ‖ṽn −xn‖ ≤ ‖vn −xn‖+ρn‖Ã1vn‖ and

‖yn −xn‖ ≤ ‖xn+1 −xn‖+µαn‖Ã2 yn‖.

Hence from (3.21), αn → 0, ρn → 0 and ‖xn+1 −xn‖→ 0 we obtain that

lim
n→∞

‖ṽn −xn‖ = 0 and lim
n→∞

‖yn −xn‖= 0. (3.28)

So, from (3.12), (3.27) and ρn → 0 we deduce that

‖Wn ṽn − ṽn‖ ≤ ‖Wn ṽn −Gvn‖+‖Gvn −vn‖+‖vn − ṽn‖

= ‖Wn ṽn −Gvn‖+‖Gvn −vn‖+ρn‖Ã1vn‖→ 0 as n →∞. (3.29)

In addition, it is clear that

‖ṽn −W ṽn‖≤ ‖ṽn −Wn ṽn‖+‖Wn ṽn −W ṽn‖.

Thus, we conclude from Remark ??, (3.29) and the boundedness of {ṽn} that

lim
n→∞

‖ṽn −W ṽn‖ = 0. (3.30)

Step 4. We prove that ωw (xn) ⊂Ω.

Indeed, since H is reflexive and {xn} is bounded, there exists at least a weak convergence

subsequence of {xn}. Hence it is known that ωw (xn) 6= ;. Now, take an arbitrary w ∈ωw (xn).

Then there exists a subsequence {xni
} of {xn} such that xni

* w . From (3.15), (3.19), (3.21) and

(3.28), we have that uni
* w, vni

* w, ṽni
* w and Λ

m
ni

uni
* w for m = 1,2, . . . , N . Utilizing

Lemma 2.3, we deduce from vni
* w and ṽni

* w , (3.27) and (3.20) that w ∈ SGEP(G) and

w ∈ Fix(W ) = ∩∞
n=1Fix(Tn) (due to Lemma 2.5). Next, we prove that w ∈ ∩N

m=1I(Bm ,Rm). As

a matter of fact, since Bm is ηm-inverse strongly monotone, Bm is a monotone and Lipschitz

continuous mapping. It follows from Lemma 2.13 that Rm +Bm is maximal monotone. Let

(v, g )∈G(Rm+Bm), i.e., g−Bm v ∈ Rm v . Again, sinceΛ
m
n un = JRm ,λm,n

(I−λm,nBm)Λm−1
n un ,n ≥

1,m ∈ {1,2, . . . , N }, we have

Λ
m−1
n un −λm,n BmΛ

m−1
n un ∈ (I +λm,nRm)Λm

n un ,
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that is,
1

λm,n
(Λm−1

n un −Λ
m
n un −λm,nBmΛ

m−1
n un) ∈ RmΛ

m
n un .

In terms of the monotonicity of Rm, we get

〈v −Λ
m
n un , g −Bm v −

1

λm,n
(Λm−1

n un −Λ
m
n un −λm,nBmΛ

m−1
n un)〉 ≥ 0

and hence

〈v −Λ
m
n un , g 〉

≥ 〈v −Λ
m
n un ,Bm v +

1

λm,n
(Λm−1

n un −Λ
m
n un −λm,nBmΛ

m−1
n un)〉

= 〈v −Λ
m
n un ,Bm v −BmΛ

m
n un +BmΛ

m
n un −BmΛ

m−1
n un +

1

λm,n
(Λm−1

n un −Λ
m
n un)〉

≥ 〈v −Λ
m
n un ,BmΛ

m
n un −BmΛ

m−1
n un〉+〈v −Λ

m
n un ,

1

λm,n
(Λm−1

n un −Λ
m
n un)〉.

In particular,

〈v−Λ
m
ni

uni
, g 〉 ≥ 〈v−Λ

m
ni

uni
,BmΛ

m
ni

uni
−BmΛ

m−1
ni

uni
〉+〈v−Λ

m
ni

uni
,

1

λm,ni

(Λm−1
ni

uni
−Λ

m
ni

uni
)〉.

