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RECENT DEVELOPMENTS ON A NONLOCAL PROBLEM

ARISING IN THE MICRO-ELECTRO MECHANICAL SYSTEM

JONG-SHENQ GUO

Abstract. In this paper, we study an evolution problem arises in the study of MEMS

(micro-electro mechanical system) device. We consider both parabolic and hyperbolic

type problems. We summarize some recent results on the steady states and the global vs

non-global existence of solutions. We also list some open problems and provide a list (far

from complete) of references related to this subject.

1. Description of the model: MEMS

We are interested in the dynamic deflection of an elastic membrane inside a micro-electro

mechanical system (MEMS). Typically, the MEMS device consists of an electric membrane

hanged above a rigid ground plate, connected in series with a fixed voltage source and a fixed

capacitor. We refer to [29, 30] and the references therein for the physical backgrounds and its

applications.

In the case the distance between the plate and the membrane is relative small compared

to the length of the device, the original mathematical system describing the operation of the

MEMS is reduced to the following single nonlocal equation in dimensionless variables

εut t +ut =∆u +
λ f (x)

(1−u)2
(
1+α

∫
Ω

1
1−u

d x
)2

in Ω, (1.1)

where Ω is the domain of the plate and the gap between the membrane and the plate on the

boundary is normalized to be 1.

In (1.1), u is the deflection of the membrane, ε is the ratio of the interaction due to the

inertial and damping terms in the model, while λ∝V 2 in which V stands for the applied volt-

age, and the nonnegative function f (x) represents varying dielectric properties of the mem-

brane. The integral in the equation (1.1) arises due to the fact that the device is embedded
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in an electrical circuit with a capacitor of fixed capacitance. The parameter α denotes the

ratio of this fixed capacitance to a reference capacitance of the device. The limiting case α= 0

corresponds to the case where there is no capacitor in the circuit.

Some physically suggested dielectric profiles are the power-law profile

f (x) = |x|p , p > 0,

and the exponential-law profile

f (x)= ek(|x|2−c), k ,c > 0.

Since the edge of the membrane is kept fixed, we have the boundary condition

u = 0 on ∂Ω. (1.2)

Therefore, our model is the problem for (1.1) and (1.2) supplemented by a suitable initial

condition(s).

We refer to [4, 5, 6, 9, 11, 12, 21, 22, 23, 24, 26, 27] (far from complete) for some recent

studies on MEMS.

We shall concentrate on the case when the device is with capacitor and constant f . With-

out loss of generality, we may assume that f ≡ 1. We shall consider both the parabolic case

(with ε= 0) and the hyperbolic case (with ε= 1 after a rescaling).

When the solution u(x, t ) of the initial boundary value problem for (1.1) reaches the value

1 at some point of Ω in finite time, we say that u quenches in finite time. In this case, the solu-

tion creates a singularity due to that the source term in the right-hand side of (1.1) becomes

infinite. Physically, this corresponds to the phenomenon of touch-down in which the mem-

brane touches the ground electrode plate. In real applications, this touch-down phenomenon

is observed when the applied voltage V exceeds a fixed value.

This paper is organized as follows. In section 2, we provide some quenching criteria for

both problems with and without inertia. In section 3, we study the steady states. Then we

give some global existence theorems in section 4. Finally, some open problems are stated in

section 5.

2. Quenching criteria

In this section, we provide some quenching criteria for both parabolic and hyperbolic

problems.
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2.1. Without inertia (ε= 0): parabolic case

In this subsection, we assume that α= 1 (after a rescaling). Hence our problem becomes

(P): 




ut =∆u + λ
(1−u)2(1+

∫
Ω

(1−u)−1dx)2 , x ∈Ω, t > 0,

u(x, t )= 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0(x), x ∈ Ω̄.

It is easy to see that problem (P) admits an energy functional of the form

E [u](t )≡E (t )=
1

2

∫

Ω

|∇u|2d x +
λ

(
1+

∫
Ω

(1−u)−1d x
) , (2.1)

since

dE

d t
=−

∫

Ω

u2
t (x, t )d x ≤ 0. (2.2)

Hence we have that E (t ) is decreasing in time.