Since ‖Λm
n un −Λ

m−1
n un‖ → 0 (due to (3.19)) and ‖BmΛ

m
n un −BmΛ

m−1
n un‖ → 0 (due to the

Lipschitz continuity of Bm), we conclude from Λ
m
ni

uni
* w and {λi ,n} ⊂ [ai ,bi ] ⊂ (0,2ηi ) that

lim
i→∞

〈v −Λ
m
ni

uni
, g 〉 = 〈v −w, g 〉≥ 0.

It follows from the maximal monotonicity of Bm +Rm that 0 ∈ (Rm +Bm)w , i.e., w ∈ I(Bm ,Rm).

Therefore, w ∈∩N
m=1I(Bm ,Rm).

Next, we show that w ∈ GMEP(Θ,ϕ, A). In fact, from un = S
(Θ,ϕ)
rn

(I −rn A)xn , we know that

Θ(un , y)+ϕ(y)−ϕ(un)+〈Axn , y −un〉+
1

rn
〈K ′(un)−K ′(xn), y −un〉 ≥ 0, ∀y ∈C .

From (H2) it follows that

ϕ(y)−ϕ(un)+〈Axn , y −un〉+
1

rn
〈K ′(un)−K ′(xn), y −un〉 ≥Θ(y,un), ∀y ∈C .

Replacing n by ni , we have

ϕ(y)−ϕ(uni
)+〈Axni

, y −uni
〉+〈

K ′(uni
)−K ′(xni

)

rni

, y −uni
〉 ≥Θ(y,uni

), ∀y ∈C . (3.31)

Put ut = t y + (1− t )w for all t ∈ (0,1] and y ∈C . Then, from (3.31) we have

〈ut −uni
, Aut 〉
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≥ 〈ut −uni
, Aut 〉−ϕ(ut )+ϕ(uni

)−〈ut −uni
, Axni

〉−〈
K ′(uni

)−K ′(xni
)

rni

,ut −uni
〉+Θ(ut ,uni

)

≥ 〈ut −uni
, Aut − Auni

〉+〈ut −uni
, Auni

− Axni
〉−ϕ(ut )+ϕ(uni

)

−〈
K ′(uni

)−K ′(xni
)

rni

,ut −uni
〉+Θ(ut ,uni

).

Since ‖uni
− xni

‖ → 0 as i → ∞, we deduce from the Lipschitz continuity of A and K ′ that

‖Auni
− Axni

‖ → 0 and ‖K ′(uni
)−K ′(xni

)‖ → 0 as i → ∞. Further, from the monotonicity

of A, we have 〈ut −uni
, Aut − Auni

〉 ≥ 0. So, from (H4), the weakly lower semicontinuity of

ϕ,
K ′(uni

)−K ′(xni
)

rni

→ 0 and uni
* w , we have

〈ut −w, Aut 〉 ≥−ϕ(ut )+ϕ(w )+Θ(ut , w ), as i →∞. (3.32)

From (H1), (H4) and (3.32) we also have

0 =Θ(ut ,ut )+ϕ(ut )−ϕ(ut )

≤ tΘ(ut , y)+ (1− t )Θ(ut , w )+ tϕ(y)+ (1− t )ϕ(w )−ϕ(ut )

= t [Θ(ut , y)+ϕ(y)−ϕ(ut )]+ (1− t )[Θ(ut , w )+ϕ(w )−ϕ(w )−ϕ(ut )]

≤ t [Θ(ut , y)+ϕ(y)−ϕ(ut )]+ (1− t )〈ut −w, Aut 〉

= t [Θ(ut , y)+ϕ(y)−ϕ(ut )]+ (1− t )t〈y −w, Aut〉,

and hence

0 ≤Θ(ut , y)+ϕ(y)−ϕ(ut )+ (1− t )〈y −w, Aut 〉.

Letting t → 0, we have, for each y ∈C ,

0 ≤Θ(w, y)+ϕ(y)−ϕ(w )+〈Aw, y −w〉.

This implies that w ∈ GMEP(Θ,ϕ, A). Therefore, w ∈∩∞
n=1Fix(Tn)∩GMEP(Θ,ϕ, A)∩SGEP(G)∩

∩N
i=1

I(Bi ,Ri ) :=Ω. This shows that ωw (xn) ⊂Ω.