The following theorem shows that the solution of problem (P) quenches in finite time for

certain initial data.

Theorem 2.1 ([18]). There exist initial data with small initial energy such that the correspond-

ing solution of problem (P) quenches in finite time, if λ is chosen sufficiently large.

Proof. Suppose that the problem (P) has a global-in-time (classical) solution u. Set

A(t )=
∫

Ω

u2(x, t )d x.

Multiplying equation (1.1) by u and integrating by parts over Ω, we derive

1

2
A′(t )=−

∫

Ω

|∇u|2d x +λ

∫
Ω

u
(1−u)2 d x

(
1+

∫
Ω

(1−u)−1d x
)2

.

Using (2.1) and (2.2), it follows that

1

2
A′(t )≥−2E (0)+λ

2+
∫
Ω

2−u
(1−u)2 d x

(
1+

∫
Ω

(1−u)−1d x
)2

. (2.3)

On the other hand, using Hölder’s and Young’s inequalities, we can deduce that

(
1+

∫

Ω

d x

1−u

)2
≤ 2+2|Ω|

∫

Ω

d x

(1−u)2
. (2.4)
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Combining (2.3) and (2.4) yields

1

2
A′(t )≥−2E (0)+λ

2+
∫
Ω

2−u
(1−u)2 d x

2+2|Ω|
∫
Ω

dx
(1−u)2

.

Using the fact that u < 1, we have
∫

Ω

2−u

(1−u)2
d x ≥

∫

Ω

d x

(1−u)2
,

and consequently we derive that

1

2
A′(t )≥−2E (0)+q(|Ω|)λ, q(|Ω|) :=

{
1, |Ω| ≤ 1/2,

1/(2|Ω|), |Ω| > 1/2.

This implies that

A(t ) ≥ 2
(
q(|Ω|)λ−2E (0)

)
t + A(0). (2.5)

It follows from (2.5) that A(t )→∞ as t →∞, provided that

E (0) < q(|Ω|)λ/2. (2.6)

But, A(t )≤ |Ω| for all t > 0, a contradiction. The theorem follows. ���

Remark 2.2. Let N = 1, Ω= (0,1/2), and

u0(x) =
{

4δx, 0≤ x ≤ 1/4,

4δ(1/2−x), 1/4 ≤ x ≤ 1/2,

where 0 < δ< 1. Then we have

E (0) = 4δ2 +
λ

g (δ)
, g (δ) := 1−

1

2δ
ln(1−δ).

Note that g (δ) →+∞ as δ→ 1−. Hence condition (2.6) is satisfied if δ is sufficiently close to 1

and λ is sufficiently large.

Remark 2.3. Notice that Theorem 2.1 is not applicable to the case when u0 ≡ 0. The quench-

ing criterion for zero initial data is still open.

2.2. With inertia (ε= 1): hyperbolic case

In this subsection, we consider the case with inertia so that the problem is of hyperbolic

type. We leave α free and normalize Ω so that |Ω| = 1. Then our problem becomes the follow-

ing initial-boundary value problem:





ut t +ut =∆u + λh2(u)
[1+αI (u)]2 , x ∈Ω, t > 0,

u(x, t )= 0, x ∈ ∂Ω, t > 0,

u(x,0) =u0(x), ut (x,0) = u1(x), x ∈ Ω̄.

(2.7)
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Hereafter, we denote

h(u) :=
1

1−u
, I (u)(t ) :=

∫

Ω

h(u(x, t ))d x, Ψ(u)(t )=
1

1+αI (u)(t )
.

Define

E (t )=
∫

Ω

[1

2
u2

t +
1

2
|∇u|2

]
d x +

λ

α
Ψ(u)(t ). (2.8)

Then it is easy to check that
dE

d t
(t ) =−

∫

Ω

u2
t d x ≤ 0

and hence E (t )≤E (0) for t > 0.

First, we derive a quenching criterion for the case u0 6≡ 0. For a general domain Ω ⊂ RN

with |Ω| = 1, we have the following quenching criterion (cf. [19]).