Step 5. We prove that ωw (xn) ⊂ VI(Ω, Ã1) provided ‖xn − yn‖ = o(ρn) additionally.

Indeed, take an arbitrary w ∈ωw (xn). Then there exists a subsequence {xni
} of {xn} such

that xni
* w . Since A1 is α-inverse strongly monotone, from (3.1), (3.4) and (3.5) we conclude

that for all p ∈Ω

‖yn −p‖2
= ‖βn(Gvn −p)+ (1−βn )(Wn ṽn −p)‖2

≤ βn‖Gvn −p‖2
+ (1−βn )‖Wn ṽn −p‖2

≤ βn‖vn −p‖2
+ (1−βn )‖ṽn −p‖2

= βn‖vn −p‖2
+ (1−βn )‖vn −p −ρn Ã1vn‖

2

≤ βn‖vn −p‖2
+ (1−βn )[‖vn −p‖2

−2ρn〈Ã1vn , ṽn −p〉]
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= βn‖vn −p‖2
+ (1−βn )[‖vn −p‖2

−2ρn(〈Ã1vn , vn −p〉+〈Ã1vn , ṽn −vn〉)]

= βn‖vn −p‖2
+ (1−βn )[‖vn −p‖2

−2ρn(〈Ã1vn − Ã1p, vn −p〉

+〈Ã1p, vn −p〉+〈Ã1vn , ṽn −vn〉)]

= ‖vn −p‖2
−2ρn(1−βn )(〈Ã1vn − Ã1p, vn −p〉+〈Ã1p, vn −p〉

+〈Ã1vn , ṽn −vn〉)

≤ ‖xn −p‖2
−2ρn(1−βn )〈Ã1p, vn −p〉+2ρn(1−βn )‖Ã1vn‖‖ṽn −vn‖, (3.33)

which implies that

〈Ã1p, vn −p〉 ≤
1

2ρn(1−βn )
(‖xn −p‖2

−‖yn −p‖2)+‖Ã1vn‖‖ṽn −vn‖

≤
‖xn − yn‖

2ρn(1−βn )
(‖xn −p‖+‖yn −p‖)+ρ2

n‖Ã1vn‖
2.

So, from ρn → 0 and the assumption ‖xn − yn‖= o(ρn), we get

limsup
n→∞

〈Ã1p, vn −p〉 ≤ 0.

Thus, it follows from (3.21) that for all p ∈Ω

〈Ã1p, w −p〉 = lim
i→∞

〈Ã1p, xni
−p〉

≤ limsup
n→∞

〈Ã1p, xn −p〉

= limsup
n→∞

(〈Ã1p, vn −p〉+〈Ã1p, xn −vn〉)

= limsup
n→∞

〈Ã1p, vn −p〉

≤ 0,

that is,

〈Ã1p, p −w〉 ≥ 0, ∀p ∈Ω. (3.34)

Since Ã1 is α-inverse strongly monotone, by Minty’s Lemma [4] we know that (3.34) is equiv-

alent to the VIP

〈Ã1w, p −w〉≥ 0, ∀p ∈Ω. (3.35)

This shows that w ∈ VI(Ω, Ã1). Therefore, ωw (xn) ⊂ VI(Ω, Ã1).

Theorem 3.2. Assume that all the conditions in Theorem 3.1 are satisfied. Then we have

(i) {xn} converges strongly to a point u∗ ∈Ω, which is a unique solution of the VIP

〈Ã2u∗, p −u∗
〉 ≥ 0, ∀p ∈Ω;

(ii) {xn} converges strongly to a unique solution of THVI (1.9) provided ‖xn − yn‖ = o(θn) ad-

ditionally.
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Proof. Since Ã2 is β-strongly monotone and L-Lipschitz continuous, there exists a unique

solution u∗ ∈Ω of the VIP

〈Ã2u∗, p −u∗
〉 ≥ 0, ∀p ∈Ω. (3.36)

Now, let us show that

limsup
n→∞

〈Ã2u∗,u∗
−xn〉 ≤ 0.

Since {xn} is bounded, we may assume, without loss of generality, that there exists a subse-

quence {xni
} of {xn} such that xni

* w and

limsup
n→∞

〈Ã2u∗,u∗
−xn〉 = lim

i→∞
〈Ã2u∗,u∗

−xni
〉 = 〈Ã2u∗,u∗

−w〉.