Theorem 2.4. Suppose that the initial function u0 satisfies

I (u0) >
4α2 +2−α

α(2+α)
, if 0 <α≤ 1/2; I (u0)> 4−

1

α
, if α> 1/2. (2.9)

Then there exists a positive constant λ+ =λ+(α;u0,u1) such that the solution of (2.7) quenches

in finite time, if either λ>λ+(α;u0,u1), or

λ=λ+(α;u0,u1) and ‖u0‖2 +2

∫

Ω

u0(x)u1(x)d x > 1. (2.10)

Proof. Suppose that |u| < 1 for (x, t ) ∈ Ω̄× [0,∞). Following [18], we set

A(t )=
∫

Ω

u2(x, t )d x.

Then we compute that

A′(t ) = 2

∫

Ω

uut d x, A′′(t )= 2

∫

Ω

uut t d x +2

∫

Ω

u2
t d x.

It follows from (2.7) and an integration by parts that

A′′(t )+ A′(t )=−2

∫

Ω

|∇u|2d x +2

∫

Ω

u2
t d x +2λ

∫
Ω

uh2(u)d x

[1+αI (u)]2
.

Using (2.8) and h(u)= 1/(1−u), we can deduce that

A′′(t )+ A′(t )= 4

∫

Ω

u2
t d x −4E (t )+2λ

2+α
∫
Ω

(2−u)h2(u)d x

α[1+αI (u)]2
.

Moreover, using Young’s inequality and Hölder’s inequality, we have

[1+αI (u)]2 ≤ 2[1+α2 I (u)2] ≤ 2+2α2
∫

Ω

h2(u)d x.
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Since E (t ) ≤ E (0) for t ≥ 0 and |u| < 1 for (x, t ) ∈ Ω̄× [0,∞), we end up with the following

inequality

A′′(t )+ A′(t ) ≥−4E (0)+
λ

α
θ

(∫

Ω

h2(u)d x

)
, (2.11)

where θ(z) := (2+αz)/(1+α2z) for z ≥ 1. Note that
∫
Ω

h2(u)d x ≥ 1.

Since

θ′(z) =α(1−2α)/(1+α2 z)2,

we see that θ(z) ≥ θ(1) = (2+α)/(1+α2) for all z ≥ 1, if α ∈ (0,1/2], while θ(z) ≥ θ(+∞) = 1/α

for all z ≥ 1, if α> 1/2. It follows from (2.11) that

A′′(t )+ A′(t )≥Q(λ,α), (2.12)

where

Q(λ,α) :=
{
−4E (0)+λ(2+α)/[α(1+α2)], 0 <α≤ 1/2,

−4E (0)+λ/α2, α> 1/2.

Integrating (2.12) twice and using the fact that A(t )< 1 for all t ≥ 0, it follows that

A(t ) ≥
1

2
Q(λ,α)t 2 + [A(0)+ A′(0)−1]t + A(0), ∀ t ≥ 0. (2.13)

Recall that

E (0) = (‖∇u0‖2 +‖u1‖2)/2+λ/{α[1+αI (u0)]}.

Hereafter ‖ · ‖ denotes the L2 norm. Then, under the assumption (2.9), for any fixed α > 0

we have that Q(λ,α) is strictly increasing in λ, Q(0,α) < 0 and Q(∞,α) =∞. Hence there is

a unique positive constant λ+ depending on α,u0,u1 such that Q(λ+,α) = 0. Therefore, if

λ > λ+(α), then Q(λ,α) > 0. It follows from (2.13) that A(t ) →∞ as t →∞, a contradiction.

On the other hand, if λ=λ+(α), then Q(λ,α) = 0. But, the condition (2.10) implies that A(0)+
A′(0) > 1. Hence we also obtain from (2.13) that A(t ) → ∞ as t → ∞, a contradiction. This

completes the proof of the theorem. ���

We remark that Theorem 2.4 is not applicable to the case when u0 ≡ 0. However, phys-

ically we should have the touch down when the applied voltage is sufficiently high. In the

following, we shall give some conditions to ensure the touch-down for zero initial data for

one dimensional case.

For the case of zero initial and boundary conditions, we let v = e t /2u. Then, for N = 1 and

Ω= (0,1), v satisfies






vt t −vxx = 1
4 v + λe t/2h2(e−t/2v)

[1+αI (e−t/2v)]2 , 0 < x < 1, t > 0,

v(0, t )= v(1, t )= 0, t > 0,

v(x,0) = vt (x,0) = 0, 0 ≤ x ≤ 1.