In terms of Theorem 3.1 (ii), we know that w ∈ωw (xn)⊂Ω. So, from (3.36) it follows that

limsup
n→∞

〈Ã2u∗,u∗
−xn〉 = 〈Ã2u∗,u∗

−w〉 ≤ 0. (3.37)

Next, let us show that limn→∞ ‖xn −u∗‖ = 0. In fact, utilizing Lemma 2.1, from (3.1) and

(3.33) with p = u∗ we get

‖xn+1 −u∗
‖

2

= ‖(I −µαn Ã2)yn −u∗
‖

2

= ‖(I −µαn Ã2)yn − (I −µαn Ã2)u∗
+ (I −µαn Ã2)u∗

−u∗
‖

2

≤ ‖(I −µαn Ã2)yn − (I −µαn Ã2)u∗
‖

2
−2µαn〈Ã2u∗, xn+1 −u∗

〉

≤ (1−αnτ)‖yn −u∗
‖

2
−2µαn〈Ã2u∗, xn+1 −u∗

〉

≤ (1−αnτ)[‖xn −u∗
‖

2
−2ρn(1−βn )〈Ã1u∗, vn −u∗

〉

+2ρn(1−βn )‖Ã1vn‖‖ṽn −vn‖]−2µαn〈Ã2u∗, xn+1 −u∗
〉

≤ (1−αnτ)‖xn −u∗
‖

2
+2ρn‖Ã1u∗

‖‖vn −u∗
‖+2ρ2

n‖Ã1vn‖
2
−2µαn〈Ã2u∗, xn+1 −u∗

〉

= (1−αnτ)‖xn−u∗
‖

2
+αnτ ·

2

τ
{
ρn

αn
‖Ã1u∗

‖‖vn−u∗
‖+

ρ2
n

αn
‖Ã1vn‖

2
+µ〈Ã2u∗,u∗

|!−xn+1〉},(3.38)

where τ= 1−
√

1−µ(2β−µL2).

Since
∑∞

n=1αn =∞, limn→∞
ρn

αn
= 0 and limsupn→∞〈Ã2u∗,u∗− xn+1〉 ≤ 0 (due to (3.37)),

we deduce that
∑∞

n=1αnτ=∞, and

limsup
n→∞

2

τ
{
ρn

αn
‖Ã1u∗

‖‖vn −u∗
‖+

ρ2
n

αn
‖Ã1vn‖

2
+µ〈Ã2u∗,u∗

−xn+1〉} ≤ 0.

Therefore, applying Lemma 2.8 to (3.38) we infer that limn→∞ ‖xn −u∗‖= 0.

Finally, we prove that limn→∞ ‖xn−x∗‖= 0 provided ‖xn−yn‖ = o(αn) additionally, where

{x∗} = VI(VI(Ω, Ã1), Ã2).
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Indeed, first of all, let us show that ωw (xn) = {x∗}. As a matter of fact, take an arbitrary

w ∈ ωw (xn). Then there exists a subsequence {xn j
} of {xn} such that xn j

* w . Moreover, by

Theorem 3.1 (iii) we know that w ∈ ωw (xn) ⊂ VI(Ω, Ã1). Utilizing Lemmas 2.1 and 2.7, from

(3.1) and (3.33) we deduce that for all p ∈ VI(Ω, Ã1)

‖xn+1 −p‖2

= ‖(I −µαn Ã2)yn −p‖2

= ‖(I −µαn Ã2)yn − (I −µαn Ã2)p + (I −µαn Ã2)p −p‖2

≤ ‖(I −µαn Ã2)yn − (I −µαn Ã2)p‖2
−2µαn〈Ã2p, xn+1 −p〉

≤ (1−αnτ)‖yn −p‖2
−2µαn〈Ã2p, xn+1 −p〉

≤ (1−αnτ)[‖xn −p‖2
−2ρn(1−βn )〈Ã1p, vn −p〉+2ρn(1−βn )‖Ã1vn‖‖ṽn −vn‖]

−2µαn〈Ã2p, xn+1 −p〉

≤ ‖xn −p‖2
+2ρn‖Ã1p‖‖vn −p‖+2ρ2

n‖Ã1vn‖
2
−2µαn〈Ã2p, xn+1 −p〉, (3.39)

where τ= 1−
√

1−µ(2β−µL2). So, it follows that

〈Ã2p, xn+1 −p〉

≤
1

2µαn
(‖xn −p‖2

−‖xn+1 −p‖2)+
ρn

µαn
[‖Ã1p‖‖vn −p‖+ρn‖Ã1vn‖

2]

≤
‖xn −xn+1‖

2µαn
(‖xn −p‖+‖xn+1 −p‖)+

ρn

µαn
[‖Ã1p‖‖vn −p‖+ρn‖Ã1vn‖

2]. (3.40)

Since αn → 0, ρn = o(αn) and ‖xn+1 −xn‖= o(ρn), we find that

lim
n→∞

‖xn+1 −xn‖

αn
= lim

n→∞

‖xn+1 −xn‖

ρn
·
ρn

αn
= 0.

Hence we conclude from (3.40) that for all p ∈ VI(Ω, Ã1)

〈Ã2p, w −p〉 = lim
j→∞

〈Ã2p, xn j
−p〉

≤ limsup
n→∞

〈Ã2p, xn −p〉

= limsup
n→∞

(〈Ã2p, xn −xn+1〉+〈Ã2p, xn+1 −p〉)

= limsup
n→∞

〈Ã2p, xn+1 −p〉

≤ 0,

that is,

〈Ã2p, p −w〉 ≥ 0, ∀p ∈ VI(Ω, Ã1). (3.41)
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Since Ã2 is β-strongly monotone and L-Lipschitz continuous, by Minty’s Lemma [4] we know

that (3.41) is equivalent to the VIP

〈Ã2w, p −w〉≥ 0, ∀p ∈ VI(Ω, Ã1). (3.42)

This shows that w ∈ VI(VI(Ω, Ã1), Ã2). Taking into account {x∗} = VI(VI(Ω, Ã1), Ã2), we know

that w = x∗. Thus, ωw (xn) = {x∗}; that is, xn * x∗.

Next we prove that limn→∞ ‖xn −x∗‖ = 0. As a matter of fact, utilizing (3.39) with p = x∗,

we get

‖xn+1 −x∗
‖

2

≤ (1−αnτ)[‖xn −x∗
‖

2
−2ρn(1−βn )〈Ã1x∗, vn −x∗

〉+2ρn(1−βn )‖Ã1vn‖‖ṽn −vn‖]

−2µαn〈Ã2x∗, xn+1 −x∗
〉

≤ (1−αnτ)‖xn −x∗
‖

2
+2ρn‖Ã1x∗

‖‖vn −x∗
‖+2ρ2

n‖Ã1vn‖
2
−2µαn〈Ã2x∗, xn+1 −x∗

〉

= (1−αnτ)‖xn−x∗
‖

2
+αnτ ·

2

τ
[
ρn

αn
‖Ã1x∗

‖‖vn−x∗
‖+

ρ2
n

αn
‖Ã1vn‖

2
−µ〈Ã2x∗, xn+1−x∗

〉].(3.43)

Since
∑∞

n=1αn = ∞, limn→∞
ρn

αn
= 0 and limn→∞〈Ã2x∗, x∗ − xn+1〉 = 0 (due to xn * x∗), we

deduce that
∑∞

n=1αnτ=∞, and

lim
n→∞

2

τ
[
ρn

αn
‖Ã1x∗

‖‖vn −x∗
‖+

ρ2
n

αn
‖Ã1vn‖

2
−µ〈Ã2x∗, xn+1 −x∗

〉] = 0.