(2.14)
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By applying a Picard iteration with the help of the domain of dependence for 1D wave equa-

tion and the Duhamel principle, we have the following lemma (cf. [27, 19]).

Lemma 2.5. For λ≫ 1, there exists t0 ∈ (0,1/2] such that the solution v of (2.14) satisfies

v(x, t )=V (t )= max
x∈[0,1/2]

v(x, t )

in the set {(x, t ) | t ≤ x ≤ 1/2,0 ≤ t ≤ t0}.

Indeed, the time t0, as a function of λ, is defined so that the solution V to the equation

V (t ) =
∫t

0
(t −τ)

{
1

4
V (τ)+λeτ/2h2(e−τ/2V (τ))/[1+αI (e−τ/2V (τ))]2

}
dτ. (2.15)

satisfies e−t /2V (t )< 1 for t ∈ [0, t0) and e−t0/2V (t0) = 1. Note that the function W (t ) := e−t /2V (t )

satisfies

W ′′+W ′ =
λ

(1+α−W )2
, t > 0; W (0) =W ′(0) = 0.

It is trivial that t0(λ) decreases as λ increases such that t0(0+) =∞ and t0(+∞) = 0. Further-

more, we have the estimate

t0(λ) ≤ 1/2, if λ≥ λ̂ :=
(1+α)2

1/
p

e −1/2
. (2.16)

To see this, we assume that t0(λ) > 1/2 for some λ≥ λ̂. Then W (t ) < 1 for all t ≤ 1/2. We see

that

(e t W ′)′ ≥
λe t

(1+α)2
, ∀ t ≤ 1/2.

This implies that

W (t ) ≥
λ

(1+α)2
(e−t + t −1), ∀ t ≤ 1/2,

and, in particular, W (1/2) ≥ 1, a contradiction. Hence (2.16) is derived.

This lemma gives the following quenching criterion for zero initial data.

Theorem 2.6 ([19]). The solution u to (2.7) with u0 = u1 = 0 quenches in a finite time T ≤ 1/2,

provided that λ≥ λ̂.

Note that the solution u to (2.7) with u0 = u1 = 0 is symmetric with respect to x = 1/2, by

the uniqueness of solution.
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3. Steady states

In this section, we assume that α = 1 (after a rescaling). Then the steady states of (1.1)

and (1.2) are solutions to the problem

∆w +
λ

K (1−w )2
= 0, x ∈Ω, w = 0, x ∈ ∂Ω, (3.1)

where

K = K (w ) :=
(
1+

∫

Ω

d x

1−w

)2
.

Note that we always have 0 < w < 1 in Ω for a (classical) solution of (3.1).

By setting

µ=
λ

K
=

λ
(
1+

∫
Ω

dx
1−w

)2
, (3.2)

then (3.1) is transformed to

∆w +µ(1−w )−2 = 0 x ∈Ω, w = 0 x ∈ ∂Ω. (3.3)

Problems (3.1) and (3.3) are equivalent through (3.2), i.e., w is a solution of (3.1) correspond-

ing to λ if and only if w satisfies (3.3) for µ=λ/K .

Some structure of steady states of (3.3) is known. Indeed, for any N , we recall from [15]

that there exists a positive constant µ∗ such that a solution of (3.3) exists, if µ < µ∗, and no

solutions of (3.3) exist if µ > µ∗. Moreover, the minimal solution, denoted by wµ, of (3.3) is

ordered in the sense that

0 < wµ1
(x) < wµ2

(x) < 1 for x ∈Ω, if 0 <µ1 <µ2 <µ∗. (3.4)

Motivated by the work of Deng [2], we have the following theorem for 1D problem.

Theorem 3.1 ([17]). Suppose that N = 1. Then there exists a positive constant λ∗ such that

there are no steady state solutions if λ> λ∗; there is exactly one steady state solution if λ= λ∗;

and there are two steady state solutions if λ<λ∗.

Note that the structure of 1D steady states of (3.1) is the same as that of local problem

(3.3) (cf. [28]). We also refer the reader to [1, 2, 3, 16, 20] for the steady states structures of

other nonlocal parabolic problems.

In the following, we shall focus on the case N ≥ 2. For a general smooth domain Ω, using

the monotonicity property (3.4) we can prove the following existence theorem.
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Theorem 3.2 ([18]). There exists a (classical) steady-state solution of (P) if λ ∈ (0, (1+|Ω|)2µ∗).

Moreover, we have

Theorem 3.3 ([18]). Let Ω be a strictly star-shaped domain of RN , N ≥ 2. Then problem (3.1)

has no solution if

λ>
N (1+|Ω|)4

2β|Ω|2
,

where β is a positive constant depending on Ω. Moreover, for N ≥ 2 there exists λ∗ > 0 such that

problem (3.1) has a unique solution for 0 <λ<λ∗.

When Ω is the unit ball, then the solution of (3.1) is radial symmetric, [10], i.e., w (x) =
w (r ), where r = |x| and (3.1) is reduced to

(r N−1wr )r +
λr N−1

K (1−w )2
= 0 for r ∈ (0,1), (3.5)

w (1)= 0, wr (0) = 0. (3.6)

Furthermore, K has the form

K =
(
1+NωN

∫1

0

r N−1

1−w
dr

)2
.

The related local problem is

(r N−1wr )r +
µr N−1

(1−w )2
= 0 for r ∈ (0,1), (3.7)

w (1) = 0, wr (0) = 0, (3.8)

where µ=λ/K .

Indeed, when Ω is the unit ball of RN , N ≥ 2, it is proved by Joseph and Lundgren in

[25] that the set of steady states of (3.7)-(3.8) is homeomorphic to R and has end points (0,0)

and (µ̂,1− |x|2/3), where µ̂ := [4+6(N −2)]/9. Moreover, when 2 ≤ N ≤ 7 the solution curve

(µ(s), w (·, s)), s ∈R, of (3.3) bends infinitely many times around the singular point (µ̂,1−r 2/3).

Whereas for N ≥ 8 the solution curve terminates at (µ̂,1− r 2/3) and no bendings occur.

The following theorem shows that the structure of steady states of local problem is pre-

served, namely, the structures of steady states of local and nonlocal problems are the same.

Due to the nonlocal feature, the proof needs a more delicate analysis of the orbit O (defined

in [25]), especially, for the case 2 ≤ N ≤ 7.

Theorem 3.4 ([18]). If N ≥ 2, then the set of steady states of (3.5)-(3.6) is homeomorphic to R

and has end points (0,0) and (λ̂,1− r 2/3), where

λ̂=Λ

(
1+

NωN

γ

)2
, Λ :=

2

3
(N −4/3) = µ̂, γ= N −2/3.
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Moreover, if 2 ≤ N ≤ 7, then Cr bends infinitely many times with respect to λ around λ̂ and

there exist two positive constants λ∗ and λ∗ with 0 < λ∗ < λ̂<λ∗ such that problem (3.5)-(3.6)

has

1. a unique solution for 0 <λ<λ∗ and λ=λ∗,

2. a finite number of solutions for λ ∈ (λ∗,λ∗) and λ 6= λ̂,

3. infinite number of solutions for λ= λ̂,

4. no solutions for λ>λ∗.

On the other hand, no bending occurs in the case of N ≥ 8, i.e., problem (3.5)-(3.6) has a unique

solution for any 0 <λ< λ̂=λ∗ and no solution for λ≥ λ̂=λ∗.

4. Global existence

It is well-known that the steady states of the evolution problem play an important role in

the study of its long-time behavior and/or finite time singular behavior. However, due to the

nonlocal nonlinearity, we do not have the comparison principle for our problem. Therefore,

we use another approach to tackle the global existence of solutions here.

4.1. Without inertia (ε= 0): parabolic case

Given λ ∈ (0, (1+|Ω|)2)µ∗), there exists a minimal steady-state solution of (3.3), denoted

by wµ, with µ= λ/(1+|Ω|)2. Then we have the following theorem on the global existence for

small values of λ.