Therefore, applying Lemma 2.8 to (3.43) we infer that limn→∞ ‖xn − x∗‖ = 0. This completes

the proof. ���

Remark 3.1. It is obvious that our iterative scheme (3.1) is very different from Ceng, Ansari

and Schaible iterative one (1.4), Yao, Liou and Marino iterative one (1.8) and Zeng, Wong and

Yao iterative one in Algorithm ZWY. Here, the two-step iterative scheme in [22, Algorithm 3.2]

is extended to develop our four-step iterative scheme (3.1) for the THVI (1.9) by combining

Korpelevich’s extragradient method, hybrid steepest-descent method and Mann’s iteration

method. The problem of finding a point x∗ ∈∩∞
n=1Fix(Tn)∩GMEP(Θ,ϕ, A)∩SGEP(G) in [25] is

extended to the more general problem of finding a point x∗ ∈∩∞
n=1Fix(Tn)∩GMEP(Θ,ϕ, A)∩

∩N
i=1

I(Bi ,Ri ) ∩ SGEP(G), which is involved in THVI (1.9). It is worth pointing out that un-

der the lack of the assumptions similar to those in [19, Theorem 3.2], e.g., {xn} is bounded,

Fix(T )∩intC 6= ; and ‖x−T x‖≥ kDist(x,Fix(T )),∀x ∈C for some k > 0, the sequence {xn} gen-

erated by (3.1) converges strongly to a point u∗ ∈∩∞
n=1Fix(Tn)∩GMEP(Θ,ϕ, A)∩∩N

i=1
I(Bi ,Ri )∩

SGEP(G) =: Ω, which is a unique solution of the VIP: 〈Ã2u∗, p −u∗〉 ≥ 0,∀p ∈Ω.

Remark 3.2. Our Theorems 3.1 and 3.2 improve, extend, supplement and develop Yao, Liou

and Marino [19, Theorems 3.1 and 3.2] and Zeng, Wong and Yao [22, Theorem 3.2] in the

following aspects:
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(a) Our THVI (1.9) with the unique solution x∗ ∈Ω satisfying

x∗
= P∩∞

n=1Fix(Tn )∩GMEP(Θ,ϕ,A)∩∩N
i=1

I(Bi ,Ri )∩SGEP(G)(I − Ã1)x∗

is more general than the problem of finding a point x̃ ∈ C satisfying x̃ = PFix(T )Sx̃ in [19]

and than the problem of finding a point x∗ ∈ ∩N
i=1

Fix(Ti ) satisfying x∗ = P∩N
i=1

Fix(Ti )(I −

A1)x∗ in [22, Theorem 3.2]. It is worth pointing out that S is nonexpansive if and only if

the complement I −S is 1
2 -inverse strongly monotone; see [27].

(b) Our four-step iterative scheme (3.1) for THVI (1.9) is more flexible, more advantageous

and more subtle than Zeng, Wong and Yao’s two-step iterative one in [22, Algorithm 3.2]

and than Yao, Liou and Marino’s two-step iterative one (1.8) because it can be used to

solve several kinds of problems, e.g., the THVI, the hierarchical VIP and the problem

of finding a common point of four sets: ∩∞
n=1Fix(Tn), GMEP(Θ,ϕ, A), ∩N

i=1
I(Bi ,Ri ) and

SGEP(G). In addition, it also drops the crucial requirements that Fix(T )∩ intC 6= ; and

‖x −T x‖≥ kDist(x,Fix(T )),∀x ∈C for some k > 0 in [19, Theorem 3.2 (v)].

(c) The argument techniques in our Theorems 3.1 and 3.2 are very different from the argu-

ment ones in [19, Theorems 3.1 and 3.2] and from the argument ones in [22, Theorem 3.2]

because we use the W -mapping approach to fixed points of infinitely many nonexpan-

sive mappings {Tn}∞n=1 (see Lemmas 2.4 and 2.5), the properties of resolvent operators

and maximal monotone mappings (see Proposition 2.2, Remarks 2.1, 2.4 and Lemmas

2.9−2.13), the fixed point equation x∗ = T
Θ1
ν1

(I −ν1 A1)T
Θ2
ν2

(I −ν2 A2)x∗ equivalent to the

SGEP (1.4) (see Proposition 2.3) and the contractive coefficient estimates for the contrac-

tions associating with nonexpansive mappings (see Lemma 2.7).

(d) Compared with the restrictions on the parameter sequences of [19, Theorem 3.2] and [22,

Theorem 3.2], respectively, the hypotheses (v)−(vi) in our Theorem 3.1 are additionally

added because our Theorem 3.1 involves the quite complex problem, i.e., the THVI (1.9)

(over the set ∩∞
n=1Fix(Tn)) with constraints of several problems: GMEP (1.2), finitely many

variational inclusions and SGEP(1.4).
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