Theorem 4.1 ([18]). For any λ ∈ (0, (1 + |Ω|)2µ∗), let µ = λ/(1 + |Ω|)2. Then the solution of

problem (P) with u0 ≤ wµ exists globally in time.

Proof. Let v be the solution to the local problem (LP):






vt =∆v +µ(1−v)−2, x ∈Ω, t > 0,

v = 0 on ∂Ω,

v = u0 for t = 0.

Since u0 ≤ wµ, by comparison, v ≤ wµ and v exists globally in time. Moreover, since u is a

sub-solution of the problem (LP), by comparison, we have u ≤ v . This implies that u exists

globally and the theorem follows. ���

Note that the solution v to (LP) with u0 ≡ 0 exists globally such that v t > 0 and v ≤ v .

Hence v converges to the minimal steady state wµ as t →∞. This also implies that v → wµ
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as t → ∞. It would be interesting to see whether u tends to some steady state for general

dimension N .

4.2. With inertia (ε= 1): hyperbolic case

We first have the following criterion of the global existence for zero initial data.

Theorem 4.2 ([19]). Suppose that N = 1 and let Ω= (0,1). If u0 =u1 = 0 and

0 <λ< 2(1+α) max
0≤δ≤1

(1−δ)(α+δ),

then the solution u =u(x, t ;λ) of (2.7) exists globally in time.

For the case of non-zero initial data such that ‖u′
0‖

2 +‖u1‖2 < 4, we have the global exis-

tence if

0 <λ< [4− (‖u′
0‖

2 +‖u1‖2)]α/2. (4.1)

Indeed, suppose that u ≤ M < 1 in [0,1]× [0,T ]. Then we have

Ψ(u)(t )≥
1

1+α/(1−M )
for all t ∈ [0,T ].

Using E (t )≤ E (0),

4u2 ≤
∫1

0
u2

x d x.

and Ψ(u)≤ 1, we obtain

4M 2 +
2λ

α

1−M

1+α−M
≤ ‖u′

0‖
2 +‖u1‖2 +

2λ

α
(4.2)

for all t ∈ [0,T ]. If u quenches in finite time T , by letting M → 1 in (4.2), we obtain a contra-

diction to (4.1). Hence we have the global existence when the condition (4.1) is imposed.

5. Open problems

Due to the lack of comparison principle, little is known for our nonlocal problem. Al-

though we have provided some quenching criteria in section 2, our results are far from com-

plete. For example, as mentioned in Remark 2.3, the quenching criterion is still open for zero

initial data in the parabolic case. Also, the stabilization for the global solution of the nonlocal

problem is still open.

The second question is about the location of touch-down. Let T <∞ be the quenching

time. Mathematically, a point x0 is a quenching point (touch-down point), if there is a se-

quence {(xn , tn)} in Ω̄× [0,T ) such that xn → x0, tn ↑ T and u(xn , tn) → 1 as n →∞. For N = 1
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and Ω= (−1,1), it is proved in [17] that 0 is the only quenching point of (P), provided that the

initial data u0 satisfies

u0(−x) =u0(x), u′
0(x) ≥ 0, x ∈ [0,1], u0 ≤ 1−c0, u′′

0 ≤−c0,

for some constant c0 ∈ (0,1). It would be important to determine the set of quenching points

when the solution quenches in finite time.

The next question is to determine the time asymptotic rate when quenching occurs. This

is also called the quenching rate. For the quenching rates of some local problems, we refer the

reader to [13, 7, 14]. To the author’s knowledge, the only known quenching rate for a nonlocal

problem is given in [16]. In [16], the nonlocal term in the model is given by

λ

(∫1

0
u(x, t )d x

)
(1−u)−β, β> 0,

in which the comparison principle can be applied. It is proved in [16] that the quenching

rate is the same as the local problem without the integral term, namely, 1−u ∼ (T − t )1/(β+1)

as t ↑ T , the so-called self-similar rate. We are not sure whether the quenching rate for the

problem (P) is self-similar.

Finally, we mention the question of spatially quenching profile, namely, to determine the

profile of u(x,T −) for x ∈Ω, or, at least near the quenching point. We refer the reader to [8]

for the quenching profile of the local problem.
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